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Abstract: Bioelectrochemical systems (BESs) have been extensively studied for treatment and reme-
diation. However, BESs have the potential to be used for the enrichment of microorganisms that
could replace their natural electron donor or acceptor for an electrode. In this study, Winogradsky
BES columns with As-rich sediments extracted from an Andean watershed were used as a strategy to
enrich lithotrophic electrochemically active microorganisms (EAMs) on electrodes (i.e., cathodes).
After 15 months, Winogradsky BESs registered power densities up to 650 µWcm−2. Scanning elec-
tron microscopy and linear sweep voltammetry confirmed microbial growth and electrochemical
activity on cathodes. Pyrosequencing evidenced differences in bacterial composition between sed-
iments from the field and cathodic biofilms. Six EAMs from genera Herbaspirillum, Ancylobacter,
Rhodococcus, Methylobacterium, Sphingomonas, and Pseudomonas were isolated from cathodes using a
lithoautotrophic As oxidizers culture medium. These results suggest that the tested Winogradsky
BES columns result in an enrichment of electrochemically active As-oxidizing microorganisms. A
bioelectrochemical boost of centenarian enrichment approaches, such as the Winogradsky column,
represents a promising strategy for prospecting new EAMs linked with the biogeochemical cycles of
different metals and metalloids.

Keywords: sediment microbial fuel cell; biogeochemistry; arsenic; biocathodes; electrochemically
active microorganisms

1. Introduction

During the last two decades, the study of bioelectrochemical systems (BESs) has
been dedicated to developing technologies for treating organic and inorganic pollutants
from water, sediments, and soil. This focus has been based on their environmentally
friendly characteristics, cost-effectiveness, versatility, and the potential to recover electrical
energy from contaminants [1]. However, BESs could be a promising strategy to enrich and
cultivate microorganisms that can replace their natural electron donor or acceptor for an
electrode [2]. Usually, these electrochemically active microorganisms (EAMs) are found
in metal-rich environments such as soil and sediments, where they must use insoluble
electron donors/acceptors to survive [3,4].

The EAMs are the critical component of a BES. Research on EAMs has focused on the
understanding of extracellular electron transfer (EET) mechanisms used by exoelectrogenic
model microorganisms (i.e., Geobacter, Shewanella, Pseudomonas) that use an electrode as a
terminal electron acceptor (i.e., anode). In recent decades, increasing attention has concen-
trated on lithotrophic EAMs capable of uptake and transferring electrons from an electrode
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(i.e., cathode). Microorganisms from this phenotype are known as electrotrophs [5]. There
is not much information on the diversity and mechanisms of electrotrophic microorganisms
compared to exoelectrogenic microorganisms [6,7]. For example, microorganisms observed
in biocathodic communities, such as Rhodococcus sp., Sphingomonas sp., or Herbaspirillum sp.,
have been demonstrated to be able to transform and/or resist perchlorate [8], iron (Fe) [9],
and arsenic (As) [10], respectively, but not necessarily capable of being isolated or tested in
pure culture studies.

Electrotrophs can be found in diverse environments, and there is a progressive interest
in their study due to the enormous potential associated with their use in BESs. However,
this type of microorganism is difficult to culture with traditional methods. Electrotrophic
microorganisms have been commonly obtained from sediments in mineral-rich environ-
ments. Even though the conventional techniques used for culturing and enriching putative
electrotrophs are based on defined culture media, there is no consensus about the best
growth medium or strategy [11]. For this reason, non-conventional isolation techniques
have been developed, such as the U-tube microbial fuel cell [12], the plate-culture elec-
trode [13], and the electrochemical enrichment method used by applying a fixed potential
in a three-electrode cell [14–16].

For decades, the Winogradsky column has been widely used to selectively enrich
microorganisms [17–19], study microbial diversity [20,21], and understand how microbial
communities adapt to polluted sediments and transform them [22]. Recently, Winogradsky
columns have been combined with BESs to optimize voltage generation using cellulose
as an electron donor [23] and to enrich electroactive communities from an acid mine
drainage-affected site [24]. However, to the best of our knowledge, no information on its
potential for enriching electrotrophic microorganisms from contaminated environments
has been published.

Andean basins in northern Chile have exhibited active biogeochemical cycles of Fe, sul-
fur (S), and As [25]. Thus, sediments from these environments are perfect niches for testing
enrichment strategies and isolating new microorganisms. The As-oxidizing bacteria Ancy-
lobacter TS-1 was recently isolated from a sediment sample extracted from a hydrothermal
source in northern Chile [26]. This location presents high As concentrations in sediments
(6.4 ± 1.7 mg kg−1) and water (0.8 ± 0.2 mg L−1), with relatively high electrical conduc-
tivity (EC = 3.8 ± 0.1 mS cm−1), moderately acidic conditions (pH 5.9 ± 0.1), moderated
dissolved oxygen (2.0 ± 0.5 mg L−1), and mesophilic temperatures (34.9 ± 0.5 ◦C) [25].
Bioelectrochemical studies of TS-1 probed its electrotrophic capacity, using an electrode
(i.e., cathode) as the only electron donor [27], confirming the potential of this naturally
pressured environment as a source for prospecting new EAMs.

This work combined biogeochemical techniques, molecular tools, scanning electron
microscopy, and electrochemistry to evaluate the use of a Winogradsky BES column
with As-rich sediments as a direct enrichment strategy for electrochemically active As-
oxidizing microorganisms.

2. Materials and Methods
2.1. Site Description and Sample Collection

Sediment samples were obtained from a hydrothermal source located in the upper
Lluta River (Arica and Parinacota Region) in northern Chile (17◦43′12′′ S and 69◦49′18′′ W)
(Figure 1). In a first field campaign, sediments were collected in 1000 mL HDPE bottles and
transported on ice to the laboratory, where they were kept at 4 ◦C for seven months until
system construction. In a second field campaign, sediments were aseptically collected in
50 mL polypropylene tubes (BD Biosciences, Mountain View, CA, USA) and maintained at
4 ◦C for DNA extraction within a week of sample collection.

2.2. Bioelectrochemical System Set-Up, Operation, and Electrochemical Analysis

The BESs consisted of duplicated 250 mL graduated cylinders (total volume of 320 mL),
each filled with 230 mL of sediments; 40 mL of water from the same hydrothermal source
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(Table S1), both previously described by Leiva et al. [25]; and 40 mL of deionized filtered
water. BESs were configured with eight carbon felt cathodes with a geometric surface of
9.1 cm2 (Fuel Cell Store, College Station, TX, USA) submerged in the water zone of the
columns at the same depth. Each cathode was connected to an anode through a 1 kΩ
resistor. Anodes were made of two different materials, four of graphite (geometric surface
of 6.4 cm2) and four of titanium (geometric surface of 0.7 cm2) (Fuel Cell Store, USA).
The anodes of each material were buried in the sediment at different depths (distance
between cathode and anode: 7.5 cm, 12 cm, 15.5 cm, and 21 cm) (Figure 2). BESs were
operated for 15 months in a temperature-controlled room at ~25 ◦C, with artificial white
light, under closed-circuit conditions. Voltages were measured using a data acquisition
system (Multimeter 2700; Keithley, Beaverton, OR, USA). The volume of the columns was
maintained over time; for this, deionized filtered water was added when required.
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Figure 2. Winogradsky BES system set-up. (A) Schematic of the column system constructed with
eight carbon felt cathodes (in water), each connected to eight anodes inserted in the sediment.
(B) Photography of one of the two columns tested in the laboratory. Eight anodes were inserted in
the sediment (1–4 graphite rod anodes, 5–8 titanium wire anodes). Colors were used for different
cathode–anode distances. red: 7.5 cm, purple: 12 cm, blue: 15.5 cm, and green: 21 cm.
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2.3. Electrochemical Characterization

Linear sweep voltammetry (LSV) was used to characterize the electrochemical re-
sponse of (i) electrodes extracted from the Winogradsky BES and (ii) new electrodes inocu-
lated with bacterial isolates obtained from the Winogradsky BES cathodes.

Cathodic LSV was performed on electrodes at the end of the BESs operation. Electrodes
were removed from the columns and tested using a three-electrode cell. Anodes and
cathodes sampled from the columns were independently tested as working electrodes. A
counter electrode of platinum (CHI115, CHI Instruments Inc.) and an Ag/AgCl reference
electrode (CHI111, CHI Instruments Inc.) were used. The electrolyte consisted of water
from the BESs (pH = 4.2 ± 0.1; DO = 8.6 ± 0.1 mg L−1; EC = 3.8 ± 0.4 mS cm−1). LSVs
were performed from 0.1 to −1 V (vs. Ag/AgCl) at 1 mV s−1 using a potentiostat Reference
600 (GAMRY, Warminster, PA, USA).

The electrochemical characterization of the isolates was performed using the same
three-electrode cell described above, filled with PBS (10 mM), and inoculated with each
bacterial isolate (i.e., independent tests for each isolate). The bacterial concentration was
adjusted to an optical density of 0.4 at 600 nm. The working electrodes were new sterile
pieces of carbon felt (Fuel Cell Store, College Station, TX, USA) with geometric surfaces
of 9.1 cm2, a counter electrode of platinum (CHI115, CHI Instruments Inc., Bee Cave, TX,
USA), and an Ag/AgCl reference electrode (CHI111, CHI Instruments Inc.). LSVs were
performed from 0.2 to −1.0 V (vs. Ag/AgCl) at 1 mV/s using a potentiostat Reference 600
(Gamry Instrument Inc.).

2.4. Scanning Electron Microscopy (SEM) and Bacterial Isolation from BES Cathodes

A portion of each cathode (0.27 g wet weight; corresponding to ~20% of the electrode)
was fixed with 2% glutaraldehyde, dried using a critical point, and coated with silver
before microscopic observation. Microbial growth on the surface of the cathode electrodes
was confirmed by scanning electron microscopy (SEM). A LEO 1420VP scanning electron
microscope coupled to an Oxford 7424 solid-state detector was used for microscopic and
energy dispersive spectroscopy (EDS) analyses.

A second part of each cathode (0.27 g fresh weight) was used to isolate potential
As-oxidizing microorganisms. A basal growth medium was prepared using (per liter
of water): 1299 mg NaAsO2; 8400 mg NaHCO3; 30 mg Na2SO4; 100 mg KCl, 80 mg
MgCl2; 100 mg CaCl2·2H2O; 200 mg (NH4)2SO4; 6.8 mg KH2PO4; 0.018 mg AlCl3·6H2O;
0.03 mg Na2WO4·2H2O; 0.2 mg Na2EDTA, HCl 3.7%, trace elements added according to
Bahar [28], and vitamins [29]. Each cathode portion was placed in 5 mL of the final culture
media and maintained in a rotatory shaker (at 200 rpm and 30 ◦C) until turbidity was
observed (about four weeks after incubation). After incubation, aliquots (100 µL of liquid
culture) were spread homogeneously on Petri dishes with the same media described above
but solidified using agar 1.5% (BD Difco&trade Bacto™). When growth was observed,
colonies with different morphologies and colors were transferred to new solid media
successively to obtain isolates. DNA was extracted from isolates using a Genomic DNA
Kit (PureLink®), following the manufacturer’s instructions. The 16S rRNA coding genes
were amplified using primers 8F (3′-AGAGTTTGATCCTGGCTCAG-′5) and /1392R (3′-
ACGGGCGGTGTGTAC-′5). PCR products were purified and sequenced by Macrogen
Inc. (Seoul, Korea). Sequences were compared against sequences of type strains using
the classifier tool from Ribosomal Database Project (RDP) release 11 [30]. Additionally,
to identify the nearest taxa, sequences were subjected to BLASTn. These sequences were
aligned with the closest matches found in the GenBank database (http://www-ncbi-nlm-
nih-gov.pucdechile.idm.oclc.org/ accessed on 25 August 2022) using the ClustalW tool
from MEGA X [31].

The 16S rRNA gene sequences were deposited in the GenBank database under acces-
sion numbers OP379285-OP379286-OP379287-OP379288-OP379289-OP379290-OP379291-
OP379292-OP379293-OP379294.

http://www-ncbi-nlm-nih-gov.pucdechile.idm.oclc.org/
http://www-ncbi-nlm-nih-gov.pucdechile.idm.oclc.org/
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2.5. Microbial Community Characterization

Community DNA was extracted from two sediment subsamples (0.25 g fresh weight)
obtained from the field (2nd campaign) and from representative cathodes from both BESs
(0.27 g fresh weight) at the end of the incubation period using the Power Soil® DNA isola-
tion kit (MoBio Laboratories, Inc., Carlsbad, CA, USA) according to the manufacturer´s pro-
tocol. All DNA concentrations were measured using a NanoDrop 2000c spectrophotometer
( Thermo Fisher Scientific, Waltham, MA, USA). Community DNAs were subjected to bar-
coded amplicon library preparation by PCR to amplify 16S rRNA genes using the primers
28F (5′-GAGTTTGATCNTGGCTCAG-3′) and 519R (5′-GTNTTACNGCGGCKGCTG-3′).
Targeted sequences were then pyrosequenced using the 454 FLX Titanium system at the Re-
search and Testing Laboratory, (Lubbock, TX, USA). Pyrosequencing data were processed
and analyzed with the Quantitative Insights Into Microbial Ecology (QIIME) software
v.1.9.0 [32].

3. Results and Discussion
3.1. Operation and Electrochemical Analysis of Winogradsky BESs

During the 15 months of operation, BESs produced power densities ranging from
650 µWcm−2 for the first two months of operation to low power in the range of nano
Watt per square centimeter (nWcm−2) at the end of the experiment (Figure S1). These
values are comparable to similar systems, such as constructed wetlands integrated into
microbial fuel cells (MFCs) [33], and marine sediments or soil MFCs [34]. LSVs conducted
on biocathodes of the tested columns revealed a shift in the cathodic potential from about
−0.2 V (vs. Ag/AgCl) observed in abiotic controls to 0.0 V (vs. Ag/AgCl) (Figure 3A,B).
Biocathodes connected to graphite and titanium anodes presented potential peaks ranging
from −0.4 to −0.55 V (vs. Ag/AgCl).

LSV tests conducted for Winogradsky anodes revealed differences between graphite
and titanium electrodes. While LSVs for graphite electrodes suggest the development of
electrochemically active biofilms, titanium electrodes do not show current. The affinity
of EAMs for carbon-based instead of metallic electrodes could allow the separation of
microbial from galvanic potential in a sediment column (Figure 3C,D). Additionally, LSVs
conducted on graphite anodes show an effect caused by the depth of electrode insertion
in stratified sediments on biocathode performance. This result suggests that the cathodic
biofilm formed on electrodes at level 1 (green lines) could be able to reduce an inorganic
compound (e.g., sulfate, arsenic, iron) present in the sediment. Although graphite anodes
showed catalytic activity, they did not present clear peaks; thus, electrochemical and
microbial community characterization was focused on the formed biocathodes.

Cathodes associated with graphite anodes inserted in the deeper part of the sediment
of each column (green lines in Figure 3) were selected to compare the different electrochem-
ical performances observed among replicates (Figure 3A,B). Biocathodes from column 1
(BC1) showed a cathodic current peak of 30 µA cm−2 at −0.4 V vs. Ag/AgCl. This peak
has been previously linked to Acidithibacilus ferrooxidans catalyzing oxygen reduction [2].
In contrast, biocathodes from column 2 (BC2) showed a clear cathodic current plateau
of 37 µA cm−2 at −0.5 V vs. Ag/AgCl, revealing a different catalytic effect. A cathodic
peak at −0.5 V (vs. Ag/AgCl; pH = 2.6) was previously observed in carbon brush biocath-
odes dominated by Acidithiobacillus of similar Winogradsky BES columns with acid mine
drainage sediments [24]. This bacterium has been reported as an Fe(III) reducer [35,36].

Differences observed in cathodic potential could be associated with different micro-
bial communities with different EAMs catalyzing electron transfer from electrodes to
the medium.

3.2. Bacterial Community Characterization

A total of 28 phyla were detected in sediment samples used to construct the Wino-
gradsky BES columns. The sediment bacterial communities were dominated mainly by the
phyla Chlorobi, Chloroflexi, and Nitrospirae (Figure 4). These phyla have been reported
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as groups present in As-rich environments in the same region of Chile [37–39] as in other
arsenic-rich environments, such as rice soil in India [40] and China [41,42]. Moreover,
previous studies have demonstrated that genes related to As redox reactions are present in
diverse phylogenetic groups of prokaryotes, including members of Proteobacteria, Chlorobi,
Chloroflexi, and Nitrospirae [43,44].
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connected to graphite anode. (B) Cathodes connected to titanium anodes. (C) Graphite anodes.
(D) Titanium anodes. Colors were used to represent each system with anodes at different depths: red
7.5 cm, purple 12 cm, blue 15.5 cm, and green 21 cm. Continue lines were used for column 1 (BC1)
and discontinue lines for column 2 (BC2).

Selection and enrichment may occur within the columns and the biofilms developed
on the inserted electrodes. Only 15 phyla were detected from enriched biocathodes. In
both cathodic biofilms, Proteobacteria was the most abundant phylum (BC1 ~90% and
BC2 ~96%). The Xanthomonadaceae family was the most dominant Proteobacteria in BC1
(~46%), whereas Acetobacteraceae was in BC2 (92%). Recently, the Xanthomonadaceae
family was identified as an important member (6%) of an electroactive denitrifying biofilm
in biocathodes of BESs [45], and the presence of Acetobacteraceae has also been reported in
denitrifying cathodes [46]. Additionally, members of this taxa have shown Fe oxidation
capability [47]. Acetobacteraceae was dominated mainly by Acidocella species in both
biocathodes (BC1 ~16% and BC2 ~27%). Acidocella species are known dissimilatory Fe(III)
reducers that play a role in Fe(III) oxy(hydr)oxides dissolution [48]. As these microor-
ganisms can indirectly facilitate changes in As mobilization in the environment, their
abundance in cathodic biofilms demands further investigation.
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Figure 4. Relative abundances of bacteria phyla in sediments and cathodes from columns BC1 and
BC2 (21 cm of cathode–anode distance, green line in Figure 3). The number in parentheses represents
the replicate. The bacterial group others consisted of sequences of other phyla comprising less than
0.1% of classified sequences.

3.3. SEM-EDS Characterization of Biocathodes

Microbial colonization of cathodes was confirmed by SEM. Images evidenced rod-
shaped microorganisms, and early biofilm formation on the carbon felt fibers (Figure 5).
Figure 5A shows the morphology of the carbon felt fibers of the cathodes. Figure 5B,C
revealed biofilm formation on the electrodes in cluster-like arrangements and microbial
cells connected by fiber-like structures. Figure 5D shows mineral precipitates on the surface
of the fibers and spatially linked with microorganisms. EDS analysis of minerals formed
along with microorganisms (red square in Figure 5D) revealed the presence of Fe and S
as part of the by-product structures (Figure S2). This finding suggests the presence of
microbial communities involved in the cycling of S and Fe in sediments and water. No As
was detected as part of the formed precipitates.
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3.4. Identification and Characterization of Isolates from Winogradsky BES Cathodes

Bacteria were isolated from cathodes using a culture medium for lithoautotrophic
As oxidizers, which suggests the As resistance of isolates and their role in its chemistry.
The 16S rRNA gene sequence analysis (~1100 bp) showed that isolates belonged to the
Actinobacteria and Proteobacteria phyla. A total of six microorganisms were isolated from
BC1 and BC2 (Table 1). The first obtained isolate (i.e., CA1) had a 100% confidence thresh-
old close to Herbaspirillum. This microorganism has been found in rhizosphere soil [49]
and groundwater with high As concentrations [10]. In addition, reports have shown its
resistance to metals such as copper, zinc, lead, and metalloids such as arsenic [50,51]. The
As resistance in this microorganism has been correlated with low molecular weight pro-
tein tyrosine phosphatases [52]. The second isolate (i.e., CA4 and CB8) presented a 97%
confidence threshold close to the Ancylobacter. Ancylobacter sp. TS-1 was isolated from the
same site where the sediments were collected. Interestingly, chemolithoautotrophic As
oxidation was probed for TS-1 [26], along with its capacity to form biofilms [53], and the
use of the cathode as the only electron donor [27]. The third obtained isolate (i.e., CA5,
CA7, CA8) was close to Rhodococcus with a 100% identity confidence threshold. While
bacteria belonging to the genus Rhodococcus have not been reported as electrochemically
active, they have been associated with the transformation of many contaminants such
as polycyclic aromatic hydrocarbons, nitriles, and phenolic compounds [54], and as a
dominant genus in BES communities [55,56]. The fourth isolate (i.e., CB1) showed a 100%
confidence threshold close to Methylobacterium. Some species of Methylobacterium have
been reported to oxidize thiosulfate [57], revealing lithotrophic capabilities. The pres-
ence of members of this genus has been reported as part of anodic [58] and cathodic [59]
communities. Indeed, Methylobacterium extorquens has been used in biocathodes for the
biosynthesis of formate [60]. The fifth isolate obtained from the cathodes (i.e., CB1) was
close to Sphingomonas with a 100% confidence threshold. The electrochemically active Sph-
ingomonas DJ strain was isolated from a microbial electrolysis cell designed for wastewater
treatment. This microorganism has demonstrated the capacity to transform bromoamine
acid [56], azo dye methyl red [61] and Fe(III) reduction [9]. Finally, the sixth isolate obtained
(i.e., CB5, CB7) was close to Pseudomonas with a 100% confidence threshold. Pseudomonas
species have been previously reported in BES related to wastewater treatment [62], used
as model EAM to test BES architecture [63], and electrochemically evaluated in co-culture
studies [64,65]. Indeed, Pseudomonas aeruginosa has been syndicated as model EAM using
phenazine as external shuttling molecules, which act as an EET mechanism in anaerobic
conditions [66,67]. Furthermore, purified phenazine could be used as an electron mediator
by other microorganisms improving the electricity generation of a BES [68]. A multiple
sequence alignment guide tree (Figure 6) was constructed to show the phylogenetic diver-
sity of the ten microorganisms (six different isolates) obtained from the Winogradsky BES
cathodes. Table S2 presents the taxonomy assignment by BLAST.

Table 1. Taxonomy of the obtained isolate. Assignment according to the Ribosomal Database
Project classifier.

Isolate ID Closed Bacteria Confidence Threshold

CA1 Herbaspirillum sp. 100%
CA4 Ancylobacter sp. 97%
CA5 Rhodococcus sp. 100%
CA7 Rhodococcus sp. 100%
CA8 Rhodococcus sp. 100%
CB1 Methylorubrum sp. 100%
CB2 Sphingomonas sp. 100%
CB5 Pseudomonas sp. 100%
CB7 Pseudomonas sp. 100%
CB8 Ancylobacter sp. 97%
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Figure 6. Neighbor-joining phylogenetic tree based on the 16S rRNA sequences of the isolates
obtained from cathodes. Reference sequences retrieved from GenBank (underlined) were added for
comparison. Genbank number in parentheses. Bootstrap values (1000 replicates) are shown at the
tree nodes. (*) The microorganism Ancylobacter TS-1 was previously isolated from the same site where
sediments were collected.

Microbial isolates were electrochemically characterized by LSV tests (Figure 7). Two
cathodic peaks were identified. A peak close to −0.1V (vs. Ag/AgCl) was observed for
five of the six isolates, excluding the one close to the genus Ancylobacter (Figure 7B). This
peak has been previously reported by Citrobacter sp. KVM11, isolated from microbial
electrochemical remediation systems and associated with Fe(III) reduction [69]. A second
peak close to −0.55 V (vs. Ag/AgCl) was observed in all isolates with current densities
ranging from −125 to −447 µA cm−2. Interestingly, the only isolate obtained from both
columns (i.e., BC1 and BC2) was the one belonging to the genus Ancylobacter. The LSV
results revealed no peak at −0.1 V (vs. Ag/AgCl) and a clear cathodic peak at −0.55 V
(vs. Ag/AgCl) with a cathodic current density as high as−413± 48 µA cm−2, similar to the
−0.5 V (vs. Ag/AgCl; pH = 7.2) previously obtained for Ancylobacter TS-1, a microorganism
directly isolated from the same As-rich sediments used in the columns. The electrotrophic
capacity of the As-oxidizing microorganism Ancylobacter TS-1 was probed after its isolation
in a three-electrode cell [27]. Thus, the molecular and electrochemical characterization
of this isolate suggests that TS-1 was enriched in the Winogradsky BES biocathodes. A
summary of the cathodic current registered at −0.55 V (vs. Ag/AgCl) is presented in
Table S3.
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4. Conclusions

This work represents a first step in using a Winogradsky BES as an enrichment strategy
for EAMs in sediments rich in As, Fe, and S. The results suggest the effect of BESs as an
enrichment of microorganisms of the family Xanthomadaceaea (~46% of column 1), a
putative electrotrophic denitrifying bacteria, and (ii) the genus Acidocella (16% and 27%
of columns 1 and 2, respectively), an Fe-reducer, able to solubilize Fe(III) oxy(hydr)oxide.
Dissolution of Fe-rich precipitates could result in the release and mobilization of arsenate
into the water. In addition, six electrochemically active bacterial isolates were obtained from
biocathodes and successfully grown in a culture medium with As as the only electron donor,
suggesting lithotrophic capabilities. Microorganisms were close to genera Herbaspirillum,
Ancylobacter, Rhodococcus, Methylobacterium, Sphingomonas, and Pseudomonas. Thus, this
work evidences the potential of using a Winogradsky BES as a strategy to enrich and isolate
EAMs microorganisms related to As biogeochemistry, with a high potential to be used
for treating contaminants in a BES. Further research is required to expand the enrichment
opportunities of Winogradsky BES using sediments with a high concentration of other
metals, metalloids, or contaminants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13111953/s1. Figure S1: Power production during operation.
Figure S2: Energy dispersive analysis of mineral precipitates observed over cathode electrodes.
Table S1: Physicochemical characterization of sediments used for the Winogradsky-BES columns.
Table S2: Isolate’s taxonomy assignment by BLAST. Table S3: Current density (µA cm2) at −0.55 V
(vs. Ag/AgCl) of the isolates.

https://www.mdpi.com/article/10.3390/mi13111953/s1
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