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Abstract: Stevia (Stevia rebaudiana Bertoni) is an aromatic plant known for its high sweetening power
ascribed to its glycosides. Stevia also contains several bioactive compounds showing antioxidant,
antiproliferative, antimicrobial, and anti-inflammatory activities. Since inflammation and oxidative
stress play critical roles in the pathogenesis of many diseases, stevia emerges as a promising natural
product that could support human health. In this study we set out to investigate the way stevia affects
oxidative stress markers (e.g., SOD, CAT, GPx, GSH, MDA) in diseased rats administered stevia leaf
extracts or glycosides. To this end, we performed an inclusive literature search, following PRISMA
guidelines, and recruited multivariate meta-analysis and meta-regression to synthesize all available
data on experimental animal models encountering (a) healthy, (b) diseased, and (c) stevia-treated
diseased rats. From the 184 articles initially retrieved, 24 satisfied the eligibility criteria, containing
104 studies. Our results demonstrate that regardless of the assay employed, stevia leaf extracts
restored all oxidative stress markers to a higher extent compared to pure glycosides. Meta-regression
analysis revealed that results from SOD, CAT, GSH, and TAC assays are not statistically significantly
different (p = 0.184) and can be combined in meta-analysis. Organic extracts from stevia leaves showed
more robust antioxidant properties compared to aqueous or hydroalcoholic ones. The restoration of
oxidative markers ranged from 65% to 85% and was exhibited in all tested tissues. Rats with diabetes
mellitus were found to have the highest restorative response to stevia leaf extract administration.
Our results suggest that stevia leaf extract can act protectively against various diseases through its
antioxidant properties. However, which of each of the multitude of stevia compounds contribute to
this effect, and to what extent, awaits further investigation.

Keywords: stevia; antioxidant; meta-analysis; animal model

1. Introduction

Stevia rebaudiana Bertoni is a perennial shrub of the family Asteraceae which is endemic
to northeastern Paraguay but also found in the nearby regions of Brazil and Argentina [1,2].
Stevia is mainly known for the high content of steviol glycosides in its leaves that are
utilized as a non-sucrose and calorie-free sweetener in a variety of food products. Glyco-
sides are organic compounds that consist of two parts, one part is a carbohydrate called
glycone, which is connected via a glycoside bond to another part, the aglycone, a non-sugar
group [3]. The best-known steviol glycosides are stevioside and rebaudioside A (RebA),
which are the most abundant glycosides of the plant [4–6]. Additionally, other diterpene
glycosides such as rebaudioside B, C, D, E, and F, steviolbioside, and dulcoside A also exist
in leaves, but at significant lower concentrations. In addition to the sweet compounds,
stevia leaves contain carbohydrates, lipids, dietary fibers, essential oils, water-soluble vita-
mins, minerals, and phenolic compounds [7,8]. Recent studies have shown several benefits
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of stevia leaf consumption on human health. Because of the high content of various phyto-
constituents, stevia leaves appear to have a broad range of biological activities such as an-
tidiabetic, antihypertensive, antimicrobial, anti-inflammatory, anti-tumor, and antioxidant
activities [9,10]. Antioxidant activity in plants is most often due to a high content of polyphe-
nols. The main polyphenols of stevia are phenols, phenolic acids, and flavonoids [11,12],
as shown in (Figure 1). The main phenols are pyrogallol and 4-methylcatechol, while
the main phenolic acids are derivatives of benzoic acid (syringic, vanillic, gallic, and
4-methoxybenzoic), cinnamic acids (caffeic, 4-coumaric, sinapic, trans-ferulic, and ros-
maric), and chlorogenic acid (esters of caffeic and quinic acids) [13]. Flavonoids found in
stevia leaves belong to three main groups, i.e., flavones (galuteolin, luteolin, apigenin),
flavonols (quercetin, rutin, kaempferol), and flavanols (catechin) [14–16].

Oxidative stress in animals occurs when there is an imbalance between the production
of reactive oxygen species (ROS) and the ability of the organism to neutralize or repair
the resulting damage. ROS are highly reactive molecules that can damage cells and their
components, such as DNA, proteins, and lipids. Some common ROS are the superoxide
anion (O2

•), hydrogen peroxide (H2O2), and the hydroxyl radical (•OH). Exposure of
an animal body to high levels of ROS can lead to tissue damage and ultimately to the
development of various degenerative diseases, such as cancer, cardiovascular disease, and
neurodegenerative diseases [17]. Humans have several antioxidant defenses to counteract
the harmful effects of ROS, including enzymes such as superoxide dismutase (SOD), cata-
lase (CAT), and glutathione peroxidase (GPx), as well as other non-enzymatic antioxidant
molecules such as glutathione (GSH) and vitamins C and E [18–20].

SOD catalyzes the conversion of the superoxide anion into hydrogen peroxide [21]
(2O2− + 2H+ → H2O2). Hydrogen peroxide is a substrate for CAT and GPx; CAT metabo-
lizes hydrogen peroxide into harmless water and oxygen [22] (2H2O2→ 2H2O + O2), while
GPx uses GSH to convert hydrogen peroxide and organic hydroperoxides into less harmful
compounds, i.e., oxidized glutathione (GSSG) and water (2GSH + H2O2→ GSSG + 2H2O).
GSH is a tripeptide molecule composed of three amino acids: glutamic acid, cysteine, and
glycine. In its reduced form, GSH contains a thiol (-SH) group, and when GSH donates an
electron to neutralize a free radical, it becomes oxidized and forms a disulfide bond (-S-S-)
with another GSH molecule [23].

Lipid peroxidation is a process in which free radicals attack and damage lipids in
cell membranes, leading to the production of reactive lipid peroxidation products such
as malondialdehyde (MDA) and other harmful byproducts. MDA is considered a marker
of lipid peroxidation and oxidative stress [24,25]. Lipid peroxidation can be triggered
by a variety of factors, including oxidative stress, inflammation, and exposure to toxins
or radiation. The process entails the attack of a free radical on a polyunsaturated fatty
acid (PUFA) in the cell membrane [26], and the production of a peroxyl-radical lipid
which is converted to MDA. MDA has been shown to have several toxic effects on the
body, including DNA damage and alteration of proteins and enzymes, and it has been
linked to a number of health problems, including inflammation, cancer, and cardiovascular
disease [25].

Antioxidants are molecules that can contribute to the protection of cells from oxidative
stress by neutralizing free radicals (ROS). Some common natural antioxidants are vitamins
A, C, and E, as well as minerals such as selenium and zinc. Other natural antioxidants
include phytochemicals, such as flavonoids and polyphenols, which are found in fruits,
vegetables, and herbs [27]. Research results suggest that a diet high in antioxidants may
protect against the harmful effects of oxidative stress [17,28,29]. The study of antioxidants
and of plant extracts rich in antioxidants has emerged as an important and very potent
research area on the role of oxidative stress in health and disease; it can provide quali-
tative and quantitative determination of their antioxidant capacity that can lead to the
development of new natural-based treatments for modern-lifestyle diseases.
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Figure 1. The main polyphenols found in Stevia rebaudiana (Bertoni) leaves.
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Studies in animal models have been used to investigate how diseases affect numer-
ous markers of animal oxidation status. It has been reported that animal experimental
models of various diseases are characterized by decreased levels of most enzymatic and
non-enzymatic antioxidant markers, and by increased levels of MDA [19,24]; however,
discrepancies among reported results do occur. The objective of the present study is to
statistically combine all of the available data in the literature and determine the effect of
stevia leaf extracts on oxidative stress markers in tissues of rats that have been infected with
a disease and then (or in parallel) administered stevia extracts, mainly orally. The present
meta-analysis is an effort to quantitatively synthesize all of the available data, uncover
interchangeable methods, and summarize all of the existing evidence on the antioxidant
impact of differently prepared stevia leaf extracts on several tissues of animals suffering
from various diseases.

2. Materials and Methods
2.1. Literature Search Strategy and Eligibility Criteria

An all-inclusive literature search in the PubMed database (https://pubmed.ncbi.nlm.
nih.gov/ (accessed on 26 January 2023) was carried out to retrieve all potential research
articles exploring the antioxidant impacts of stevia, using the keywords ‘Stevia’, ‘antioxi-
dant’, and ‘animal’ with their combinations and derivatives. The search was performed
using the preferred reporting items for systematic reviews and meta-analyses (PRISMA)
guidelines (http://www.prisma-statement.org/ (accessed on 26 January 2023)) along with
the advice for best practices [30,31]. Screening of the reference lists of the included stud-
ies was also performed to incorporate all possible relevant publications. To eliminate
publication bias and the implications of the grey literature, articles in various languages
were taken into consideration [32]. Eligible criteria for inclusion in the meta-analysis were
(a) intervention animal studies, (b) studies aimed at evaluating the effects of stevia leaves or
stevia glycosides on various diseases, (c) use of control animals. Unrelated articles, in vitro
studies, studies conducted on humans, observational studies, and reviews were excluded.
We also excluded studies that did not provide sufficient information or data necessary for
the analysis in order to ensure the reliability and validity of the results.

2.2. Data Extraction and Antioxidant Markers

Initially, titles and abstracts of the articles were screened, and relevant articles were
further examined following the inclusion and exclusion criteria. The search results were
assessed by two separate researchers (MP and PK), any discrepancies were discussed with
GB and PB and decided upon by consensus. Upon reading all articles, it was found that
the determination of oxidative stress was performed mainly with six assays measuring
enzymatic activity, and levels of oxidative stress was expressed quantitatively in units of the
six oxidation markers. The majority of the studies reported data for the following assays:
(a) superoxide dismutase (SOD), (b) catalase (CAT), (c) glutathione peroxidase (GPx),
(d) reduced glutathione (GSH), (e) malondialdehyde (MDA), and (f) total antioxidant
capacity (TAC) [33].

All the above-mentioned methods by which oxidative stress can be estimated fall into
three main categories [34]: (a) assays that measure the activity of antioxidant enzymes,
(b) assays that measure lipid peroxidation, and (c) assays that measure total antioxidant
capacity (TAC).

Assays used to measure antioxidant enzyme activity include SOD, CAT, and GPx. The
activity of SOD [35] can be measured using a colorimetric assay that detects the amount
of hydrogen peroxide produced by the action of SOD using formazan dye as an indicator.
Formazan dye is measured colorimetrically at 560 nm. Superoxide anions react with
formazan salts to produce a dye which can be detected colorimetrically. The greater the
activity of SOD in the sample, the less formazan dye is produced. The activity of CAT [36,37]
can be measured using a colorimetric assay that detects the rate of decomposition of
hydrogen peroxide. The technique involves the reduction of dichromate in acetic acid

https://pubmed.ncbi.nlm.nih.gov/
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to chromic acetate in the presence of hydrogen peroxide, which forms an impermanent
intermediate perchromic acid. The amount of chromic acetate produced in the reaction is
in direct proportion to the concentration of hydrogen peroxide employed. The chromic
acetate produced is measured colorimetrically at 570 nm (Cr2 O7

−2+ 7H2O2 → 2CrO8
−3 +

5H2O + 4H+ followed by 2CrO8
−3 + 6CH3COO− + 6H +→ 2Cr(CH3 COO)3 + 14H2O). The

activity of GPx can be measured using a colorimetric assay that detects the amount of GSSG
produced [38], which is coupled to the oxidation of NADPH to NADP+. The decrease in
NADPH is proportional to the GPx activity and is monitored spectrophotometrically at
340 nm. When GSH reacts with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) a yellow product
is formed proportional to the GSH concentration that can be measured colorimetrically
according to Ellman’s assay [39].

The extent of lipid peroxidation can be measured using a colorimetric assay that detects
the amount of malondialdehyde (MDA) produced because of lipid peroxidation [25]. MDA
reacts with thiobarbirutic acid (TBA), and the product is detected by the absorbance at
532 nm.

The total antioxidant capacity (TAC) assay [20] is an assay that measures the overall
ability of a substance or biological sample to neutralize free radicals. It measures either the
combination of both small molecule antioxidants and proteins, or the presence of small
molecules alone that are present in the sample. This assay can be performed using various
methods and, in the studies included herein, it was measured colorimetrically. The ferric
reducing antioxidant power (FRAP) assay [40] is based on the ability of antioxidants to
reduce ferric ion Fe+3 to ferrous ion Fe+2 in a redox reaction, the Fe+2 then reacts with
the colorimetric reagent TPTZ (2,4,6-tripyridyl-s-triazine, and iron(III) chloride hexahy-
drate) to produce a complex which can be measured spectrophotometrically at 593 nm. In
one study [41], TAC was indirectly measured by determining the residual H2O2 through
the conversion of 3,5, dichloro dicloro-2-hydroxy benzensulphonate to a colored prod-
uct. The measurement of this colored product can be measured spectrophotometrically
at 500–510 nm.

Oxidative stress markers data were used to determine the effect of differently prepared
stevia leaf extracts on different tissues of variously diseased animals.

In the studies included herein, dried leaves of stevia were ground to powder. The
solvents used for the extraction included water or organic solvents (ethanol, acetone, or
methanol). For hydroalcoholic extracts, solutions containing 70% to 80% methanol or
ethanol were used. Generally, extractions took place with maceration and incubation to
various temperatures [42,43] for different times (five min to 24 h) or using the Soxhlet
extraction technique [44]. Subsequently, the extraction products were filtered and evapo-
rated to complete dryness under reduced pressure using vacuum rotary evaporation. The
resulting powder of the extracts was diluted with either distilled water or saline solutions
for oral administration. The glycosides used in the studies reported herein were purchased
ensuring that purities were >96%. In one study [45], the isolation and purification of the
glycosides were performed using a diode array detector (JASCO HPLC system).

Data extraction was performed in a predetermined Microsoft Excel® sheet. From each
study, the following information was extracted: first author’s last name, publication year,
country, type of assay determining oxidative stress, treatment, number of experimental
animals, tissue of rats, type of disease, and the type of stevia leaf extracts or steviol
glycosides. Antioxidant marker data were divided into three groups as follows: ‘control’,
consisting of healthy normal rats; ‘case’, consisting of diseased rats; and ‘stevia’, the group
with the diseased rats that received stevia extracts.

2.3. Statistical Analysis

The primary outcome of this meta-analysis was the standardized mean differences
in oxidative stress marker estimates between the three animal groups, which is referred
to as Cohen’s d. Secondary outcomes included the stratification analysis of oxidative
stress markers’ performance in different tissues of rats, types of diseases, and types of



Nutrients 2023, 15, 3325 6 of 32

stevia extracts. The model we used was based on the standard model of multivariate
meta-analysis method [46–48]. We were interested in comparing the mean difference of
the oxidative stress marker estimates between the three animal groups, measured in study
i = 1,2,. . .k. The mean differences in oxidative stress marker estimates were used to
determine the contrasts ‘control’ vs. ‘case’, ‘stevia’ vs. ‘case’, and ‘stevia’ vs. ‘control’, and
were estimated using:

d̂1i =
X1i − X0i
Spooled,i

and d̂2i =
X2i − X0i
Spooled,i

(1)

where X1i, X2i, and X0i are the means of the measured values of the oxidative stress
markers in the ‘control’, ‘case’, and ‘stevia’ groups, respectively. Spooled,i is the pooled
standard deviation in study i, given by:

Spooled,i =

√
(n0i − 1)S2

0i + (n1i − 1)S2
1i + (n2i − 1)S2

2i
n0i + n1i + n2i − 3

(2)

with n1i, n2i, and n0i being the sample size of each group and S1i, S2i, and S0i the standard
deviation of the measured values for each group.

The variance of the effect size estimates d1i and d2i is estimated by:

vâr
(

d̂1i

)
= s2

1i =
1

n1i
+

1
n0i

+
d̂1i

2

2ni
, vâr

(
d̂2i

)
= s2

2i =
1

n2i
+

1
n0i

+
d̂2i

2

2ni
(3)

and the covariance between the estimates of d1i and d2i is

c
^
ov
(

d̂1i, d̂2i

)
=

1
n0i

+
d̂1i d̂2i

2ni
(4)

with ni = n0i + n1i+ n2i being the total sample size of the study. The calculation of the within-
studies covariance is very important since it plays a crucial role in the
multivariate method.

Several statistical methods have been proposed to handle the issues of small sample
sizes efficiently and to calculate accurate p-values and confidence intervals. The d can
be corrected using the so-called Hedges’ g, which generates an unbiased estimate (the
standardized mean difference d has the tendency to overestimate the absolute value in small
samples), and the meta-analysis was conducted as proposed in [49]. In the multivariate
random-effects meta-analysis, we assume that gi = (g1i, g2i) is distributed following a
multivariate normal distribution around the true means, according to the marginal model:

gi ∼ MVN(g, C + Σi) (5)

By Σi we denote the within-studies covariance matrix:

Σi =

[
s2

1i ρWs2is1i
ρWs2is1i s2

2i

]
(6)

The diagonal elements of Σi are the study-specific estimates of the variance
(Equation (3)), whereas the off-diagonal elements correspond to the pairwise within-studies
covariances (Equation (4)), for instance, cov(g1i, g2i) = ρws1is2i. It is important to note
that the elements of Σi are considered known quantities. In contrast, by C we denote the
between-studies covariance matrix, which is estimated during the fitting process:

C =

[
τ2

1 ρBτ1τ2
ρBτ1τ2 τ2

2

]
(7)
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The particular model takes into account the within-studies covariance and the between-
studies covariance of the random terms, which is estimated in the model fitting pro-
cedure. A major advantage of the multivariate meta-analysis model is that it can ac-
commodate studies reporting only one of the parameters of interest, resulting in bor-
rowing strength from external studies. Another advantage is that with the estimated
variance–covariance matrix, it can be used to perform global tests for the effect sizes
where the estimates of both g1 and g2 influence all outcomes (‘control’ vs. ‘case’, ‘stevia’
vs. case’, and ‘stevia’ vs. ‘control’).

Moreover, to determine whether different oxidative stress markers can be combined in
a meta-analysis, meta-regression analysis [50,51] was also used. This allowed us to assess
whether studies that used different markers tended to have comparable
data [46,52,53]. Multivariate meta-analysis and meta-regression analysis were performed
using the statistical software package Stata13 [54]. In all tests, p ≤ 0.05 was used as the
decision rule for significance testing. Meta-analysis was performed when two or more
studies were available.

3. Results
3.1. Study Selection and Characteristics

A thorough literature search for antioxidant activity of stevia resulted in 184 arti-
cles. After screening of titles and abstracts, and compliance with the PRISMA guidelines
(http://www.prisma-statement.org/ (accessed on 26 January 2023)) (Figure 2), 22 articles
were found to satisfy the eligibility criteria [41,42,44,45,55–72]. Seventeen records were
additionally retrieved from screening lists of references, and two of them [37,73] were enrolled
in the meta-analysis, making a total of 24 articles, which contained 104 studies in total.
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All the selected studies evaluated the effects of stevia extracts or stevia glycosides
on rats as experimental models. The included studies predominantly reported data on
SOD (21 studies), CAT (17 studies), and GPx (4 studies) activity, the content of GSH
(27 studies), the assessment of TAC (2 studies), and the content of MDA (33 studies), all
of which are shown in Table 1. Data on oxidative stress markers concerned 13 rat tissues,
including liver, kidney, pancreas, heart, serum, plasma, skeletal muscles, brain, ovary,
colon, duodenum, jejunum, and ileum. Antioxidant activity was investigated in 13 types
of diseases, comprising diabetes mellitus, liver diseases, renal disorders, ulcerative colitis,
metabolic syndrome, polycystic ovary syndrome, and epilepsy. Four types of stevia extracts
were tested for their effect after administration: aqueous, organic, hydroalcoholic, and
fractions of methanolic extracts. Hence, overall, our data enrolled 15 studies with aqueous
extracts, 19 studies with organic extracts, 40 studies with hydroalcoholic extracts and only 1
with methanolic fractions of extract. In addition, 20 studies were performed with stevioside,
5 studies with rebaudioside A, and 1 study with extracted sweeteners from stevia leaves.
All the selected studies investigated the effects of oral administration of stevia extracts or
steviol glycosides in rats as a treatment, except for two articles in which administration
was performed intraperitoneally. In three of the articles [61,71,72], the use of stevia was
investigated as a pre-treatment prior to the induction of a disease, while in all other studies,
stevia was administered after the disease had been induced.

The administration of the substance varied in terms of the doses employed, with
doses ranging from 2 mg/kg to 300 mg/kg for pure glycosides and from 80 mg/kg to
500 mg/kg for leaf extracts. Additionally, the period of treatment varied from one to twelve
weeks. It should be noted that the studies were conducted in six countries: Mexico, Egypt,
Saudi Arabia, Iran, China, and India. The characteristics of the selected studies that were
encountered in the meta-analysis are presented in Table 1.
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Table 1. Characteristics of the 104 studies included in the meta-analysis.

Author Year Country Assay
After Treatment
(A) Pre-Treatment
(P) with Stevia

# Con-
trols

Control
Value

Control
SD

#
Cases

Case
Value

Case
SD

#
Stevia

Stevia
Value

Stevia
SD Extract/Compound

Type of
Tissue
Tested

Type of
Disease

Mostafa
et al. [72] 2020 Egypt SOD 80 mg/kg/day

orally, 1 week (A) 10 3.6 0.11 10 1.6 0.1 10 2.66 0.09 Aqueous Colon Ulcerative
colitis

Mehmood
et al. [64] 2019 China SOD 400 mg/kg/day

orally, 8 weeks (A) 8 118 6.1 8 53 2.8 8 107 12 Hydroalcoholic Duodenum Hyperuricemia

Mehmood
et al. [64] 2019 China SOD 400 mg/kg/day

orally, 8 weeks (A) 8 70 7.9 8 30 7 8 51 12 Hydroalcoholic Jejunum Hyperuricemia

Mehmood
et al. [64] 2019 China SOD 400 mg/kg/day

orally, 8 weeks (A) 8 55 8.1 8 21 4.5 8 40 4.5 Hydroalcoholic Ileum Hyperuricemia

Mehmood
et al. [63] 2020 China SOD 200 mg/kg/day

orally, 4 weeks (A) 8 118 4.9 8 91 5.9 8 115 5 Hydroalcoholic Serum Hyperuricemia

El-
Mesallamy
et al. [45]

2018 Egypt SOD 200 mg/kg/day
orally, 4 weeks (A) 10 48 4 10 25 7.5 10 41 4 Hydroalcoholic Skeletal

muscles
Diabetes
mellitus

El-
Mesallamy
et al. [45]

2018 Egypt SOD 2 mg/kg/day
orally, 4 weeks (A) 10 48 4 10 25 7.5 10 30 4 Stevioside Skeletal

muscles
Diabetes
mellitus

Latha
et al. [70] 2017 India SOD 500 mg/kg/day

orally, 1 week (A) 8 21 4.24 8 4 4.52 8 16.5 2.54 Hydroalcoholic Liver Acute liver
injury

Latha
et al. [70] 2017 India SOD 250 mg/kg/day

orally, 1 week (A) 8 21 4.24 8 4 4.52 8 17 4.52 Stevioside Liver Acute liver
injury

Moselhy
et al. [66] 2016 Saudi

Arabia SOD 200 mg/kg/day
orally, 2 weeks (A) 10 0.25 0.0023 10 0.18 0.03 10 0.21 0.029 Organic Liver Hepatotoxic

Perumal
et al. [67] 2016 India SOD 100 mg/kg/day

orally, 3 weeks (A) 6 10.15 1.05 6 4.63 0.95 6 6.75 1.25 Hydroalcoholic Liver Diabetes
mellitus

Perumal
et al. [67] 2016 India SOD 100 mg/kg/day

orally, 3 weeks (A) 6 11.04 1.3 6 4.63 1.69 6 6.74 1.18 Hydroalcoholic Kidney Diabetes
mellitus

Shivanna
et al. [71] 2012 India SOD NR orally,

4 weeks (P) 10 2.41 0.91 10 1.21 0.05 10 2.72 0.52 Fraction methanol Liver Diabetes
mellitus

Myint
et al. [73] 2020 China SOD 12 mg/kg/day

orally, 6 weeks (A) 6 74.53 1.82 6 36.61 1.44 6 39.23 1.28 Rebaudioside A Liver Diabetes
mellitus

Myint
et al. [73] 2020 China SOD 10 mg/kg/day

orally, 6 weeks (A) 6 74.53 1.82 6 36.61 1.44 6 44.46 1.28 Stevioside Liver Diabetes
mellitus
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Table 1. Cont.

Author Year Country Assay
After Treatment
(A) Pre-Treatment
(P) with Stevia

# Con-
trols

Control
Value

Control
SD

#
Cases

Case
Value

Case
SD

#
Stevia

Stevia
Value

Stevia
SD Extract/Compound

Type of
Tissue
Tested

Type of Disease

Singh et al.
[37] 2013 India SOD 300 mg/kg/day

orally, 3 weeks (A) 7 50.5 32.80 7 37.5 18.79 7 50 10.85 Organic Liver Diabetes mellitus

Singh et al.
[37] 2013 India SOD 300 mg/kg/day

orally, 3 weeks (A) 7 190.2 50.27 7 40 19.84 7 10 14.02 Organic Pancreas Diabetes mellitus

Singh et al.
[37] 2013 India SOD 300 mg/kg/day

orally, 3 weeks (A) 7 55 9.26 7 25 9.26 7 9 9.26 Organic Kidney Diabetes mellitus

El-Hadary
et al. [60] 2021 Egypt SOD 300 mg/kg/day

orally, 8 weeks (A) 10 54.3 2.3 10 47.2 1.2 10 58.8 0.9 Hydroalcoholic Liver Diabetes mellitus

Morsi et al.
[65] 2022 Egypt SOD 300 mg/kg/day

orally, 4 weeks (A) 7 36.25 1.25 7 21.25 3 7 29 1.75 Glycosides-
sweetener Ovary Polycystic ovary

syndrome

Deenadayalan
et al. [59] 2021 India SOD 20 mg/kg/day

orally, 45 days (A) 6 32.5 3.06 6 13 1.84 6 20 1.84 Stevioside Skeletal
muscles Diabetes mellitus

Mostafa
et al. [72] 2020 Egypt CAT 80 mg/kg/day

orally, 1 week (P) 10 7.95 0.11 10 3.9 0.08 10 6.6 0.09 Aqueous Colon Ulcerative colitis

Elsaid et al.
[61] 2019 Egypt CAT 200 mg/kg/day

orally, 5 weeks (P) 12 34.66 3.14 12 14 2.36 12 27.66 3.72 Hydroalcoholic Kidney Renal ischemia/
reperfusion

Abdallah
et al. [55] 2022 Egypt CAT 500 mg/kg/day

orally, 1 week (A) 7 36 0.5 7 21 5 7 30 0.5 Organic Liver Liver disease

Abdallah
et al. [55] 2022 Egypt CAT 250 mg/kg/day

orally, 1 week (A) 7 36 0.5 7 21 5 7 35 5 Stevioside Liver Liver disease

Mehmood
et al. [63] 2020 China CAT 200 mg/kg/day

orally, 4 weeks (A) 8 17.5 1.5 8 8 1.1 8 10.5 1.2 Hydroalcoholic Serum Hyperuricemia

Moselhy
et al. [66] 2016 Saudi

Arabia CAT 200 mg/kg/day
orally, 2 weeks (A) 10 0.89 0.07 10 0.32 0.05 10 0.76 0.05 Organic Liver Hepatotoxic

El Nashar
et al. [41] 2022 Egypt CAT

200 mg/kg/day
orally, 4 weeks (P
and A)

10 67.67 31.53 10 52.08 29.6 10 95.25 35.45 Organic Brain Epilepsy

Hussein
et al. [62] 2020 Egypt CAT 400 mg/kg/day

orally, 4 weeks (A) 8 17 0.45 8 7 0.19 8 22.5 0.98 Hydroalcoholic Heart Diabetes mellitus

Shivanna
et al. [71] 2012 India CAT NR orally,

4 weeks (P) 10 1.02 0.05 10 0.52 0.07 10 0.78 0.17 Fraction methanol Liver Diabetes mellitus
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Table 1. Cont.

Author Year Country Assay
After Treatment
(A) Pre-Treatment
(P) with Stevia

# Con-
trols

Control
Value

Control
SD

#
Cases

Case
Value

Case
SD

#
Stevia

Stevia
Value

Stevia
SD Extract/Compound

Type of
Tissue
Tested

Type of
Disease

Assaei et al.
[44] 2016 Iran CAT 400 mg/kg/day

orally, 4 weeks (A) 10 29.4 8.85 10 9.9 6.96 10 33.7 6.33 Aqueous Pancreas Diabetes
mellitus

Deenadayalan
et al. [59] 2021 India CAT 20 mg/kg/day

orally, 45 days (A) 6 11.5 3.06 6 6.25 3.18 6 8.75 1.83 Stevioside Skeletal
muscles

Diabetes
mellitus

Perumal et al.
[67] 2016 India CAT 100 mg/kg/day

orally, 3 weeks (A) 6 42.8 6.2 6 25.8 3.72 6 35.69 6.42 Hydroalcoholic Liver Diabetes
mellitus

Perumal et al.
[67] 2016 India CAT 100 mg/kg/day

orally, 3 weeks (A) 6 34.04 5.27 6 23.56 1.54 6 25.3 1.71 Hydroalcoholic Kidney Diabetes
mellitus

El-
Mesallamy
et al. [45]

2018 Egypt CAT 200 mg/kg/day
orally, 4 weeks (A) 10 90 1 10 55 3 10 80 4 Hydroalcoholic Skeletal

muscles
Diabetes
mellitus

El-
Mesallamy
et al. [45]

2018 Egypt CAT 2 mg/kg/day
orally, 4 weeks (A) 10 90 1 10 55 3 10 72 4 Stevioside Skeletal

muscles
Diabetes
mellitus

Latha et al.
[70] 2017 India CAT 500 mg/kg/day

orally, 1 week (A) 8 0.87 0.73 8 0.21 0.03 8 0.51 0.31 Hydroalcoholic Liver Acute liver
injury

Latha et al.
[70] 2017 India CAT 250 mg/kg/day

orally, 1 week (A) 8 0.87 0.73 8 0.21 0.03 8 0.3 0.28 Stevioside Liver Acute liver
injury

El-
Mesallamy
et al. [45]

2018 Egypt GPx 200 mg/kg/day
orally, 4 weeks (A) 10 515 2 10 280 4 10 480 7 Hydroalcoholic Skeletal

muscles
Diabetes
mellitus

El-
Mesallamy
et al. [45]

2018 Egypt GPx 2 mg/kg/day
Orally, 4 weeks (A) 10 515 2 10 280 4 10 450 3.5 Stevioside Skeletal

muscles
Diabetes
mellitus

Deenadayalan
et al. [59] 2021 India GPx 20 mg/kg/day

orally, 45 days (A) 6 26 6.12 6 14 3.68 6 20 3.68 Stevioside Skeletal
muscles

Diabetes
mellitus

El-Hadary
et al. [60] 2021 Egypt GPx 300 mg/kg/day

orally, 8 weeks (A) 10 165.6 0.7 10 137.8 1.4 10 175.8 5.3 Hydroalcoholic Liver Diabetes
mellitus

Mostafa et al.
[72] 2020 Egypt GSH 80 mg/kg/day

orally, 1 week (A) 10 5.7 0.09 10 2.2 0.05 10 4.9 0.03 Aqueous Colon Ulcerative
colitis
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Table 1. Cont.

Author Year Country Assay
After Treatment
(A) Pre-Treatment
(P) with Stevia

# Con-
trols

Control
Value

Control
SD

#
Cases

Case
Value

Case
SD

#
Stevia

Stevia
Value

Stevia
SD Extract/Compound

Type of
Tissue
Tested

Type of Disease

Abdel-
Aal et al.
[56]

2021 Egypt GSH 400 mg/kg/day
orally, 3 weeks (A) 8 22 3.11 8 3 0.70 8 12.5 0.70 Aqueous Liver Diabetes mellitus

Abdel-
Aal et al.
[56]

2021 Egypt GSH 400 mg/kg/day
orally, 3 weeks (A) 8 22 1.41 8 7 0.71 8 17 1.27 Aqueous Kidney Diabetes mellitus

Hussein
et al. [62] 2020 Egypt GSH 400 mg/kg/day

orally, 4 weeks (A) 8 11.25 0.4 8 3.1 0.23 8 11.7 0.97 Hydroalcoholic Heart Diabetes mellitus

Mehmood
et al. [64] 2019 China GSH 400 mg/kg/day

orally, 8 weeks (A) 8 125 37.5 8 40 7.5 8 100 27 Hydroalcoholic Duodenum Hyperuricemia

Mehmood
et al. [64] 2019 China GSH 400 mg/kg/day

orally, 8 weeks (A) 8 100 27 8 40 2 8 80 17.5 Hydroalcoholic Jejunum Hyperuricemia

Mehmood
et al. [64] 2019 China GSH 400 mg/kg/day

orally, 8 weeks (A) 8 100 8 8 35 10 8 84 10 Hydroalcoholic Ileum Hyperuricemia

Elsaid
et al. [61] 2019 Egypt GSH 200 mg/kg/day

orally, 5 weeks (P) 12 8.65 0.57 12 3.38 0.36 12 7.17 0.64 Hydroalcoholic Kidney Renal ischemia/
reperfusion

Ramos-
Tovar
et al. [43]

2019 Mexico GSH 100 mg/kg/day
orally, 12 weeks (A) 8 10 1.98 8 3.75 1.95 8 8.55 1.27 Aqueous Liver Liver cirrhosis

Casas-
Grajales
et al. [58]

2019 Mexico GSH

20 mg/kg/twice
daily
intraperitoneally,
8 weeks (A)

8 13 0.85 8 10 0.28 8 13.5 1.13 Stevioside Liver Liver fibrosis

Casas-
Grajales
et al. [57]

2019 Mexico GSH

20 mg/kg/twice
daily
intraperitoneally,
8 weeks (A)

8 13.3 0.85 8 10 0.28 8 12.2 0.57 Rebaudioside A Liver Liver fibrosis

Ramos-
Tovar
et al. [42]

2018 Mexico GSH 100 mg/kg/day
orally, 10 weeks (A) 8 5.6 1.41 8 3 0.28 8 4.5 1.56 Aqueous Liver Liver cirrhosis

Ramos-
Tovar
et al. [68]

2018 Mexico GSH 100 mg/kg/day
orally, 1 week (A) 8 11.5 1.27 8 6 2.55 8 11 2.55 Aqueous Liver Liver cirrhosis
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Table 1. Cont.

Author Year Country Assay
After Treatment
(A) Pre-Treatment
(P) with Stevia

# Con-
trols

Control
Value

Control
SD

#
Cases

Case
Value

Case
SD

#
Stevia

Stevia
Value

Stevia
SD Extract/Compound

Type of
Tissue
Tested

Type of
Disease

Latha et al.
[70] 2017 India GSH 500 mg/kg/day

orally, 1 week (A) 8 230 14.14 8 95 28.29 8 212 98.99 Hydroalcoholic Liver Acute Liver
injury

Latha et al.
[70] 2017 India GSH 250 mg/kg/day

orally, 1 week (A) 8 230 14.14 8 95 28.28 8 181 14.14 Stevioside Liver Acute Liver
injury

Perumal
et al. [67] 2016 India GSH 100 mg/kg/day

orally, 3 weeks (A) 6 43.4 7.20 6 11.83 8.23 6 21.4 6.74 Hydroalcoholic Liver Diabetes
mellitus

Perumal
et al. [67] 2016 India GSH 100 mg/kg/day

orally, 3 weeks (A) 6 41.4 9.48 6 19.04 5.07 6 27.43 8.01 Hydroalcoholic Kidney Diabetes
mellitus

Shivanna
et al. [71] 2012 India GSH NR orally, 4 weeks

(P) 10 24.58 0.51 10 13.58 0.4 10 21.11 0.51 Fraction methanol Plasma Diabetes
mellitus

Myint et al.
[73] 2020 China GSH 12 mg/kg/day

orally, 6 weeks (A) 6 56.75 1.27 6 35.78 1.26 6 36.6 1.24 Rebaudioside A Liver Diabetes
mellitus

Myint et al.
[73] 2020 China GSH 10 mg/kg/day

orally, 6 weeks (A) 6 56.75 1.27 6 35.78 1.26 6 39.89 1.24 Stevioside Liver Diabetes
mellitus

Singh et al.
[37] 2013 India GSH 300 mg/kg/day

orally, 3 weeks(A) 7 25.2 10.05 7 7.1 6.09 7 28.1 19.31 Organic Liver Diabetes
mellitus

Singh et al.
[37] 2013 India GSH 300 mg/kg/day

orally, 3 weeks (A) 7 7.5 6.09 7 4.1 1.32 7 22.1 10.05 Organic Pancreas Diabetes
mellitus

Singh et al.
[37] 2013 India GSH 300 mg/kg/day

orally, 3 weeks (A) 7 22.4 8.73 7 3.5 0.26 7 18.1 8.73 Organic Kidney Diabetes
mellitus

El-Hadary
et al. [60] 2021 Egypt GSH 300 mg/kg/day

orally, 8 weeks (A) 10 80.8 0.9 10 57.2 1.7 10 81.6 1.9 Hydroalcoholic Liver Diabetes
mellitus

Abdallah
et al. [55] 2022 Egypt GSH 500 mg/kg/day

orally, 1 week (A) 7 50 1 7 42.5 2.5 7 48 1.5 Organic Liver Liver disease

Abdallah
et al. [55] 2022 Egypt GSH 250 mg/kg/day

orally, 1 week (A) 7 50 1 7 42.5 2.5 7 51 2 Stevioside Liver Liver disease

Deenadayalan
et al. [59] 2021 India GSH 20 mg/kg/day

orally, 45 days (A) 6 13.25 2.45 6 6 2.21 6 9 1.22 Stevioside Skeletal
muscles

Diabetes
mellitus

Ranjbar
et al. [40] 2020 Iran TAC 400 mg/kg/day

orally, 14 weeks (A) 10 0.36 0.16 10 0.19 0.19 10 0.28 0.13 Hydroalcoholic Serum Metabolic
syndrome
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Table 1. Cont.

Author Year Country Assay
After Treatment
(A) Pre-Treatment
(P) with Stevia

# Con-
trols

Control
Value

Control
SD

#
Cases

Case
Value

Case
SD

#
Stevia

Stevia
Value

Stevia
SD Extract/Compound

Type of
Tissue
Tested

Type of Disease

El
Nashar
et al. [41]

2022 Egypt TAC
200 mg/kg/day
orally, 4 weeks (P
and A)

10 4.65 1.28 10 1.91 1.27 10 6.3 2.63 Organic Brain Epilepsy

Abdel-
Aal et al.
[56]

2021 Egypt MDA 400 mg/kg/day
orally, 3 weeks (A) 8 0.2 0.06 8 0.58 0.06 8 0.24 0.04 Aqueous Liver Diabetes mellitus

Abdel-
Aal et al.
[56]

2021 Egypt MDA 400 mg/kg/day
orally, 3 weeks (A) 8 0.21 0.02 8 0.46 0.03 8 0.24 0.21 Aqueous Kidney Diabetes mellitus

Ranjbar
et al. [40] 2020 Iran MDA 400 mg/kg/day

orally, 14 weeks (A) 10 34 17.39 10 45 23.72 10 38 12.33 Hydroalcoholic Serum Metabolic
syndrome

Hussein
et al. [62] 2020 Egypt MDA 400 mg/kg/day

orally, 4 weeks (A) 8 1.49 0.03 8 9.9 0.26 8 2 0.13 Hydroalcoholic Heart Diabetes mellitus

Mehmood
et al. [64] 2019 China MDA 400 mg/kg/day

orally, 8 weeks(A) 8 1.4 0.1 8 5.75 0.9 8 1.75 0.49 Hydroalcoholic Duodenum Hyperuricemia

Mehmood
et al. [64] 2019 China MDA 400 mg/kg/day

orally, 8 weeks (A) 8 1.2 0.25 8 4.4 0.79 8 1.2 0.95 Hydroalcoholic Jejunum Hyperuricemia

Mehmood
et al. [64] 2019 China MDA 400 mg/kg/day

orally, 8 weeks (A) 8 1.1 0.37 8 4.1 1.21 8 1.5 0.49 Hydroalcoholic Ileum Hyperuricemia

Mehmood
et al. [63] 2020 China MDA 200 mg/kg/day

orally, 4 weeks (A) 8 4.6 1.95 8 9.15 1 8 5.75 1.25 Hydroalcoholic Serum Hyperuricemia

Elsaid
et al. [61] 2019 Egypt MDA 200 mg/kg/day

orally, 5 weeks (A) 12 1.89 0.31 12 5.2 1.07 12 2.92 0.16 Hydroalcoholic Kidney Renal ischemia/
reperfusion

Ramos-
Tovar
et al. [43]

2019 Mexico MDA 100 mg/kg/day
orally, 12 weeks (A) 8 0.19 0.03 8 0.29 0.06 8 0.2 0.04 Aqueous Liver Liver cirrhosis

Casas-
Grajales
et al. [58]

2019 Mexico MDA

20 mg/kg/twice
daily
intraperitoneally,
8 weeks (A)

8 0.2 0.03 8 0.67 0.09 8 0.4 0.07 Stevioside Liver Liver fibrosis

Casas-
Grajales
et al. [57]

2019 Mexico MDA

20 mg/kg twice
daily
intraperitoneally,
8 weeks (A)

8 0.22 0.06 8 0.67 0.11 8 0.32 0.09 Rebaudioside A Liver Liver fibrosis
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Table 1. Cont.

Author Year Country Assay
After Treatment
(A) Pre-Treatment
(P) with Stevia

# Con-
trols

Control
Value

Control
SD

#
Cases

Case
Value

Case
SD

#
Stevia

Stevia
Value

Stevia
SD Extract/Compound

Type of
Tissue
Tested

Type of
Disease

El-
Mesallamy
et al. [45]

2018 Egypt MDA 200 mg/kg/day
orally, 4 weeks (A) 10 4 1.1 10 11.5 0.9 10 6 0.95 Hydroalcoholic Skeletal

muscles
Diabetes
mellitus

El-
Mesallamy
et al. [45]

2018 Egypt MDA 2 mg/kg/day
orally, 4 weeks (A) 10 4 1.1 10 11.5 0.9 10 8 0.95 Stevioside Skeletal

muscles
Diabetes
mellitus

Ramos-
Tovar
et al. [42]

2018 Mexico MDA 100 mg/kg/day
orally, 10 weeks (A) 8 0.17 0.03 8 0.34 0.09 8 0.24 0.11 Aqueous Liver Liver cirrhosis

Ramos-
Tovar
et al. [68]

2018 Mexico MDA 100 mg/kg/day
orally, 1 week (A) 8 0.10 0.03 8 0.31 0.03 8 0.15 0.06 Aqueous Liver Liver cirrhosis

Latha
et al. [70] 2017 India MDA 500 mg/kg/day

orally, 1 week (A) 8 35 2.83 8 160 19.8 8 85 5.66 Hydroalcoholic Liver Acute liver
injury

Latha
et al. [70] 2017 India MDA 250 mg/kg/day

orally, 1 week (A) 8 35 2.83 8 160 19.78 8 115 2.83 Stevioside Liver Acute liver
injury

Moselhy
et al. [66] 2016 Saudi

Arabia MDA 200 mg/kg/day
orally, 2 weeks (A) 10 5.11 0.14 10 10.14 0.37 10 6.94 0.47 Organic Liver Hepatotoxic

Perumal
et al. [67] 2016 India MDA 100 mg/kg/day

orally, 3 weeks (A) 6 0.9 0.22 6 2.33 0.56 6 1.06 0.42 Hydroalcoholic Liver Diabetes
mellitus

Perumal
et al. [67] 2016 India MDA 100 mg/kg/day

orally, 3 weeks (A) 6 0.53 0.220 6 2.07 1.13 6 1.49 0.61 Hydroalcoholic Kidney Diabetes
mellitus

Assaei
et al. [44] 2016 Iran MDA 400 mg/kg/day

orally, 4 weeks (A) 10 0.4 0.13 10 1.4 0.25 10 0.45 0.13 Aqueous Pancreas Diabetes
mellitus

Shivanna
et al. [71] 2012 India MDA NR, 4 weeks (P) 10 0.06 0.01 10 0.16 0.03 10 0.07 0.01 Fraction methanol Liver Diabetes

mellitus

Myint
et al. [73] 2020 China MDA 12 mg/kg/day

orally, 6 weeks (A) 6 7.12 0.11 6 12.63 0.32 6 12.43 0.23 Rebaudioside A Liver Diabetes
mellitus

Myint
et al. [73] 2020 China MDA 10 mg/kg/day

orally, 6 weeks (A) 6 7.12 0.11 6 12.63 0.32 6 11.89 0.23 Stevioside Liver Diabetes
mellitus

Singh
et al. [37] 2013 India MDA 300 mg/kg/day

orally, 3 weeks (A) 7 25 66.14 7 410 66.14 7 10.2 1.32 Organic Liver Diabetes
mellitus
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Table 1. Cont.

Author Year Country Assay
After Treatment
(A) Pre-Treatment
(P) with Stevia

# Con-
trols

Control
Value

Control
SD

#
Cases

Case
Value

Case
SD

#
Stevia

Stevia
Value

Stevia
SD Extract/Compound

Type of
Tissue
Tested

Type of
Disease

Singh
et al. [37] 2013 India MDA 300 mg/kg/day

orally, 3 weeks (A) 7 11.1 2.64 7 75.2 47.62 7 4.8 1.32 Organic Pancreas Diabetes
mellitus

Singh
et al. [37] 2013 India MDA 30 mg/kg/day

orally, 3 weeks (A) 7 50.2 31.75 7 415 165.36 7 11 1.32 Organic Kidney Diabetes
mellitus

El-
Hadary
et al. [60]

2021 Egypt MDA 300 mg/kg/day
orally, 8 weeks (A) 10 5.33 0.2 10 11.9 0.5 10 4.9 0.1 Hydroalcoholic Liver Diabetes

mellitus

Morsi
et al. [65] 2022 Egypt MDA 300 mg/kg/day

orally, 4 weeks (A) 7 50 1.5 7 160 2 7 76 1.5 Glycosides-
sweetener Ovary

Polycystic
ovary
syndrome

Abdallah
et al. [55] 2022 Egypt MDA 500 mg/kg/day

orally, 1 week (A) 7 4.1 0.5 7 10.9 1.75 7 4.8 0.8 Organic Liver Liver disease

Abdallah
et al. [55] 2022 Egypt MDA 250 mg/kg/day

orally, 1 week (A) 7 4.1 0.5 7 10.9 1.75 7 5 1 Stevioside Liver Liver disease

El
Nashar
et al. [41]

2022 Egypt MDA
200 mg/kg/day
orally, 4 weeks (P
and A)

10 50.76 5.58 10 81.79 5.82 10 42.68 14.6 Organic Brain Epilepsy

SOD: superoxide dismutase; CAT: catalase; GPx: glutathione peroxidase; GSH: reduced glutathione; TAC: total antioxidant capacity; MDA: malondialdehyde; A: administration after
disease had been established; P: administration prior to disease establishment; NR: not reported, #: number of.
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3.2. Bioactive Compounds from Stevia Leaf Extracts Exert Significantly Higher Antioxidant
Activity Compared to Stevia Glycosides

To assess the effect of stevia whole leaf extracts or steviol glycosides on diseased
animals, the differences of oxidative stress marker measurements between control and
cases were enrolled in a multivariate meta-analysis for the assays SOD, CAT, GPx, GSH,
TAC, and MDA. If stevia could reverse the effect of the ‘disease’ in case animals, in terms
of oxidative stress markers, then the differences ‘ ‘control–case’ and ‘stevia case’ would be
almost the same; consequently, the difference ‘stevia – control’ in assays’ values would be
very low and perhaps non-significant.

Overall, the meta-analysis results for each separate assay (SOD, CAT, GPx, GSH,
CAT, MDA) showed that differences for the contrasts ‘control–case’ were a bit higher than
the differences ‘stevia–case’ (for the MDA assay absolute values were considered). The
differences ‘stevia–control’ were significantly lower, and importantly, in the GPx assay, this
difference was not even statistically significant (difference −6.03, p-value 0.22) (Table 2),
supporting our previous hypothesis. The above data suggest that stevia administration
can, at least partially, restore the oxidation markers of diseased rat tissues.

Stratification analysis of all of the assays’ measurements according to the admin-
istered leaf extracts or compounds revealed that with stevia glycosides the differences
‘control–case’ were much higher (in absolute values) than the differences ‘stevia–case’ (SOD:
11.04 vs. 2.67, GSH: 7.42 vs. 2.99, and MDA: −10.28 vs. −3.51) suggesting that stevia
glycosides cannot restore antioxidant activity to the extent that whole leaf extracts can
(Table 2 and Figure 3). This is further verified by the fact that ‘stevia–control’ differences
(for SOD, GSH, and MDA assays) were much higher (absolute values) than the ‘stevia–
case’ differences in the ‘glycosides’ datasets (Table 2). In the CAT and GPx assays, all
of the differences were not statistically significant, perhaps due to the limited number
of studies meaning that they could not provide a robust result. Importantly, significant
restoration of antioxidant activity of diseased animals was observed with administration
of whole leaf extracts in studies performed with CAT and GPx assays, as suggested by
the non-statistically significant differences in the ‘stevia–control’ values (p-values 0.08 and
0.70), respectively. Moreover, the fact that significant restoration of antioxidant activity
by stevia leaf extracts was seen with the SOD, GSH, TAC, and MDA assays to 59%, 77%,
111%, and 87%, respectively, further supports our findings that whole stevia leaf extracts
can better restore oxidation markers in experimental animals compared with pure stevia
glycosides, which showed restoration ability ranging from 24% (SOD) to 71% (GPx) (Table 2
and Figure 3).

Moreover, meta-regression analysis for the datasets from the SOD, GSH, TAC, and
MDA assays testing leaf extracts and glycosides was also employed and revealed a sta-
tistically significant dependence of the results on the type of treatment (leaf extract or
glycosides) with a p-value = 0.0023. Taken together, the results above indicate that, in
all assays, treatment with whole leaf extract of stevia exhibited a remarkable restorative
potential as opposed to treatment with isolated glycosides. Consequently, further analyses
were performed with whole leaf extracts.
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Table 2. Results of the multivariate meta-analysis for the assays superoxide dismutase (SOD), catalase activity (CAT), glutathione peroxidase (GPx), reduced
glutathione (GSH), total antioxidant activity (TAC), and malondialdehyde (MDA), and stratification according to leaf extract and glycosides. Listed information
includes differences between groups with the 95% confidence intervals.

SOD CAT GPx GSH TAC SOD CAT

Difference Coef. p-
value

95%
CI

#
Studies Coef. p-

value
95%
CI

#
Studies Coef. p-

value
95%
CI

#
Studies Coef. p-

value
95%
CI

#
Studies Coef. p-

value
95%
CI

#
Studies Coef. p-

value
95%
CI

#
Studies

Overall

control–
case 6.09 0.00 3.99,

8.18 21 6.61 0.00 3.24,
9.99 17 31.70 0.05 −0.16,

63.56 4 7.06 0.00 4.46,
9.67 27 1.25 0.00 0.46,

2.03 2 −6.25 0.00 −7.87,
−4.63 33

stevia–
case 2.73 0.00 1.66,

3.79 21 4.65 0.00 2.02,
7.28 17 25.67 0.03 2.47,

48.88 4 4.92 0.00 2.87,
6.98 27 1.45 0.12 −0.39,

3.27 2 −4.66 0.00 −6.05,
−3.27 33

stevia–
control −3.36 0.00 −5.24,

−1.48 21 1.96 0.01 −3.51,
−0.41 17 −6.03 0.22 a −15.62,

3.56 4 −2.14 0.00 −3.33,
−0.95 27 0.19 0.79 a −1.24,

1.62 2 1.56 0.00 0.72,
2.46 33

Leaf extract

control–
case 4.72 0.00 3.08,

6.37 15 7.66 0.00 3.01,
12.33 13 28.55 0.16 −11.17,

68.28 2 7.67 0.00 3.72,
11.61 20 1.25 0.00 0.46,

2.03 2 −5.49 0.00 −7.15,
0.83 25

stevia–
case 2.77 0.00 1.39,

4.15 15 5.73 0.00 1.97,
9.5 13 26.54 0.08 −2.99,

56.06 2 5.89 0.00 2.79,
8.99 20 1.45 0.12 −0.39,

3.27 2 −4.78 0.00 −6.37,
−3.19 25

stevia–
control −1.95 0.00 −3.18,

−0.72 15 −1.93 0.08 a −4.07,
0.19 13 −2.02 0.70 a −12.30,

8.27 2 −1.77 0.00 −2.92,
−0.62 20 0.19 0.79 a −1.24,

1.62 2 0.71 0.00 0.24,
1.17 25

Glycosides

control–
case 11.04 0.00 3.83,

18.25 6 4.49 0.06 −0.09,
9.08 4 36.52 0.29 −31.09,

104.13 2 7.42 0.00 3.41,
11.43 7 −10.28 0.00 −15.02,

−5.55 8

stevia–
case 2.67 0.00 1.54,

3.81 6 2.43 0.05 0.03,
4.83 4 26.13 0.30 −23.34,

75.60 2 2.99 0.00 1.84,
4.13 7 −3.51 0.00 −4.53,

−2.49 8

stevia–
control −8.36 0.01 −15.34,

−1.39 6 −2.06 0.11 a −4.58,
0.45 4 −10.39 0.26 a −28.55,

7.77 2 −4.43 0.06 a −9.07,
0.21 7 6.77 0.01 1.27,

12.27 8

p-values with a represent non-statistically significant differences between ‘stevia’ and ‘control’ groups; #: number of.
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3.3. Datasets from SOD, CAT, GSH, and TAC Assays Can Be Combined for Meta-Analysis:
Meta-Regression Analysis

We next wondered whether we could synthesize the results of all experiments, despite
the different values each exhibited, in order to perform multivariate meta-analysis on
the combined data from all assays. Towards this, multivariate meta-regression analysis
for leaf extract datasets on the differences ‘control–case’ and ‘stevia–case’ from all assays
was executed and revealed a relationship between the assay method and their outcomes
(p = 0.000), with GPx and MDA results being the assays with statistically significant differ-
ences compared to the rest of them (coefficient = 6.14, p = 0.005; and
coefficient = −10.95, p = 0.000, respectively, and constant = 5.31 for the difference ‘control–
case’). Subsequently, meta-regression analysis of leaf extract datasets on the differences
‘control–case’ and ‘stevia–case’ for the rest of the assays, i.e., SOD, CAT, GSH, and TAC
revealed the absence of any relationship between assay results and the type of assay
(p = 0.184). As a result, datasets on the differences ‘control–case’ and ‘stevia–case’ from the
above four assays can be treated as coming from the same source and can be combined in
consequent meta-analyses.

3.4. Stratification Meta-Analysis for Datasets from Leaf Extracts

Multivariate meta-analysis was then performed with the combined leaf extract datasets
from four assays (SOD, CAT, GSH, and TAC) comprising 50 studies in which rats had
only leaf extracts administered. Analysis showed that in all assays, the ‘stevia–control’
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differences were lower than ‘control–case’ and ‘stevia–case’, and in the CAT and TAC
assays, they were not even statistically significant (Figure 4A and Table 3).

Stratification analysis according to the type of stevia extract revealed that organic
extracts were the most potent in restoring the antioxidant activity in diseased rats ad-
ministered with various types of leaf extracts (Table 3). The difference ‘stevia – control’
was not statistically significant (d = −0.88 with p-value = 0.13) for the combined all four
assays datasets, nor for each assay separately. The same ‘stevia–control’ differences for
aqueous and hydroalcoholic types of extracts, though statistically significant, were still
much lower than the other differences (Figure 4B and Table 3). In addition, stratification by
type of extract within the CAT assay results showed that treatment with aqueous stevia leaf
extracts can also completely restore the CAT oxidative stress marker of diseased animals to
the levels of the control animals as the differences ‘stevia – control’ were not statistically
significant, i.e., for the aqueous (d = −6.76 and p-value = 0.36), for the organic (d = −1.09
and p-value = 0.29), and for the hydroalcoholic extracts (d = −1.09 and p-value = 0.49)
(Table 3). The four studies that investigated the effect of stevia leaf extracts on diseased
rats with the GSH assay showed that only organic stevia leaf extracts restored GSH values
of diseased animals (d = 0.14 and p-value = 0.83). Similarly, no significant difference was
observed for the ‘stevia–control’ contrast in the SOD assay when organic extracts were
administered to diseased rats.

We next stratified our analysis according to the different types of disease that rats had
suffered from (Table 4). The data were grouped into three main categories: liver injury
(acute liver injury, hepatotoxic, liver cirrhosis, liver fibrosis), renal disorder (hyperuricemia,
renal ischemia/reperfusion), and diabetes mellitus. The results of the multivariate meta-
analysis demonstrated full restoration of antioxidant SOD, CAT, and GSH activity of
diseased rats suffering from diabetes mellitus as the differences ‘stevia – control’ were
not statistically significant (SOD: d = −0.14 with p-value = 0.94, CAT: d = −0.14 with
p-value = 0.94, and GSH: d =−1.73 with p-value = 0.06). For diseased rats that suffered from
liver injury or renal disorder, the multivariate meta-analysis results revealed a significant
restoration, though not full, of the oxidative stress markers when they were administered
stevia leaf extracts (Table 4 and Figure 5A).
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Table 3. Results of the multivariate meta-analysis for the assays superoxide dismutase (SOD), catalase activity (CAT), reduced glutathione (GSH), and total
antioxidant capacity (TAC) together and separated according to leaf extract, and stratification according to different types of extract. Listed information includes
differences between groups with the 95% confidence intervals.

SOD, CAT, GSH, TAC SOD CAT GSH TAC

Difference Coef. p-value 95% CI #
Studies Coef. p-value 95% CI #

Studies Coef. p-value 95% CI #
Studies Coef. p-value 95% CI #

Studies Coef. p-value 95% CI #
Studies

Combined leaf extract

control−case 6.13 0.00 4.42,
7.84 50 4.72 0.00 3.08,

6.37 15 7.66 0.00 3.01,
12.33 13 7.67 0.00 3.72,

11.61 20 1.25 0.00 0.46,
2.03 2

stevia–case 4.39 0.00 3.03,
5.74 50 2.77 0.00 1.39,

4.15 15 5.73 0.00 1.97, 9.5 13 5.85 0.00 2.79,
8.99 20 1.48 0.12 −0.39,

3.27 2

stevia—control −1.74 0.00 −2.46,
−1.02 50 −1.95 0.00 −3.18,

−0.72 15 −1.93 0.07 a −4.07,
0.19 13 −1.77 0.00 −2.92,

−0.62 20 0.19 0.79 a −1.24,
1.62 2

Aqueous

control–case 15.66 0.00 3.92,
27.40 9 22.47 0.26 −17.18,

62.12 2 13.53 0.09 −2.03,
29.07 6

stevia–case 10.79 0.01 2.17,
19.40 9 15.70 0.22 −9.34,

40.75 2 9.78 0.11 −2.34,
21.91 6

stevia–control −4.87 0.00 −8.34,
−1.41 9 −6.76 0.36 a −21.39,

7.86 2 −3.74 0.04 −7.30,
−0.17 6

Organic

control–case 2.73 0.00 1.49,
3.98 13 2.45 0.00 1.18,

3.73 5 5.18 0.06 −0.35,
10.71 3 2.08 0.01 0.59,

3.55 4

stevia–case 1.85 0.00 0.77,
2.94 13 0.33 0.65 −1.11,

1.78 5 4.09 0.03 0.29,
7.88 3 2.22 0.00 1.57,

2.87 4

stevia–control −0.88 0.13 a −2.03,
0.27 13 −2.12 0.08 a −4.52,

0.28 5 −1.09 0.29 a −3.15,
0.97 3 0.14 0.83 a −1.16,

1.45 4

Hydroalcoholic

control–case 5.49 0.00 4.20,
6.76 26 4.75 0.00 4.17,

5.33 9 6.58 0.00 3.03,
10.12 7 6.38 0.00 3.35,

9.39 9

stevia–case 4.26 0.00 2.64,
5.87 26 3.44 0.00 2.28,

4.60 9 5.48 0.06 −0.25,
11.21 7 5.29 0.00 1.83,

8.72 9

stevia–control −1.23 0.00 −2.03,
−0.43 26 −1.31 0.03 −2.49,

−0.11 9 −1.09 0.49 a −4.19,
1.99 7 −1.09 0.01 −1.92,

−0.27 9

p-values with a represent non-statistically significant differences between ‘stevia’ and ‘control’ groups; #: number of.
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Table 4. Results of the multivariate meta-analysis for the assays superoxide dismutase (SOD), catalase activity (CAT), reduced glutathione (GSH), and total
antioxidant capacity (TAC) together, and malondialdehyde (MDA) and glutathione peroxidase (GPx) separated according to disease, and stratification according to
different types of disease. Listed information includes differences between groups with the 95% confidence intervals.

SOD, CAT, GSH, TAC SOD CAT GSH TAC

Difference Coef. p-
value 95% CI #

Studies Coef. p-
value 95% CI #

Studies Coef. p-
value 95% CI #

Studies Coef. p-
value 95% CI #

Studies Coef. p-
value 95% CI #

Studies

Overall

control–case 6.13 0.00 4.42,
7.84 50 4.72 0.00 3.08,

6.37 15 7.67 0.00 3.01,
12.33 13 7.67 0.00 3.72,

11.61 20 1.24 0.00 0.46,
2.03 2

stevia–case 4.39 0.00 3.03,
5.74 50 2.77 0.00 1.39,

4.15 15 5.73 0.00 1.97, 9.5 13 5.89 0.00 2.79,
8.99 20 1.44 0.12 −0.39,

3.27 2

stevia–control −1.74 0.00 −2.46,
−1.02 50 −1.95 0.00 −3.18,

−0.72 15 −1.93 0.07 a −4.07,
0.19 13 −1.77 0.00 −2.92,

−0.62 20 0.19 0.79 a −1.24,
1.62 2

Diabetes mellitus

control–case 6.85 0.00 4.92,
8.80 34 3.41 0.00 2.28,

4.54 8 6.35 0.00 2.28,
10.43 6 8.04 0.00 3.70,

12.37 10

stevia–case 3.75 0.00 2.22,
5.29 34 1.67 0.07 −0.16,

3.49 8 6.22 0.07 −0.43,
12.86 6 6.31 0.00 2.69,

9.92 10

stevia–control −3.1 0.00 −4.73,
−1.48 34 −1.74 0.08 a −3.67,

0.19 8 −0.14 0.94 a −3.46,
3.19 6 −1.73 0.06 a −3.51,

0.05 10

Liver injury

control–case 3.65 0.00 2.76,
4.55 17 3.31 0.00 1.25,

5.37 2 5.49 0.04 0.35,
10.63 3 2.77 0.00 2.02,

3.52 5

stevia–case 2.74 0.00 1.98,
3.49 17 2.13 0.04 0.08,

4.17 2 3.82 0.08 −0.44,
8.09 3 2.14 0.00 1.48,

2.79 5

stevia–control −0.92 0.00 −1.3,
−0.54 17 −1.18 0.00 −1.88,

−0.48 2 −1.67 0.00 −2.72,
−0.62 3 −0.63 0.01 −1.09,

−0.17 5

Renal disorder

control–case 5.73 0.00 4.43,
7.03 10 5.53 0.00 4.05,

7.02 4 6.96 0.00 5.31,
8.61 2 5.65 0.00 2.52,

8.77 4

stevia–case 3.80 0.00 2.63,
4.96 10 3.97 0.00 2.21,

5.73 4 3.15 0.01 0.69,
5.61 2 4.06 0.00 1.72,

6.39 4

stevia–control −1.93 0.00 −2.66,
−1.19 10 −1.56 0.00 −2.43,

−0.70 4 −3.82 0.02 −7.07,
−0.55 2 −1.59 0.00 −2.51,

−0.66 4

p-values with a represent non-statistically significant differences between ‘stevia’ and ‘control’ groups; #: number of.
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Table 5. Results of the multivariate meta-analysis for the assays superoxide dismutase (SOD), catalase activity (CAT), reduced glutathione (GSH), malondialdehyde
(MDA), and total antioxidant capacity (TAC)) together and separated, malondialdehyde (MDA) and glutathione peroxidase (GPx), and stratification according to
different types of tissues. Listed information includes differences between groups with the 95% confidence intervals.

SOD, CAT, GSH, TAC SOD CAT GSH TAC

Difference Coef p-value 95% CI #
Studies Coef p-value 95% CI #

Studies Coef. p-value 95% CI #
Studies Coef. p-value 95% CI #

Studies Coef. p-
value 95% CI #

Studies

Overall

control–case 6.13 0.00 4.42,
7.84 50 4.72 0.00 3.08,

6.37 15 7.67 0.00 3.01,
12.33 13 7.67 0.00 3.72,

11.61 20 1.24 0.00 0.46,
2.03 2

stevia–case 4.39 0.00 3.03,
5.74 50 2.77 0.00 1.39,

4.15 15 5.73 0.00 1.97, 9.5 13 5.89 0.00 2.79,
8.99 20 1.44 0.12 −0.39,

3.27 2

stevia–control −1.74 0.00 −2.46,
−1.02 50 −1.95 0.00 −3.18,

−0.72 15 −1.93 0.07 a −4.07,
0.19 13 −1.77 0.00 −2.92,

−0.62 20 0.19 0.79 a −1.24,
1.62 2

Liver

control–case −5.34 0.00 3.73,
6.95 31 2.93 0.00 1.59,

4.28 6 4.73 0.00 1.85,
7.61 5 4.56 0.00 2.04,

7.07 9

stevia–case 2.90 0.00 2.12,
3.67 31 2.62 0.00 0.79,

4.45 6 3.04 0.01 0.61,
5.47 5 3.49 0.01 0.97,

6.00 9

stevia–control −2.45 0.00 −3.99,
−0.9 31 −0.32 0.67 a −1.79,

1.16 6 −1.69 0.00 −2.34,
−1.04 5 −1.07 0.04 −2.09,

−0.05 9

Kidney

control–case 5.38 0.00 2.96,
7.79 8 3.85 0.00 2.13,

5.57 2 4.85 0.01 1.36,
8.34 2 6.72 0.01 1.84,

11.60 4

stevia–case 2.78 0.01 0.58,
4.99 8 −0.12 0.94 −3.28,

3.05 2 2.44 0.20 −1.33,
6.21 2 4.53 0.01 1.00,

8.05 4

stevia–control −2.60 0.00 −3.46,
−1.73 8 −3.96 0.00 −6.12,

−1.81 2 −2.41 0.00 −3.35,
−1.48 2 −2.19 0.00 −3.67,

−0.71 4

Intestine (duodenum–Jejunum–ileum)

control–case 4.96 0.00 3.36,
6.56 6 4.28 0.00 1.96,

6.61 3

stevia–case 3.44 0.00 1.96,
4.91 6 3.08 0.00 1.18,

4.98 3

stevia–control −1.52 0.00 −2.00,
−1.05 6 −1.20 0.00 −1.92,

−0.48 3

p-values with a represent non-significant differences between ‘stevia’ and ‘control’ groups; #: number.



Nutrients 2023, 15, 3325 25 of 32

We next wondered whether specific rat tissues or cell types could have been affected
differently from stevia leaf extract administration to the experimental animal. Thus, we
stratified our analysis on the combined (only leaf extract) datasets from the four assays
(SOD, CAT, GSH, and TAC) according to different types of animal tissue (Table 5). The
results revealed that complete restoration of the antioxidant enzyme SOD’s activity was
seen in liver samples, since d = −0.32 with p-value = 0.67. However, it should be noted that
in all types of tissues, the values of the differences ‘stevia – control’ suggested a significant
restoration of the oxidative stress markers of the diseased animals when receiving stevia
leaf extracts (Table 5 and Figure 5B). Taken together, the above results support that stevia
leaf extracts do exert antioxidant activity on diseased animals and especially to those that
suffer from diabetes mellitus.

3.5. Meta-Analysis of Lipid Peroxidation (MDA) Assay Datasets

MDA is a lipid peroxidation product, and thus, the MDA assay is used as a marker
for oxidative stress, the more the oxidative stress, the higher the MDA assay values. Thus,
control experimental animal tissues show low MDA levels while diseased animals present
higher MDA levels. Due to this particularity and because of the different biochemical
principle that this assay is based on, MDA estimates could not be directly compared to the
previously analyzed oxidation markers, and MDA results could not be analyzed together
with the rest.

It is important to note here that whole leaf extracts reverted the oxidation status
of diseased experimental animals while pure glycosides did not, as shown in Table 2
(difference ‘stevia–control’ leaf extract: 0.71, p-value 0.00; glycosides: 6.77, p-value 0.01).
Consequently, a meta-analysis for stevia leaf extract datasets from 25 studies performed
with the MDA assay showed significant restoration of the oxidation status of diseased
rats when administered stevia leaf extracts of 87.07% (from −5.49 (p = 0.00) to −4.78
(p = 0.00)) (Table 6). It is worth noting that although the ‘stevia–control’ difference is
statistically significant, the values of the differences between the ‘control’ and ‘case’ groups
and the ‘control’ and ‘stevia’ groups decreased significantly.

Next, we stratified the multivariate meta-analysis of the MDA assay datasets according
to type of stevia leaf extract, tissue, and disease and revealed that the restoration of the
MDA content of samples of more than 70% was seen under every tested parameter. In
particular, diseased rats administered organic extracts showed that the difference ‘stevia–
control’ was not statistically significant (d = 0.62, p-value = 0.48), connotating a complete
oxidative status restoration. This finding is in accordance with results from other assays
(SOD, CAT, GSH, TAC) verifying that organic extracts possess high antioxidant potency.

Stratification of the meta-analysis according to the disease type (Table 6) highlighted
that in diabetes, the low MDA levels of diseased animals are completely restored after leaf
extract administration (‘stevia–control’ −0.41, p = 0.12). This observation supports our
previous finding, that with all tested assays (SOD, CAT, GSH) whole stevia leaf extract
administration completely restores all antioxidant markers levels, especially in diabetic
experimental animals (Table 4).

Importantly, the ‘stevia–control’ differences were all found to not be statistically signif-
icant for all tissues tested, apart from liver (kidney: d = 0.68 (p-value = 0.13), duodenum–
jejunum–ileum: d = 0.35 (p-value = 0.23), pancreas: d = 0.02 (p-value = 0.95)). Measurements
in liver tissue showed a marginally statistically significant difference between the control
and stevia groups (p = 0.04); however, restoration of the MDA measurements was up to
85% for the leaf-extract-treated diseased animals.

Taken together the above data show that even if complete restoration of antioxidant
markers was not statistically significantly accomplished in diseased rats that were adminis-
tered stevia, partial restoration did occur. As shown in Figure 3 this restoration rises from
65% to 85% for all antioxidant markers, reinforcing the notion that stevia leaf extracts do
possess significant antioxidant activity when administered orally.
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Table 6. Results of the multivariate meta-analysis for the assay of malondialdehyde (MDA) and
stratification according to different types of extract, disease, and tissue. Listed information includes
differences between groups with the 95% confidence intervals.

Difference Coef. p-Value 95% CI # of Studies

Leaf Extract control–case −5.49 0.00 −7.15, 0.83 25

stevia–case −4.78 0.00 −6.37, −3.19 25

stevia–control 0.71 0.00 0.24, 1.17 25

Aqueous control–case −3.85 0.00 −5.57, −2.14 8

stevia–case −3.3 0.00 −4.94, −1.65 8

stevia–control 0.56 0.01 0.15, 0.96 8

Organic control–case −5.68 0.00 −8.97, −2.39 6

stevia–case −5.06 0.00 −6.82, −3.30 6

stevia–control 0.62 0.48 a −1.10, 2.34 6

Hydroalcoholic control–case −8.33 0.00 −14.08, −2.59 6

stevia–case −7.35 0.01 −13.01, −1.69 6

stevia–control 0.98 0.01 0.25, 1.71 6

Diabetes melittus control–case −7.33 0.00 −12.25, 2.42 13

stevia–case −6.93 0.00 −11.73, −2.12 13

stevia–control 0.41 0.12 a −0.10, 0.92 13

Liver injury control–case −6.33 0.00 −10.04, −2.61 6

stevia–case −4.37 0.00 −6.61, −2.13 6

stevia–control 1.95 0.02 0.35, 3.55 6

Renal disorder control–case −4.53 0.00 −5.77, −3.29 5

stevia–case −3.82 0.00 −5.11, −2.53 5

stevia–control 0.71 0.01 0.17, 1.25 5

Blood control–case −1.81 0.15 −4.30, 0.67 2

stevia–case −1.32 0.19 −3.29, 0.64 2

stevia–control 0.49 0.26 a −0.36, 1.35 2

Liver control–case −6.96 0.00 −9.72, −4.19 11

stevia–case −5.91 0.00 −8.66, −3.16 11

stevia–control 1.05 0.04 0.04, 2.05 11

Kidney control–case −3.13 0.00 −4.59, −1.66 4

stevia–case −2.45 0.00 −3.91, −0.99 4

stevia–control 0.68 0.13 a −0.21, 1.57 4

Intestine
(duodenum–jejunum–ileum) control–case −4.99 0.00 −7.00, −2.98 3

stevia–case −4.64 0.00 −6.54, −2.74 3

stevia–control 0.35 0.23 a −0.23, 0.93 3

Pancreas control–case −3.91 0.02 −7.11, −0.71 2

stevia–case −3.89 0.01 −6.64, −1.13 2

stevia–control 0.02 0.95 a −0.81, 0.85 2

p-values with a represent non-statistically significant differences in MDA assay results; #: number of.

4. Discussion

Recent research towards sustainable solutions for global health is guided from the
need to produce natural products with efficient health promoting properties that present a
low incidence of side effects. Stevia is an aromatic plant known as a no-calories sweetener.
By the identification of many bioactive compounds contained in its leaf extracts, stevia
has emerged as a health beneficial aromatic herbal, characterizing it as high-added-value
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plant within the agrifood sector [69,74,75]. The antioxidant potency of stevia is currently
being extensively studied with a variety of approaches (direct or indirect) entailing various
(bio)chemical principles and cascades, using in vitro and in vivo systems. The present
meta-analysis is the first effort to quantitatively synthesize all of the published evidence
and assess the antioxidant effect of stevia phytoconstituents when administered to experi-
mentally diseased animals.

Our findings indicate a statistically significant antioxidant restorative effect of oxida-
tive status markers of experimentally diseased animals after they have been administered
stevia leaf extracts. By combining data from 24 articles comprising 104 individual studies,
we show this restorative activity is mainly exerted by stevia whole leaf extracts and to a
minor extent by pure glycosides. Our findings are based on datasets coming from six differ-
ent methods (SOD, CAT, GPx, GSH, TAC, and MDA) measuring either antioxidant enzyme
activities (SOD, CAT, GPx) or products linked to the activities of antioxidant enzymes, or
even oxidation products such as MDA, which measures the lipid peroxidation status of
a cell. A stratification analysis of the stevia whole leaf extract datasets revealed a robust
antioxidant effect of organic extracts of stevia leaves. Moreover, diabetes mellitus emerged
as the disease with the highest restorative response to stevia leaf extract administration.
Concerning the tissues on which the oxidative markers were tested, all showed significant
restoration, from 65% to 85%, regardless of the type of assay employed.

The challenge that we faced in the present study was not only to summarize the
evidence and draw conclusions for a positive relationship between stevia consumption and
antioxidant activity, but to synthesize measurements coming from three different situations
from six different assays on tissues from experimental rats.

Firstly, since we had to compare values from more than two animal groups (control,
diseased, and stevia-treated) we employed multivariate meta-analysis [46,48,49]. This
approach enabled us to perform multiple comparisons avoiding the need for the usual ad-
justments in order to avoid type I errors. Moreover, employing multivariate meta-analysis
allowed us to obtain the estimated covariant matrix from which we could estimate the
confidence intervals of the differences we measured and utilize the statistical significance
of the differences [49,76].

The second challenge we faced was whether we could combine datasets from some
or all assays in order to obtain results with more power. For this, multivariate meta-
regression analysis was recruited to control for potential effect modifiers or any association
between group differences and various assays [77,78]. The assay results were significantly
dependent on the MDA assay (as expected), and on the GPx method as well. Interestingly,
no dependence on the method was seen when meta-regression was employed with datasets
from the SOD, CAT, GSH, and TAC assays. Given that the SOD, CAT, GPX, and GSH
assays measure antioxidant enzyme activities and all act in the same pathway, i.e., one with
being downstream from another, one would expect that their datasets could be combined.
Employing multivariate meta-regression, we proved this assumption as correct; however,
given the available data, only the SOD, CAT, and GSH assay datasets could be combined.
In addition, we proved that the TAC assay datasets could also be pooled to obtain more
robust estimates. Collectively, multivariate meta-regression meta-analysis enabled us to
pool data from different sources, thus increasing the power of our analysis, a result that
would not be possible to obtain under a unified/univariate meta-analysis [49].

Our initial hypothesis, that both stevia leaf extracts and pure stevia glycosides could
possess antioxidant activity, though to different extents, appears to have a biological
basis. Polyphenolic compounds from a plethora of plant resources have repeatedly been
shown to display antioxidant potential [79–81] in direct assays [20,82] and exert effective
antioxidant activity in vivo, including cell lines [20], experimental animals [83], or even
humans [84]. Our findings suggest that stevia glycosides do possess a limited antioxidant
activity. Glycosides are complex molecules, constituting a sugar molecule (glycone) bound
to another functional group (aglycone), found in many living organisms. Although sugars
have never been reported to convey any antioxidant activity, other functional groups may
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possess various functions. The aglycone in stevia glycosides is the diterpene steviol that is
the major metabolite produced in the lower gastrointestinal tract of mammals [3]. Thus,
the limited antioxidant activity seen with stevia glycosides could be attributed to the
diterpene steviol. This is in accordance with previous findings showing that a combination
of stevia glycosides could increase the SOD and CAT activities of rat cardiac fibroblasts
when exposed to hydrogen peroxide [85]. The antioxidant properties of stevia glycosides
were also observed with direct assays on food and fruit beverages [86,87]. Moreover, steviol
glycosides were found to restore oxidative stress status in fish [88].

We acknowledge that the present meta-analysis possibly has some limitations that
could have affected the integrity of our results. The studies recruited in the present meta-
analysis covered a diverse range of stevia extracts or pure glycoside dosages and time
settings. The variability in the interventions concerning the time that the intervention
started (before or after the animals were diseased) and the time that intervention started
after the induction of disease, together with limited information given in each study, made
it impossible to stratify according to dosage. A meta-regression analysis to estimate the
association of antioxidant markers with extract preparation, dosage, or time of intervention
would be of high value; yet, such data were not available from all studies to perform the
corresponding tests. However, our analysis could account for the type of extracts given as
intervention, the type of tissue, and the disease by stratifying our analysis accordingly. We
could not account for intrinsic differences within studies that constitute confounding factors
that can potentially influence the quality of the parameters assessed. For example, sample
handling (time and temperature of sample storage before being assayed, homogenization
protocols) or the different genetic backgrounds of rats used could have affected the assays’
outcomes, and consequently, partially, the results of the present meta-analysis. Nonetheless,
we performed the meta-analysis carefully, taking all these considerations into account.
Finally, despite our systematic approach and effort to include all existing studies, gray
literature bias cannot be completely ruled out.

Increased stevia consumption has emerged from global awareness of (a) the risks of
sugar-related diseases (obesity, diabetes); (b) the fact that synthetic sweeteners may lead to
long-term health problems; and (c) that stevia, being a natural product, has, most probably,
no long-term side effects. The bottleneck in the industrial use of stevia is the cost related
to steviol glycoside extraction and purification. Sustainability issues have also emerged
concerning stevia’s waste disposal [89]. The present meta-analysis is the first effort to
quantitatively estimate the effect of stevia leaf extract consumption, in addition to steviol
glycosides, highlighting an additional—yet unexploited—health promoting property that
can give stevia (and perhaps stevia waste) a second chance to rescue human health and
global sustainability. Only if uniform settings are used can we obtain accurate comparisons
of types of stevia extracts, dosage, and time interventions, and more in vivo experiments
can be performed in order to obtain accurate insights into, to what extent can human health
benefit from stevia consumption.
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