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Abstract: Botulinum neurotoxins (BoNTs) are zinc endopeptidases produced by the Clostridium
genus of anerobic bacteria, largely known for their ability to cleave synaptic proteins, leading to
neuromuscular paralysis. In the central nervous system, BoNTs are known to block the release of
glutamate neurotransmitter, and for this reason, researchers explored the possible therapeutic action
in disorders characterized by neuronal hyperactivity, such as epilepsy. Thus, using multidisciplinary
approaches and models of experimental epilepsy, we investigated the pharmacological potential of
BoNT/E serotype. In this review, written in memory of Prof. Matteo Caleo, a pioneer in these studies,
we go back over the hypotheses and experimental approaches that led us to the conclusion that
intrahippocampal administration of BoNT/E (i) displays anticonvulsant effects if prophylactically
delivered in a model of acute generalized seizures; (ii) does not have any antiepileptogenic action
after the induction of status epilepticus; (iii) reduces frequency of spontaneous seizures in a model
of recurrent seizures if delivered during the chronic phase but in a transient manner. Indeed, the
control on spontaneous seizures stops when BoNT/E effects are off (few days), thus limiting its
pharmacological potential in humans.
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Key Contribution: Here we review the hypotheses and experimental approaches that led us to
investigate the anticonvulsant, antiepileptogenic, and antiepileptic effect of botulinum neurotoxin E
(BoNT/E) in rodent models of epilepsy. We showed that BoNT/E has an acute anticonvulsant, and,
in preclinical settings, chronic antiepileptic action restricted to its duration of action, thus limiting its
pharmacological potential in humans.

1. Introduction: General Features and Experimental Applications of BoNT/s

Botulinum neurotoxins (BoNTs) are metalloproteases produced by Gram-positive
bacteria of the Clostridium genus, whose neurotoxicity is widely acknowledged. They
cleave specific synaptic proteins at neuromuscular junction making nerve communication
impossible. Indeed, the persistent flaccid paralysis of variable extent caused by BoNT
intoxication known as botulism is induced by the blockade of neurotransmitter release
mainly at peripheral cholinergic nerve terminals of the skeletal and autonomic nervous
system [1,2]. BoNT administration at neuromuscular junctions is currently practiced in
clinical neurology and esthetic surgery in a series of conditions that require to deactivating
muscular contraction [3,4].

BoNTs are traditionally classified into seven serotypes, designated with alphabetical
letters from A to G [5]. However, next-generation sequencing techniques have led to the
discovery of genes encoding for many novel BoNTs grouped within an existing serotype,

Toxins 2023, 15, 550. https://doi.org/10.3390/toxins15090550 https://www.mdpi.com/journal/toxins

https://doi.org/10.3390/toxins15090550
https://doi.org/10.3390/toxins15090550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0002-0198-4529
https://orcid.org/0000-0002-1496-9889
https://doi.org/10.3390/toxins15090550
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins15090550?type=check_update&version=1


Toxins 2023, 15, 550 2 of 12

even if characterized by different amino acid sequences [(see GeneBank and Uniprot
databases at https://www.ncbi.nlm.nih.gov (accessed on 21 July 2023) and https://www.
uniprot.org (accessed on accessed on 21 July 2023), respectively]. For this reason, new
BoNTs are indicated with the letter of the serotype followed by a number (e.g., BoNT/A1,
BoNT/A2. . .) [5–7]. Also, chimeric BoNTs resulting from naturally occurring recombination
events within the bont genes have been identified. Chimeric BoNTs are labelled as the
combination of two different serotypes as in the case of the chimeric BoNT/CD, where the
light chain is derived from BoNT/C and the heavy chain from BoNT/D [8]. BoNT/H was
isolated from a patient with infant botulism [9]. This toxin type is composed of a mosaic
structure including regions of similarity to BoNT/A and F [10]; for this reason, BoNT/H is
neutralized by antibodies against BoNT/A. Finally, BoNT-like sequences have been found
in non-clostridial species such as Weissella oryzae and Chryseobacterium piperi, but the clinical
implications or impacts of the BoNT-like toxins or sequences are not yet elucidated [11].

Regardless of their specific structural features, all BoNTs display similarities such as
the presence of multiple domains that fulfil different functions during the intoxication
process. The light chain (L-chain) includes the metalloprotease domain that specifically
cleaves the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)
proteins necessary for neurotransmitter exocytosis. The heavy chain (H-chain) N domain
(the N terminus of the H chain) is essential for translocation of the L chain across the
membrane of endocytic vesicles into the neuronal cytosol. Finally, the HC domain (the
C terminus of the H chain) is responsible for presynaptic binding and endocytosis [6].
All BoNTs display common attractive pharmacological properties such as high potency
and specificity, low diffusion, and persistent but reversible inhibition of neurotransmitter
release, which make them unique drugs. Indeed, their use in clinics is growing more
and more in conditions under which neurotransmitter release blockade is the only way to
counteract hyperactivity of cholinergic nerve terminals. For instance, BoNT/A delivery is a
widespread approach in both human therapies and cosmetic procedures. Since the ability to
switch off neuronal communication is a common feature of all BoNTs, other serotypes have
been also exploited. As an example, the use of BoNT/B has been investigated in preclinical
studies upon injection in both the peripheral (PNS) and central (CNS) nervous system, and
is now commercially available (Neurobloc, Elan Pharmaceuticals). Indeed, when the BoNTs
are injected into the CNS, their potency and duration of action are comparable to those
observed in the peripheral nervous system [12–14]. Importantly, in the CNS, they also retain
the specificity for synaptic targets. Indeed, BoNT/B, /D, /F, and /G cleave only synap-
tic vesicle-associated membrane protein (VAMP) at single sites; BoNT/A and /E cleave
only 25 kDa synaptosomal-associated protein (SNAP-25), whereas BoNT/C cleaves both
SNAP-25 and syntaxin [15,16]. Since VAMP, SNAP-25 and syntaxin belong to the SNARE
complex (the minimal machinery required for synaptic vesicle exocytosis also expressed in
the CNS), it has been concluded that BoNT/s block neurotransmitter release in central neu-
rons both in vitro and in vivo [17–24]. In the CNS, BoNTs prevent the release of the most
important neurotransmitters and neuromodulators including glutamate, GABA, glycine,
acetylcholine, and noradrenaline [17,18]; accordingly, altered cognitive and motor behaviors
appear in animals injected with BoNTs in the brain [25,26]. BoNTs also inhibit the release
of pain-modulating neurotransmitters such as substance P (SP) and calcitonin gene-related
peptide (CGRP) by impairing synaptic vesicle fusion and modulating the transient receptor
potential (TRP) of pain-sensing transmembrane receptors at the neuronal plasma mem-
brane [27]. For this reason, the therapeutic use of BoNTs in reducing pain has received full
attention. Importantly, BoNT delivery may also interfere with the secretion of pathological
aggregates [28,29] as well as with the process of glutamate receptors insertion/trafficking
during induction of synaptic activity and plasticity [30,31]. Indeed, the observation that
the transsynaptic spreading of α-synuclein aggregates injected into the mouse striatum
significantly decreases in the contralateral hemisphere of BoNT/B-treated animals led to
the postulation of a novel hypothesis on the mechanisms of α-synuclein propagation [28].
Accordingly, in the context of a different neurodegenerative disorder (Alzheimer’s disease),
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it has been shown that tau release from rodent and human synaptosomes is a calcium-
and SNAP-25-dependent mechanism sensitive to BoNT/A treatment. Indeed, the cleavage
of SNAP-25 by BoNT/A modulates the release of pathologic tau [29,32]. Moreover, since
the expression of SNARE fusion machinery has been largely assessed at the postsynaptic
site, the delivery of BoNT/s has been exploited to better investigate AMPA and NMDA
glutamate receptor insertion and diffusion during neuronal activity and plasticity. Both
SNAP-23 and SNAP-25 have been suggested to play specific roles in the trafficking of
NMDARs to synapses [33,34] and syntaxin-4 to regulate AMPA exocytosis in dendritic
spines [30]. Syntaxin-3 and SNAP-47 are required for regulated AMPAR exocytosis during
LTP, but not for constitutive basal AMPAR exocytosis, which depends on the R-SNARE
protein synaptobrevin-2/VAMP2 [31]. In keeping with these findings, cleavage of SNAP-25
by BoNT/A in hippocampal slices in vitro abolished the ability of low-frequency synaptic
stimulation to induce LTD at Schaffer collateral presynaptic release sites [35].

Taken together, these studies show that BoNTs may also serve as potent tools to study
pathological processes in neurodegenerative diseases and to identify novel targets for
therapeutic interventions in neurological conditions.

2. Effects of Intracerebral Administration of BoNT/E
2.1. In Vivo BoNT/E Effects upon Intrahippocampal Injection: Hypothesizing the
Pharmacological Potential

Starting from the assumption that BoNTs act at CNS synapses and taking into consid-
eration the positive pharmacological properties of BoNTs in terms of specificity, potency,
and reversable effects, many researchers have explored the use of BoNTs in neurologi-
cal conditions. In particular, in a study published in 2005 [36], we found that a single
intrahippocampal infusion of BoNT/E, which selectively cleaves SNAP-25, results in a
dramatic reduction in glutamate release. In vivo electrophysiological recordings from
CA1 and CA3 pyramidal neurons indicated that spontaneous discharges were potently
inhibited by BoNT/E treatment whereas immunodetection of cleaved SNAP-25 and loss
of intact SNAP-25 lasted for at least three weeks. BoNT/E-injected rats showed signif-
icant deficits in acquisition of spatial learning in the Morris water maze test (MWM, a
well-established hippocampus-dependent behavioral task), which were no longer detected
when BoNT/E effects wore off, i.e., 5 weeks after in vivo delivery. We therefore hypothe-
sized that BoNT/E might transiently silence neural activity in the CNS and for this reason
could be exploitable in pathological conditions characterized by brain hyperactivity. In
this context, the discovery that glutamatergic and GABAergic neurons are differentially
sensitive to BoNT/E due to the preferential expression of the BoNT/E target (SNAP-25) at
glutamatergic synapses [37] prompted us to further assess this issue. We hypothesized that
the silencing of spontaneous spiking activity induced by BoNT/E administration could be
beneficial in hyperactivity disorders such as epilepsy.

2.2. Acute Anticonvulsant Effects of BoNT/E

Epilepsy is a neurological condition largely diffused in the human population, charac-
terized by the occurrence of spontaneous recurrent seizures responsible for hippocampal
neuronal loss, reduced cognitive functions, and psychiatric comorbidities [38]. It presents
as an exceptionally multifaceted cluster of diseases that vary in etiology, age of onset,
type of seizure, and neurological and neuropathological manifestations. However, human
genetic studies yielded a steady trickle of discoveries, thanks to which the critical role
of ion channels in epilepsy has been postulated [39]. According to this idea, changes in
ion channel functionality cause massive depolarization of neurons leading to excessive
glutamate release responsible for seizure generation and brain damage [40,41]. Thus, drugs
able to affect abnormal glutamate release by interfering with neurotransmitter release
machinery may produce anti-ictal and neuroprotective effects. Starting from this concept,
we investigated BoNT/E effects in the epilepsy context. Regarding this issue, we exploited
a model of acute electroencephalographic (EEG) seizures triggered by intrahippocampal in-
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jection of kainic acid (KA; Figure 1) [42,43]. Administration of KA in rodents is widely used
to model human temporal lobe epilepsy (TLE), a common form of epilepsy characterized by
recurrent seizures originating in the temporal lobe (typically in the hippocampus) and often
accompanied by hippocampal neurodegeneration [44]. The effects depend on the species
(rat vs. mouse) and route of administration (intrahippocampal vs. systemic). In our studies,
we used different KA models of TLE, which will be described in the following paragraphs.

In our first study, adult rats received a single intracerebral BoNT/E (or vehicle) appli-
cation, and two days later, seizures were induced via focal KA delivery to the hippocampus.
Intrahippocampal administration of KA in rats provokes acute hippocampal seizures [42,43]
and is generally used to model focal hippocampal seizures that occur in human TLE and to
test potential anticonvulsant therapies. Analysis of EEG recordings allowed for detection of
the expected ictal activity in vehicle-treated animals, and quantification of seizure activity
showed clear anti-ictal effects of the neurotoxin; BoNT/E was significantly more effective
than the common antiepileptic drug phenytoin in reducing KA-induced seizures [36].

We further confirmed the anti-ictal effects of BoNT/E using additional experiments
performed on behavioral seizures induced through systemic administration of KA [45,46].
Different from the intrahippocampal administration model, systemic KA administration in
rats reliably induces acute seizure, followed by the development of cognitive deficits and
the occurrence of massive hippocampal neurodegeneration, thus allowing for the modelling
of TLE in a more comprehensive way [45,46]. In this case, rats received intrahippocampal
infusions of BoNT/E (or vehicle) and, one day later, a single intraperitoneal injection
of a convulsive dose of KA. KA treatment had a similar convulsant effect in both naive
and vehicle-injected animals, as indicated by the visual inspection of seizure progression.
Rats showed initial subconvulsant behaviors (immobility and wet dog shake movements)
culminating in generalized tonic–clonic motor seizures with rearing and falling according
to Racine’s classification [47]. Importantly, progression of clinical signs was dramatically
different in BoNT/E-injected animals: the maximum seizure score assigned to each experi-
mental animal clearly displayed the highly significant anticonvulsant effect of BoNT/E.
In parallel, activity mapping studies with c-fos mRNA in situ hybridization experiments
revealed strong bilateral activation in the hippocampus, thalamus, and cerebral cortex of
animals treated with KA and a dramatic decrease in c-fos induction in BoNT/E-treated
rats [36].

Finally, since seizure activity induced through systemic KA is responsible for the
occurrence of cognitive defects in animals [48,49], we explored the possibility that the anti-
ictal activity of BoNT/E could also result in a protective phenotype. We tested cognition in
the MWM; since BoNT/E-injected animals displayed impaired but reversable cognitive
functions due to the transient blockade of neurotransmitter release and synaptic activity,
we tested animals treated with BoNT/E (or vehicle) and systemic KA five weeks after
BoNT/E delivery, i.e., at the end of BoNT/E effects. Spatial learning performances in
rats treated with BoNT/E + KA rats were significantly superior to those of control rats
treated with vehicle + KA, indicating that BoNT/E was able to prevent cognitive deficits
induced by KA. Also, immunostaining for the neuronal marker NeuN used to evaluate
the extent of neuronal loss in CA1, CA3, and hilus of hippocampus revealed a significant
neuroprotection in the dorsal hippocampus of BoNT/E + KA-treated animals in contrast
to the severe lesions found in CA1 and CA3 of vehicle + KA-treated rats [36]. From a
molecular point of view, BoNT/E-mediated neuroprotection is achieved by preventing the
upregulation of apoptotic proteins such as phosphorylated c-Jun and cleaved caspase 3,
which occurs in hippocampal neurons following KA seizures [50].

These results clearly supported the notion that intrahippocampal delivery of BoNT/E
produced anti-ictal effects in rodents but did not lead to any conclusions regarding the
possible antiepileptogenic action of the neurotoxin. Indeed, to address this point, we
exploited the rapid electrical kindling of the ventral hippocampus. According to this model,
rapid kindling was induced in the hippocampus by delivering constant current stimuli
through a bipolar electrode [51,52] and behavior observed and scored according to Racine’s
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classification [47]. By measuring the behavioral progression of seizures during kindling
and the duration of primary and secondary afterdischarge during kindling, we concluded
that BoNT/E delayed hippocampal kindling rate, thus turning out to be an anticonvulsant
and potentially antiepileptogenic drug [36].

Figure 1. Experimental approach to investigating the anticonvulsant effects of BoNT/E. In our
first study, BoNT/E was administered before the induction of KA seizures in rats, revealing both
anticonvulsant and neuroprotective effects [36,50]. Abbreviations: KA: kainic acid; MWM: Morris
water maze test. The mouse and MWM sketches were generated using biorender.com.

2.3. Evaluation of BoNT/E Antiepileptogenic Effects

The abovementioned results indicated that BoNT/E might be used as a novel tool
to interfere with the mechanisms underlying seizure generation. Then, it was important
to clearly assess the possible antiepileptogenic effects of BoNT/E in a model of chronic
epilepsy. Thus, in a second study (Figure 2), we tested whether delivery of BoNT/E was ef-
fective in preventing limbic epileptogenesis following an episode of status epilepticus (SE).
To this purpose, we exploited another well-characterized model of TLE, where epileptogen-
esis was triggered by intrahippocampal injection of KA in adult mice [53,54]. Differently
from what was observed in the rat, intrahippocampal injection of KA in mice consistently
induces a form of chronic epilepsy resembling human TLE: spontaneous recurrent seizures
appear in the hippocampus and temporal lobe several days after KA administration. For
this reason, we preferred the mouse model to the rat one for investigating the antiepilepto-
genic effects of BoNT/E (i.e., the capability of BoNT/E to halt the development of chronic
seizures). In this model, chronic recurrent seizures appear after a latent period of about
14 days, and a lesion resembling hippocampal sclerosis (often observed in human TLE
as well) progressively develops in the injected hippocampus [53,54]. In addition, chronic
seizures induced by intrahippocampal KA in mice are accompanied by a severe hippocam-
pal neuropathology resembling that observed in cases of human TLE; histopathological
findings include the sprouting of hippocampal mossy fibers (granule cell axons) into the
dentate gyrus and CA3 layer, as well as granule cell dispersion [55]. After characterizing the
effects of a single BoNT/E infusion into the mouse hippocampus (i.e., the expected cleavage
of SNAP-25, the tuning of hippocampal cell firing, and the BoNT/E duration of action), we
tested whether the administration of BoNT/E into the KA-treated hippocampus interfered
with epileptogenesis. Using EEG recordings, we found that KA-treated mice injected with
BoNT/E three hours after KA infusion displayed delayed epileptogenesis. Indeed, the first
electrographic seizure occurred after a longer latency time, indicating that epileptogenesis
was significantly prolonged in KA-treated mice injected with BoNT/E [56]. However, all
toxin-treated and control animals eventually developed the characteristic features of focal
chronic epilepsy. Unexpectedly, histological analysis carried out to evaluate neuronal loss
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in hippocampus and granular cell dispersion in the hilus of dentate gyrus revealed that
BoNT/E afforded significant neuroprotection in CA1 area after SE and reduced dispersion
of dentate granule cells [56]. In addition, we showed that KA-treated mice injected with
BoNT/E displayed a decreased expression of reelin mRNA [56], an extracellular matrix
protein that controls neuronal migration and whose expression correlates with the extent
of granule cell dispersion [57].

Figure 2. Experimental approach to investigating the antiepileptogenic effects of BoNT/E. In a second
study, we administered BoNT/E 3 h after intrahippocampal KA. In this experimental paradigm,
BoNT/E showed antiepileptogenic and neuroprotective effects [56]. Abbreviations: KA: kainic acid;
SE: status epilepticus; SRS: spontaneous recurrent seizures.

No prevention of neuronal loss in CA3 was found in BoNT/E-treated rodents, probably
due to the direct interaction of KA with high affinity postsynaptic kainate receptors in
the CA3 hippocampal subfield. In this case, the blockade of synaptic transmission with
BoNT/E did not produce any survival action. Finally, we evaluated the sprouting of
mossy fibers using NPY immunohistochemistry [58,59] and found a robust increase in
NPY immunoreactivity in dentate granule cells, the inner molecular layer, and mossy fiber
pathway of all KA mice, regardless of the treatment condition [55].

These results indicate that administration of BoNT/E produced positive effects in
terms of neuroprotection and granule cell dispersion following SE induced by intrahip-
pocampal KA in mice. BoNT/E also delayed the appearance of spontaneous paroxysms
without any beneficial effect on seizure frequency during the chronic phase. Thus, interfer-
ing with synaptic transmission partially protects against certain histopathological changes
but does not halt the development of chronic epilepsy in this mouse model of TLE.

2.4. Evaluation of BoNT/E Effects on Chronic Seizures

Finally, we decided to test whether unilateral delivery of BoNT/E into the hippocam-
pus of chronically epileptic mice is effective in reducing spontaneous recurrent seizures
(SRS; Figure 3) [60].

To this end, mice received a single infusion of KA and were implanted with bipolar
electrodes in the dorsal hippocampus to allow for chronic EEG recordings. As described
before, this procedure reliably induces chronic SRS after a latent period of two–three
weeks [53–55]. Three weeks after KA-induced status epilepticus, animals were injected
with BoNT/E (or vehicle) into the hippocampus via the guide cannula and SRS-monitored
for five consecutive days. Quantification of the EEG data revealed a significant reduction in
SRS frequency in BoNT/E mice, and total time spent in ictal activity was also significantly
decreased by BoNT/E for at least 5 days. Unfortunately, the effects of BoNT/E were
transient, as mice recorded 21 days after treatment (i.e., at the end of toxin effects) showed
a return to the baseline, pre-drug level of seizures. Delivery of BoNT/E during the chronic
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phase was ineffective in reducing both hippocampal sclerosis and granule cell dispersion,
as evaluated by analysis of Nissl-stained dorsal hippocampal sections [60].

Figure 3. Experimental approach to investigating the antiepileptic effects of BoNT/E. BoNT/E
administered three weeks after KA-induced SE in mice failed to permanently suppress chronic
seizures and to exert a protective effect against hippocampal granule cell dispersion [60].

In conclusion, these last experiments indicated that BoNT/E might reduce the in-
cidence of chronic seizures, but BoNT/E effects were transient, disappearing at the end
of treatment.

3. Discussion

Our studies, summarized in Table 1, explored the innovative and unexplored topic
that BoNT/E may be beneficial in epilepsy. That BoNTs affected both peripheral and central
synapses was already a fact at the end of last century but, since BoNTs do not cross the
blood–brain barrier, it was hard to test their therapeutic potential against neurological
conditions. The first demonstration of the in vivo central toxicity and recovery of health
status after intracerebroventricular (i.c.v.) injection of BoNT/A or /B was assessed only in
2003 [11] followed by the clear proof that BoNTs’ delivery in the CNS produced cognitive
dysfunctions [26].

Table 1. Action of BoNT/E in rodent models of experimental epilepsies.

Animal Model Bont/E Delivery BoNT/E Effects Reference

Intrahippocampal KA (rat) Intrahippocampal, before KA Reduced EEG seizures (more effective
than phenytoin). [36]

Systemic KA (rat) Intrahippocampal, before KA

Prevented KA-induced spatial learning deficits
(Morris water maze).
Protection against KA-induced hippocampal
cell loss.

[36]

Hippocampal kindling (rat) Intrahippocampal, before KA Delayed kindling. [36]

Intrahippocampal KA (rat) Intrahippocampal, before KA Prevented the upregulation of phosphorylated c-Jun
and cleaved caspase 3. [50]

Intrahippocampal KA
(mouse)

Intrahippocampal, 3 h
after KA

Slightly delayed (but not prevented) epileptogenesis.
Protection against hippocampal cell loss and dentate
granule cell dispersion.

[56]

Intrahippocampal KA
(mouse)

Intrahippocampal, 21 days
after KA

Transient (5 days) but not long-lasting reduction
in SRS.
No reduction of both hippocampal sclerosis and
granule cell dispersion.

[60]



Toxins 2023, 15, 550 8 of 12

At that time, evidence for the central effect of BoNTs upon peripheral administration
was also largely described but ascribed to indirect mechanisms of peripheral alteration
of central sensorimotor integration [61,62]. In 1995, driven by the evidence that BoNT/A
reduces the amplitude and frequency of muscle contractions in blepharospasm and hemi-
facial spasm [63], electromyographic tremor bursts [64], and electromyographic burst
discharges in one case of spinal myoclonus [65], Tarsy and Schachter evaluated the effects
of injections of BoNT/A in biceps and triceps muscles of patients with epilepsia partialis
continua (EPC) [66]. However, no positive results were observed in two patients with EPC
when treated with BoNT/A [66] at doses that equaled or exceeded those used in upper
extremity tremor or dystonia [64]. This was likely due to the peripheral instead of central
infusion of the toxin. Thus, our investigation regarding in vivo BoNT/E effects in epilepsy
was extremely ambitious and of potentially high scientific and clinical impact. Indeed, our
studies not only explored effects of BoNT/E in different rodent models of acute and chronic
seizures but also showed a dissociation between specific histopathological changes and
mechanisms that support epileptogenesis. Our initial results regarding the anticonvulsant
effects of BoNT/E were the “proof of concept” that the starting hypothesis was correct:
drugs able to interfere with neurotransmitter release machinery such as BoNT/E may
produce anti-ictal and neuroprotective effects. From a pharmacological point of view, it
was crucial to assess the possible antiepileptic effect of BoNT/E. Results clearly confirmed
our idea that the blockade of glutamate release is also sufficient to reduce seizure frequency
in a chronic epileptic condition, but due to the reversibility of BoNT/E activity, the effect
on spontaneous recurrent seizures was confined to the duration of BoNT/E action (i.e., a
couple of weeks). Of course, this represents a limiting factor because it means that repetitive
BoNT/E injections in the CNS would be required to preserve antiepileptic effects. Thus, our
data indicate that BoNT/E is, in theory, useful in hyperexcitability conditions but almost
unusable due to its short duration of action. To overcome this point, we also explored
the therapeutic potential of BoNT/A in epilepsy, since a single BoNT/A injection into
the mouse hippocampus resulted in a longer-lasting blockade of glutamate release due to
the production of a shorter SNAP-25 fragment. Unfortunately, appearance of BoNT/A-
truncated SNAP-25 fragments persisted up to 6–9 months [67], making the evaluation of
BoNT/A effects in the model of chronic epilepsy impossible. Of note, since BoNTs can
be easily engineered and produced using recombinant methods, we cannot exclude that,
in the future, new technological approaches able to target BoNT/E directly to the epilep-
tic focus upon systemic/peripheral administrations may lead to new pharmacological
BoNT/E-based approaches in epilepsy. Indeed, several laboratories are working in this
direction, generating new BoNT/s chimeras to modify/prolong a specific BoNT serotype
activity [68] to reduce exocytosis from nonneuronal cells [69], or to increase potency over
the wild type [70]. As an example, the generation of a photoactivatable BoNT/B (an engi-
neered toxin serotype activable by blue light) showed for the first time that optogenetic
tools may be used to disrupt excitatory neurotransmission, achieving persistent synaptic
inhibition [71].

Finally, our data showed that BoNT/E does not display an antiepileptogenic action.
Delivery of BoNT/E three hours after SE prolonged epileptogenesis and reduced the
extent of hippocampal lesions but not the frequency of spontaneous seizures. This means
that epileptogenic mechanisms responsible for spontaneous seizures are not driven by an
excessive hippocampal glutamate release, which is instead necessary for specific anatomical
modifications during epileptogenesis.

Another possible explanation for our results is that in our model, even if KA delivery
occurs focally in the dorsal hippocampus, additional epileptic foci may contribute to the
establishment of recurrent spontaneous seizures. Since BoNT/E effects remain confined to
the injection site, a single BoNT/E shot is not enough to reduce the high glutamate release
produced by distant hyperactive neuronal populations. Up to now, effects of multiple toxin
injections in the KA focal model have not been assessed.
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Anatomically, BoNT/E delivery prevents the loss of CA1 neurons and dispersion of
dentate granular cells but does not interfere with CA3 neuronal death and with another
histopathological marker of chronic seizures, mossy fiber sprouting. Whereas BoNT/E-
mediated neuroprotection may be associated to the inhibition of the caspase-3 pathway
in KA-injured hippocampal neurons [50], action on dispersion of granular cells is mainly
ascribable to upregulation of reelin mRNA. Indeed, in both humans and experimental
models of TLE, the significant downregulation of reelin expression has been defined as
a major determinant of granule cell dispersion [57,72,73]. Thus, loss of CA3 neurons
(probably induced by the direct activation of postsynaptic kainate receptors) and mossy
fiber sprouting, not impacted by BoNT/E delivery, may be responsible for epileptogenesis
in this model.

4. Conclusions

Our studies revealed specific features of BoNT/E upon in vivo delivery in the CNS
in both physiological and pathological conditions. In addition, we described a different
ability of BoNT/E to interfere with neuronal hyperactivity and identified a dissociation
between specific histopathological changes and epileptogenesis and chronic epilepsy.
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