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Abstract: Angiogenesis, the formation of new blood vessels, plays a critical role in various physiolog-
ical and pathological conditions. Snake venom disintegrins (SVDs) have been identified as significant
regulators of this process. In this review, we explore the dual roles of SVD in angiogenesis, both
as antiangiogenic agents by inhibiting integrin binding and interfering with vascular endothelial
growth factors and as proangiogenic agents by enhancing integrin binding, stimulating cell migration
and proliferation, and inducing neoangiogenesis. Studies in vitro and in animal models have demon-
strated these effects and offer significant therapeutic opportunities. The potential applications of
SVD in diseases related to angiogenesis, such as cancer, ocular diseases, tissue regeneration, wound
healing, and cardiovascular diseases, are also discussed. Overall, SVDs are promising potential
therapeutics, and further advances in this field could lead to innovative treatments for diseases
related to angiogenesis.
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Key Contribution: This review highlights research on the dual role of snake venom disintegrins in
angiogenesis, acting as both antiangiogenic and proangiogenic agents, and the potential therapeutic
applications of these findings in various diseases associated with angiogenesis.

1. Introduction
1.1. Angiogenesis

Angiogenesis is a complex biological process involving the formation of new blood
vessels from preexisting vessels [1]. It plays a crucial role in various physiological and
pathological conditions, including embryogenesis, wound healing, and tumor growth [2].
The process of angiogenesis is tightly regulated by multiple signaling pathways and factors.
Matrix metalloproteinases are primarily responsible for degrading the basement membrane
surrounding existing blood vessels, allowing endothelial cells to migrate and proliferate
toward the angiogenic stimulus [3]. One of the key proangiogenic factors is vascular en-
dothelial growth factor (VEGF), which is essential for the formation of new blood vessels
during embryonic development and is produced by various cell types, including tumors [4].
VEGF binds to specific receptors on endothelial cells, promoting their survival, migration,
and differentiation [5,6]. Other factors involved in angiogenesis regulation include fibrob-
last growth factors (FGFs), platelet-derived growth factor (PDGF), and angiopoietins [3].
These factors act synergistically to ensure the proper formation and remodeling of blood
vessels. The regulation of angiogenesis is maintained through a dynamic balance between
proangiogenic and antiangiogenic factors. This balance can be disrupted in various dis-
eases, leading to either excessive or insufficient blood vessel formation [1]. Insufficient
angiogenesis, on the other hand, can lead to tissue ischemia, impaired wound healing,
and various cardiovascular diseases [2]. Peripheral artery disease (PAD) is an example
where the narrowing or blockage of blood vessels reduces blood flow to the legs or arms,
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resulting in pain, skin ulcers, and an increased risk of amputation [2]. Therapeutic an-
giogenesis, which aims to promote blood vessel formation, has been investigated as a
potential treatment approach for PAD, with the administration of VEGF or the use of gene
therapy [1].

It is important to emphasize that integrins, a group of transmembrane proteins that
play a crucial role in cell adhesion and communication between cells and the extracellular
environment, are the focus of interest, as they play an important role in angiogenesis [7].

1.2. Integrins

Integrins play an essential role in the regulation of biological processes such as cell
migration, adhesion, proliferation, differentiation and signaling [8]. Integrins are het-
erodimeric glycoproteins consisting of alpha and beta subunits, which together form a
complex transmembrane receptor [9]. A total of 18 alpha subunits and eight beta sub-
units have been identified in mammalian cells, allowing the formation of 24 different
heterodimers. The α subunit determines affinity to the extracellular matrix component
(ECM), while the β subunit associates with cytoplasmic structural and regulatory proteins.
These subunits have a long transmembrane domain and a short cytoplasmic domain as-
sociated with cytoskeletal proteins [10]. Although integrins are constitutively expressed
on the cell surface, they need to be activated to interact with their ligands [11]. Such
activation can occur in the presence of chemokines and cytokines and is characterized by a
conformational change at the extracellular integrin domain that exposes their binding sites
on the α and β subunits, allowing them to interact with their ligands on the ECM or with
proteins on the membranes of neighboring cells. This interaction is primarily controlled by
a conserved tripeptide pattern of arginine, glycine, and aspartate, commonly known as the
Arg-Gly-Asp motif (RGD) [12–14]. They are crucial for cell adhesion, migration, and signal
transduction by mediating interactions between cells and ECM proteins. The main role of
these molecules is to provide a link between the cytoskeleton of the cell and certain ECM
components, such as fibronectin, vitronectin, laminin, and collagen. In addition, they are
responsible for triggering intracellular signal transduction pathways upon interaction with
the ECM. Integrins can undergo conformational changes that influence their ligand binding
properties and downstream signaling events [15]. They possess a unique arrangement of
cysteine residues that enables them to adopt a compact and stable structure consisting of a
well-defined loop disulfide array [16]. This structural motif is critical for their high-affinity
binding to integrins as it allows them to bind to specific integrin subunits and block their
ligand binding sites. In addition, integrins also interact with growth factor receptors to
regulate cell migration, blood vessel development, and angiogenesis. Importantly, the
understanding of the mechanism of action of integrins paralleled the discovery of pro-
teins from snake venoms, called disintegrins, which act as potent inhibitors of platelet
aggregation and integrin receptor-dependent cell adhesion [17,18].

1.3. Snake Venom Metalloproteinases and Snake Venom Disintegrins

Snake venom metalloproteinases (SVMPs) are a major component of most crotalid
and viperid venoms [19]. SVMPs are known to be a class of key toxins involved in
the pathophysiology associated with viperid venoms and are classified into classes and
subclasses from P-I to P-III according to the organization of their domains, as shown in
Figure 1 [20]. In general, class PI includes metalloproteinases that have only a catalytic
domain containing zinc; class PII, metalloproteinases that have a catalytic domain followed
by a disintegrin domain containing the tripeptide RGD (arginine-glycine-aspartic acid);
and class PIII, metalloproteinases that have a catalytic domain, a disintegrin-like domain,
and a cysteine-rich domain [21].
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disintegrins present in snake venoms can be formed in the venom gland in two distinct 
ways: (1) By proteolysis of SVMPs of class P-II, where cleavage occurs between the cata-
lytic domain and the disintegrin domain, leaving only the disintegrin domain. These dis-
integrins are known as RGD-dependent disintegrins, which are abundant in viperid ven-
oms and contain the sequence XGD (X-Gly-Asp), MLD (Met-Leu-Asp), or K/RTS 
(Lys/Arg-Thr-Ser) on the exposed surface of the loop that specifically binds to integrins 
on the surface of different cell types [22,23]. The amino acid sequences immediately adja-
cent to the RGD site of disintegrins could form an extended RGD locus that, in conjunction 
with the conformational representation of the RGD sequence, could be involved in deter-
mining integrin selectivity and affinity [13]. The family of disintegrins containing the RGD 
motif is widely recognized as the most extensive and well-studied group. Most of these 
units function as monomers (small, medium, or large), but a subgroup has the ability to 
combine into dimers and form homo- or heterodimers [24]. (2) Proteolysis of class P-III 
SVMPs results in fragments that covalently link the disintegrin-like and cysteine-rich do-
mains and are referred to as ECD-disintegrin-like/cysteine-rich domains (Figure 2). This 
disintegrin-like domain has a sequence of non-RGD tripeptides in its binding site [21,25]. 

Figure 1. Disintegrins are categorized according to their structural composition. The number of
disulfide bonds and length of the polypeptide chain determine this categorization.

Snake venom disintegrins (SVDs) are a class of proteins derived from SVMPs. The
disintegrins present in snake venoms can be formed in the venom gland in two distinct
ways: (1) By proteolysis of SVMPs of class P-II, where cleavage occurs between the catalytic
domain and the disintegrin domain, leaving only the disintegrin domain. These disintegrins
are known as RGD-dependent disintegrins, which are abundant in viperid venoms and
contain the sequence XGD (X-Gly-Asp), MLD (Met-Leu-Asp), or K/RTS (Lys/Arg-Thr-
Ser) on the exposed surface of the loop that specifically binds to integrins on the surface
of different cell types [22,23]. The amino acid sequences immediately adjacent to the
RGD site of disintegrins could form an extended RGD locus that, in conjunction with the
conformational representation of the RGD sequence, could be involved in determining
integrin selectivity and affinity [13]. The family of disintegrins containing the RGD motif
is widely recognized as the most extensive and well-studied group. Most of these units
function as monomers (small, medium, or large), but a subgroup has the ability to combine
into dimers and form homo- or heterodimers [24]. (2) Proteolysis of class P-III SVMPs
results in fragments that covalently link the disintegrin-like and cysteine-rich domains and
are referred to as ECD-disintegrin-like/cysteine-rich domains (Figure 2). This disintegrin-
like domain has a sequence of non-RGD tripeptides in its binding site [21,25].

SVDs are known for their ability to bind to integrin receptors and modulate vari-
ous cellular functions, such as inflammation, apoptosis in endothelial cells and inhibi-
tion of platelet aggregation [24]. Jararhagin-C, an SVD containing the ECD-disintegrin-
like/cysteine-rich domains produced by the proteolytic cleavage of Jararhagin (SVMP
P-III), is present in Bothrops jararaca venom and specifically interacts with α2β1 integrin,
inhibiting collagen and ADP-induced platelet aggregation [8]. Jararhagin-C is also ca-
pable of triggering the local release of cytokines [26] and induces changes in leukocyte–
endothelium interactions through the expression of the adhesion molecules ICAM-1, CD11a
and CD11b [27,28]. Alternagin-C, a toxin isolated from B. alternatus venom, is a protein
composed of the ECD-disintegrin-like/cysteine-rich domain, with 92% homology to Jar-C.
It is able to interfere with α2β1 integrin functions and may contribute to apoptosis by
interfering with cell adhesion [29].
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form contains a metalloproteinase domain; P-II (30–60 kDa), which contains a disintegrin domain
linked to the C-terminus of the metalloproteinase domain; and P-III (60–100 kDa), which consists of a
metalloproteinase domain, a disintegrin-like domain and a cysteine-rich domain.

One of the notable characteristics of SVDs is their ability to inhibit platelet aggregation,
an important step in blood clot formation [30]. This property has led to the exploration
of disintegrins as potential antithrombotic drugs for the prevention and treatment of
conditions such as deep vein thrombosis and stroke. For example, Insularin, a monomeric
RGD-disintegrin isolated from the venom of Bothrops insularis, strongly inhibits human
platelet aggregation and fibrinogen adhesion of endothelial cells [31]. Echistatin, an RGD
disintegrin from the venom of the saw-scaled viper (Echis carinatus), effectively inhibits
platelet aggregation by binding to integrin αIIbβ3 [32]. Upon binding to integrins, SVDs
interfere with various cellular processes. Disintegrins have gained attention in the field of
medicine due to their unique properties and potential therapeutic applications.

SVDs have also shown promise in cancer research [33–35]. Integrins play a crucial role
in tumor growth, invasion, and metastasis [36]. By targeting specific integrins expressed
on cancer cells, SVD can potentially inhibit the proliferation and migration of these cells.
Contortrostatin, a disintegrin from the venom of the Agkistrodon contortrix contortrix, has
been found to have anticancer properties by interacting with integrins αvβ3 and α5β1 [37].
Vicrostatin, a recombinant disintegrin developed by fusing 62 N-terminal amino acids of
the disintegrin Contortrostatin with 6 C-terminal amino acids of Echistatin, is the best-
characterized and most preclinically advanced disintegrin shown to target multiple tumor-
associated integrins and to exhibit potent antitumor and antiangiogenic activity in in vitro
and in vivo models without appreciable toxicity [23].

Since the 1987 report on the isolation of trigramin, the first disintegrin isolated from
the venom of Trimeresurus gramineus, approximately 100 other disintegrins have become
known from snake venoms with potential applications in cancer research and therapy (see
the list in [17]).

1.4. The Role and Properties of SVDs in Angiogenesis

One of the most well-known effects of SVD is its ability to prevent cell adhesion
to extracellular matrix proteins [16]. By occupying the ligand binding sites on integrins,
disintegrins disrupt the attachment of cells to their surrounding microenvironment. This
disruption can have profound effects on cell migration, invasion and angiogenesis, pro-
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cesses that are essential for tumor progression and metastasis [18]. Dysregulation of integrin
activity has been implicated in numerous pathological conditions, such as cancer, inflam-
mation, and thrombosis [38,39]. Consequently, inhibiting integrin binding has emerged as
a promising therapeutic strategy [40,41].

Several studies highlight the dual role of SVD in angiogenesis, with some disintegrins
acting as inhibitors and others acting as enhancers of the process [42–45]. The interaction
between disintegrins and integrin receptors on endothelial cells plays a critical role in
modulating angiogenesis. Therefore, inhibitors of α1β1 and α2β1 integrins alone or in
combination with antagonists of other integrins involved in angiogenesis (eg. αvβ3, αvβ5,
αIIbβ3 and α6β4) may prove beneficial in controlling neovascularization, making SVDs
valuable tools for the study and potential manipulation of this complex biological process.

Some SVDs have been identified as potent inhibitors of angiogenesis (Table 1). For
instance, obtustatin, a disintegrin isolated from the venom of Vipera lebetina obtusa, has
been shown to selectively inhibit α1β1 integrin, leading to the suppression of angiogenesis
in vitro and in vivo [46]. A similar effect was also observed with viperistatin isolated from
the venom of Vipera paleastinae [47]. Furthermore, jerdostatin, isolated from the venom of
Trimeresurus jerdonii [48], and lebestatin, isolated from the venom of Macrovipera lebetina [42],
two other small monomeric disintegrins that antagonize the function of the α1β1 integrin,
have also been described as inhibitors of angiogenesis. Rhodostomin, a medium disintegrin
from the venom of Calloselasma rhodostoma, has been reported to inhibit angiogenesis by
binding to integrins and inhibiting bFGF-induced proliferation of endothelial cells [49].

Table 1. List of disintegrins found in snake venom that have pro- and/or anti-angiogenic properties.

Name (Source) Recognizing Motif Physiological Target Angiogenic Factors References

Jararhagin-C ECD-disintegrin-
like/cysteine-rich

domains
Interferes with α2β1 integrin functions

Pro-angiogenic [8]

Alternagina-C Exhibits both pro- and
anti-angiogenic effects [29,50,51]

Leberagin-C Disintegrin-like Interferes with αvβ3, αvβ6, and
α5β1 integrins Anti-angiogenesis [52]

Echistatin

RGD-dependent
disintegrins

Binds to integrin αIIbβ3, GPIIb/IIIa and
interacts with αvβ3 integrin

Anti-angiogenesis

[14,32,53]

Rhodostomin [49]

Contortrostatin Interacts with the integrins αvβ3 and α5β1 [37]

Vicrostatin antagonize the function of the αIIbβ3, αvβ3,
αvβ5 and α5β1 integrins [23]

DisBa-01 Binds to integrin αvβ3 [54]

Aggretin Binds to integrin α2β1

Pro-angiogenic

[55]

Trigramin Binds to αIIbβ3, α8β1, αvβ3, αvβ5 and/or
α5β1 integrins [56]

Obtustatin

KTS-disintegrin

Selectively inhibit α1β1-integrin

Anti-angiogenesis

[46]

Viperistatin Inhibitory activity against collagen
receptors, α1β1 and α2β1-integrins [47]

Lebestatin Inhibis binding of α1β1 integrin to type IV
and type I collagen [42]

Jerdostatin
RTS-disintegrin

Antagonizes the function of the α1β1
integrin Anti-angiogenesis [48]

Agkistin-s InteractS with GPIB Anti-angiogenesis [57]

On the other hand, certain SVDs have been found to promote angiogenesis. For
instance, Jararhagin-C has been shown to promote angiogenesis by activating integrin
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receptors and stimulating endothelial cell migration, increasing the density of blood vessels
and the synthesis of proangiogenic cytokines (VEGF and FGF) [44].

Alternagin-C exhibits both pro- and antiangiogenic effects depending on the con-
centration. Concentrations less than 50 nM were found to be proangiogenic, whereas
concentrations greater than 100 nM were found to be antiangiogenic both in vitro and
in vivo [50,51]. Alternagin-C inhibits VEGF/VEGFR2 signaling after binding to α2β1
integrin, resulting in impaired angiogenesis [50].

Interference of SVD with VEGF

VGEF is a key molecule for regulating and promoting the angiogenesis process through
the stimulation of proliferation, migration and organization of endothelial cells, triggering
signaling cascades such as Notch, angiopoietin/Tie, MAPK, FAK, PI3K/AKT, ERK1/2,
Src and PLCγ. While VEGFs stimulate the proliferation of endothelial cells, integrins help
anchor these cells to the extracellular matrix to ensure that vessel formation occurs in an
organized manner. SVDs can affect vascular VEGF, which plays a crucial role in regulating
blood vessel formation and vascular permeability [58–60].

There are several ways in which SVDs can interfere with VEGF function. Disintegrins
can inhibit angiogenesis, the process of forming new blood vessels, which is essential for
tumor growth and metastasis [7,61]. By interfering with VEGF-induced signaling, disinte-
grins hinder the formation of new blood vessels and thus impair tumor progression [62].
Moreover, disintegrins can interfere with the signal transduction pathways initiated by
VEGF [63,64]. This interference can affect various cellular processes, including gene expres-
sion and protein synthesis, which are crucial for the regulation of blood vessel formation
and permeability [58]. Overall, SVD exerts its effects on VEGFs through the inhibition of
angiogenesis and interference with signal transduction pathways, ultimately influencing
the regulation of blood vessel formation and vascular permeability.

1.5. Anti-Angiogenic Effects of SVDs

Recent studies have demonstrated the antiangiogenic effects of SVD, suggesting their
potential as therapeutic agents for various human diseases, including cancer. In vitro
experiments have shown that contortrostatin exhibits antiangiogenic activity [37]. Similarly,
DisBa-01, a disintegrin from Bothrops alternatus snake venom, has been found to inhibit
the proliferation, migration, and tube formation of human umbilical vein endothelial cells,
which play crucial roles in angiogenesis [54]. Echistatin has also been shown to inhibit
the proliferation and migration of human microvascular endothelial cells [63]. Animal
model studies have further supported the antiangiogenic effects of SVD. For instance,
contortrostatin has been found to inhibit tumor growth and angiogenesis in a mouse
model of melanoma [37,62]. Similarly, Echistatin has demonstrated the ability to inhibit
tumor growth and angiogenesis in a mouse model of glioma [65]. Agkistin is a P-II class
SVMP containing a metalloproteinase and a disintegrin domain purified from crude venom
of Formosan Agkistrodon acutus. Agkistin-s is the disintegrin domain of Agkistin and
induces endothelial cell apoptosis, exhibiting profound antiangiogenic activity [57].

Additionally, Leberagin-C (Leb-C), a disintegrin from Macrovipera lebetina transmediter-
rannea snakes, has been shown to disrupt the adhesion, migration, and invasion capabilities
of MDA-MB-231 breast cancer cells and its highly metastatic D3H2LN subpopulation [52].

2. Potential Applications of SVD in Angiogenesis-Related Diseases

Diseases characterized by abnormal angiogenesis, such as cancer and ocular diseases,
represent a major public health challenge worldwide [66]. The search for effective ther-
apeutic agents to modulate angiogenesis is of great interest to medical researchers [67].
SVDs have emerged as potential candidates for antiangiogenic and proangiogenic thera-
pies [17,23,68]. Some of the diseases are characterized by abnormal angiogenesis.
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2.1. Cancer

Cancer is a multifaceted group of diseases that poses a major health challenge world-
wide and results in a significant burden of morbidity and mortality. The etiology of cancer
involves a multifaceted interplay between genetic and epigenetic elements that lead to
alterations in the genome and subsequently trigger uncontrolled cell proliferation in the
tissues and organs of the body [69]. Cancer can be classified into different types based on
the specific cell type from which the tumor originates. These include carcinoma, sarcoma,
lymphoma and leukemia, germ cell tumor and blastoma [70]. Worldwide cancer statistics
show that in 91 of 172 countries, cancer is the primary or secondary leading cause of death
before the age of 70. In 22 other countries, cancer is the third or fourth leading cause
of death [71]. Chemotherapy, radiotherapy, immunotherapy and surgery together form
an integral part of modern cancer treatment. The pharmaceutical industry is currently
conducting extensive research to develop innovative drugs of natural origin to mitigate the
adverse effects associated with cancer treatments [72–74]. Tumor angiogenesis, the sprout-
ing of new blood vessels into tumors, is vital for sustained tumor growth, progression,
and metastasis [75,76]. Various growth factors and cytokines orchestrate the angiogenic
process, including VEGF and FGF [77,78]. The abnormal angiogenesis associated with
cancer provides an opportunity for therapeutic intervention by targeting angiogenic fac-
tors or inhibiting the endothelial cell response [79,80]. Changes in the structure of tumor
vessels toward a more mature phenotype could also promote resistance. Therefore, the
development of drug resistance is important in the development of new antiangiogenic
therapies [7].

A chimeric recombinant disintegrin called Vicrostatin (VCN) has been used in a
number of preclinical studies in various tumor models. VCN is a monomer prepared
by recombinant modification of the primary Contortrostatin sequence by replacing the
C-terminal tail with 6 aa derived from the C-terminus of Echistatin. It retained the targeting
of Contortrostatin to αIIbβ3-, α5β1, αvβ3, and αvβ5 integrins but additionally showed
more than 10-fold higher affinity for α5β1-integrin. Compared with the homodimeric
structure of contortrostatin, the novel chimeric disintegrin VCN was active as a monomer,
which allowed its production in larger amounts than several other cloned and expressed
disintegrins. Like Contortrostatin, VCN has been shown to inhibit tumor cell adhesion,
endothelial and tumor cell invasion, and angiogenesis. This chimeric recombinant toxin
has shown promising results in preclinical experimental models of breast cancer, prostate
cancer, ovarian cancer and glioblastoma [23]. Figure 3 shows the intracellular reactions that
take place when disintegrins bind to integrin targets, as illustrated in the current literature.
The involvement of α5β1-, αVβ3-, α1β1-, α2β1-, α4β1-, and α5β1-integrins in survival,
proliferation, infiltration, motility, cytoskeletal reorganization, angiogenesis, apoptosis, and
interaction with snake venom disintegrins triggers the onset of these mechanisms in cancer
cells [81].

2.2. Ocular Diseases, e.g., Diabetic Retinopathy

Diabetic retinopathy (DR), a common microangiopathic sequela of diabetes melli-
tus [82], has a significant impact worldwide. It affects more than 100 million people and is
a major contributor to visual impairment and blindness in industrialized countries [83]. DR
is characterized by abnormal neovascularization in the retinal tissue of diabetic patients,
leading to impaired visual function and eventual loss of vision [84]. The etiology of DR is
primarily defined by the simultaneous occurrence of neurovascular unit dysfunction, blood-
retinal barrier disruption, inflammatory processes, capillary nonperfusion or ischemia,
and neoangiogenesis [85]. The disease is primarily driven by increased VEGF levels in
response to ischemic or hypoxic stimuli, causing several alterations at different levels and
subsequent neovascularization [86,87]. Pathological angiogenesis in DR disrupts retinal
function and causes visual complications. It has been reported that various fractions in
snake venom markedly increase insulin secretion without causing harmful effects. For
example, a number of disintegrin isoforms were identified in Crotalus vegrandis venom
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and confirmed through partial sequencing as being homologous to various other snake
disintegrins that share the active RGD motif near the C-terminus [88]. These snake venom
disintegrins were shown to significantly enhance insulin secretion from BRIN-BD11 cells,
suggesting disruption of the cellular signaling pathways activated by integrins, including
receptor tyrosine kinases. These fractions have the potential to positively influence insulin
secretion [88].

Toxins 2024, 16, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 3. This figure shows how disintegrins act on different integrins and initiate intracellular sig-
naling in cancer cells. 

2.2. Ocular Diseases, e.g., Diabetic Retinopathy 
Diabetic retinopathy (DR), a common microangiopathic sequela of diabetes mellitus 

[82], has a significant impact worldwide. It affects more than 100 million people and is a 
major contributor to visual impairment and blindness in industrialized countries [83]. DR 
is characterized by abnormal neovascularization in the retinal tissue of diabetic patients, 
leading to impaired visual function and eventual loss of vision [84]. The etiology of DR is 
primarily defined by the simultaneous occurrence of neurovascular unit dysfunction, 
blood‒retinal barrier disruption, inflammatory processes, capillary nonperfusion or ische-
mia, and neoangiogenesis [85]. The disease is primarily driven by increased VEGF levels 
in response to ischemic or hypoxic stimuli, causing several alterations at different levels 
and subsequent neovascularization [86,87]. Pathological angiogenesis in DR disrupts ret-
inal function and causes visual complications. It has been reported that various fractions 
in snake venom markedly increase insulin secretion without causing harmful effects. For 
example, a number of disintegrin isoforms were identified in Crotalus vegrandis venom 
and confirmed through partial sequencing as being homologous to various other snake 
disintegrins that share the active RGD motif near the C-terminus [88]. These snake venom 
disintegrins were shown to significantly enhance insulin secretion from BRIN-BD11 cells, 
suggesting disruption of the cellular signaling pathways activated by integrins, including 
receptor tyrosine kinases. These fractions have the potential to positively influence insulin 
secretion [88]. 

3. Utilization of SVD as Pro-Angiogenic Agents 
While disintegrins are usually known for their antiangiogenic properties, recent re-

search has also revealed their potential as proangiogenic agents. Alternagin-C (ALT-C) is 
an ECD-containing disintegrin-like/cysteine-rich disintegrin isolated from the venom of 
the snake Rhinocerophis alternatus that induces endothelial cell proliferation and angiogen-
esis both in vitro and in vivo by upregulating the expression of VEGF and its receptors 
[89]. ALT-C binds to the major collagen receptor α2β1 integrin, inhibiting cell adhesion to 
collagen, triggering downstream signaling molecules, and inducing a significant increase 
in several genes related to cell cycle control (VEGF, inducible early growth response, 

Figure 3. This figure shows how disintegrins act on different integrins and initiate intracellular
signaling in cancer cells.

3. Utilization of SVD as Pro-Angiogenic Agents

While disintegrins are usually known for their antiangiogenic properties, recent re-
search has also revealed their potential as proangiogenic agents. Alternagin-C (ALT-C) is an
ECD-containing disintegrin-like/cysteine-rich disintegrin isolated from the venom of the
snake Rhinocerophis alternatus that induces endothelial cell proliferation and angiogenesis
both in vitro and in vivo by upregulating the expression of VEGF and its receptors [89].
ALT-C binds to the major collagen receptor α2β1 integrin, inhibiting cell adhesion to col-
lagen, triggering downstream signaling molecules, and inducing a significant increase
in several genes related to cell cycle control (VEGF, inducible early growth response, in-
terleukin 11, early growth response 2 and 3, and the insulin-induced gene) [51]. ALT-C
also induced significant cytoskeleton dynamic changes with the polymerization of F-actin,
focal adhesion kinase (FAK), and phosphoinositol 3-kinase (PI3K) activation, as well as
erk-2 translocation [90]. ALT-C induced the formation of new vessels, and the expression
of VEGF in the injured tissue indicated the usefulness and effectiveness of ALT-C as a
proangiogenic disintegrin-like protein [45].

3.1. Tissue Regeneration and Wound Healing

Wound healing and regeneration are multifaceted biological phenomena that occur
throughout the human lifespan. After an injury, various cellular processes are immediately
initiated and coordinated to initiate a response [91]. Improper repair procedures can cause
this process to be delayed, with immediate consequences for the individual, including
physical discomfort, impaired rehabilitation progress, limb amputation, and in the most
severe cases, death from septicemia [92]. Like other natural healing processes, the repair
mechanism also relies on the coordination of different cell activities vital for recovery.
These activities encompass cell survival, growth, movement, and the creation of new
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cells. They are orchestrated through cellular interactions with both the extracellular matrix
(ECM) that surrounds them and with other neighboring cells. These interactions are made
possible by specialized receptors found on cell membranes, which belong to the integrin
family [93]. A recent study led by Ferreira and colleagues [94] used an in vivo model with
subcutaneous sponge implants to investigate the potential of jararhagin-C (Jar-C). Their
goal was to understand how Jar-C might stimulate collagen deposition and the production
of important soluble substances, including VEGF and transforming growth factor beta-1
(TGFβ-1). These substances play important roles in processes such as angiogenesis and
fibrogenesis, which are closely associated with tissue repair. The results of the study
suggest that Jar-C may have positive effects on tissue repair by promoting these natural
responses in the body. Moreover, Alternagin-C is also the subject of research. Within
7 days, this cysteine-rich, disintegrin-like protein accelerates wound healing in rats by
increasing type I collagen deposition and fibroblast density and reducing inflammation [95].
In another study, Rabelo et al. [96] revealed that ALT-C increased collagen synthesis in
mouse fibrovascular tissue. From the above results, it can be concluded that SVD has
the ability to promote angiogenesis by modulating endothelial cell behavior, facilitating
cell migration, and upregulating proangiogenic factors. However, further research is
needed to gain a comprehensive understanding of the underlying mechanisms and to
improve the therapeutic application of disintegrins in the context of tissue regeneration
and wound healing.

3.2. Cardiovascular Diseases

Integrins have a considerable influence on the development of cardiac fibrosis. The
diseased heart exhibits altered expression and integrin functions [97]. Targeting integrins
and their associated proteins can be a potential therapeutic target for myocardial fibro-
sis. Certain disintegrins have been extensively researched and subsequently approved by
the Food and Drug Administration (FDA), making them viable pharmaceutical agents in
modern medicine. Tirofiban, marketed as Aggrastat®, is a synthetic pharmaceutical agent
developed by Medicure International, Inc. of Winnipeg, MB, Canada. This drug is derived
from the RGD domain found in Echistatin [98]. In addition, this compound undergoes a
chemical change that increases its affinity for platelet glycoproteins, especially GPIIb/IIIa
receptors [32]. Therefore, this drug is able to prevent platelet aggregation and other throm-
botic activities by competing with fibrinogen for the RGD domain recognition site in the
GPIIb/IIIa receptor [98–100]. In 1998, the Food and Drug Administration (FDA) approved
tirofiban as a therapeutic intervention for acute coronary syndrome [101]. Additionally,
in 1998, the FDA approved eptifibatide (Integrilin®, Millennium Pharmaceuticals, Inc.,
Cambridge, MA, USA), an alternative molecule to inhibit platelet aggregation. Schering-
Plough subsequently acquired license rights to this drug in 2005 [102]. The development of
this active substance took place in parallel with research into synthetic peptide analogs of
barbourin, a disintegrin from Sistrurus miliarius barbouri [103].

Cardiovascular diseases, including acute myocardial infarction, coronary artery dis-
ease, endothelial dysfunction, and chronic ischemia, are considered one of the leading
causes of death worldwide [104]. Therefore, there is great interest in pharmaceutical agents
that offer a new and effective therapeutic approach to improve the functionality of the
myocardium and/or facilitate its regeneration after injury. Platelets have been studied
extensively because of their crucial role in primary hemostasis, the body’s initial response
to arterial injury. Only recently, however, have we begun to study their contribution to
immunological processes, cardiovascular disease, cancer, and various other pathological
conditions [105–107]. The glycoprotein receptor GPIIbIIIa has been extensively studied as
a primary receptor on platelets for the functional effects of snake venom-derived disinte-
grins. Each individual platelet is equipped with approximately 80,000 GPIIbIIIa receptors
located both on the plasma membrane and in the α-granules [108]. After activation, the
number of these receptors increases significantly, facilitating the formation of a permanent
hemostatic plug [81]. Certain SVDs, including those of Agkistrodon piscivorus piscivorus and
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Echis carinatus sochureki, namely, Applagin and Echistatin, show remarkable affinity for
the RGD motif on resting platelets. This specific binding results in the potent inhibition
of platelet aggregation. Consequently, SVDs have emerged as promising candidates for
drug development to antagonize platelet integrins, demonstrating their pharmacological
potential as both platelet aggregation inhibitors and antithrombotic agents. From a clinical
perspective, these drugs can effectively reduce the likelihood of acute ischemic episodes
and serve as preventive measures against thrombotic sequelae. RGD disintegrins have been
extensively studied and are considered the largest family within this category [17,109]. A
number of disintegrins have been extracted from snake venoms, particularly viper venom,
and characterized as agents with antithrombotic properties [110]. For example, trigramin
inhibits platelet aggregation in platelet-rich plasma triggered by adenosine diphosphate
(ADP), collagen, or epinephrine [56]. The same disintegrin has been shown to inhibit
platelet aggregation both in vitro and in vivo by preventing the binding of fibrinogen to
platelets induced by agonists of aggregation, such as ADP-activated platelets [111].

By promoting angiogenesis, SVDs have shown promise in preclinical models of cardiac
ischemia. Previous studies have shown that administration of ALT-C in a single dose after a
period of 7–9 days resulted in an increase in cardiac muscle contractile force in fish [45,112].
This intervention also led to an upregulation of the expression of important proteins in-
volved in calcium processing and an increase in the level of VEGF in the myocardium. In
addition, administration of ALT-C stimulated angiogenesis and thus protected cardiomy-
ocytes from the deleterious effects of negative tropism caused by hypoxia/reoxygenation.
Evaluation of the safety and efficacy of disintegrins in promoting angiogenesis and im-
proving cardiac function in patients with cardiovascular disease requires the conduct of
clinical trials.

4. Conclusions

SVDs play a critical role in modulating angiogenesis by either inhibiting or promoting
this process. Their mechanisms of action offer valuable insights into potential therapeutic
applications for angiogenesis-related diseases. These SVDs show promise as potent antian-
giogenic agents for the treatment of cancer and ocular diseases and as proangiogenic agents
for tissue regeneration and wound healing. However, further research is needed to fully
understand their molecular mechanisms and optimize their therapeutic potential. Further
exploration of SVDs could lead to the discovery of new molecules or the development
of synthetic analogs with improved stability and specificity. These advances have the
potential to revolutionize the treatment of diseases related to angiogenesis and open new
avenues for personalized medicine approaches targeting angiogenesis.
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