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Abstract: This study presents an optimal weighting approach for combined image matching of
high-resolution satellite stereo images (HRSI). When the rational polynomial coefficients (RPCs) for a
pair of stereo images are available, some geometric constraints can be combined in image matching
equations. Combining least squares image matching (LSM) equations with geometric constraints
equations necessitates determining the appropriate weights for different types of observations.
The common terms between the two sets of equations are the image coordinates of the corresponding
points in the search image. Considering the fact that the RPCs of a stereo pair are produced in
compliance with the coplanarity condition, geometric constraints are expected to play an important
role in the image matching process. In this study, in order to control the impacts of the imposed
constraint, optimal weights for observations were assigned through equalizing their average
redundancy numbers. For a detailed assessment of the proposed approach, a pair of CARTOSAT-1
sub-images, along with their precise RPCs, were used. On top of obtaining different matching results,
the dimension of the error ellipses of the intersection points in the object space were compared. It
was shown through analysis that the geometric mean of the semi-minor and semi-major axis by our
method was reduced 0.17 times relative to the unit weighting approach.

Keywords: constrained image matching; HRSI; weight design; RPC model

1. Introduction

Satellite image matching is an essential stage in the production of photogrammetric products,
such as various large scale maps and digital surface models (DSMs). Image matching is defined as
finding correspondences between two or more images in which, after determination of primitives,
a similarity criteria evaluated between those and the corresponding features is detected.

There are different categorizations for image matching techniques. Some techniques are designed
specifically for stereo images and some for multiple view images [1]. Methods of stereo image matching
are divided into two groups, namely, global and local methods [2]. The local or window-based
methods work on local windows in each point of the stereo images, while the global methods generate
a depth map from entire images through defining and optimizing an energy function [1]. The global
methods demonstrate better performance in comparison with local methods in dense matching, but
their computational complexity is higher [3]. Moreover, the semi-global methods have reduced
computational complexity through the introduction of some simplifications in optimization algorithms
of the global methods, such as semi-global matching (SGM) [4], tSGM [3], and SGM-Nets [5].

Local methods are divided into area-based matching (ABM) and feature-based matching (FBM).
In ABM methods, for a specific point in the first image, only by relying on the grey level pattern in
a neighborhood around this point, the search is performed to find the same pattern in the second

Remote Sens. 2017, 9, 965; doi:10.3390/rs9090965 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5685-2929
https://orcid.org/0000-0002-8014-624X
http://dx.doi.org/10.3390/rs9090965
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 965 2 of 20

image. Cross-correlation and least-squares matching (LSM) are the most commonly used ABM
techniques. FBM methods perform image matching based on the extraction of features from two images.
Then a correspondence is established between the extracted features regarding their similar attributes.
Scale-Invariant Feature Transform (SIFT) [6], and Speeded-up Robust Features (SURF) [7] techniques
are among the known examples of the FBM method [8]. Additionally, wavelet-based methods help
to detect features in the scale space [9,10]. The precision of the FBM methods are limited, similar to
the global methods. Therefore, the results of these methods are often used as seed points for precise
matching methods [11]. In addition, the final density of the matching results depends entirely on the
success of the feature extraction step.

In this paper, the focus is on the definition of an image matching method for satellite stereo
images with high precision and reliability which is capable of generating dense matching results.
The least squares matching as an ABM method has the potential to achieve high precision [8,12],
and its mathematical model allows evaluation of the quality of the results. However, it requires
seed points within a small pull-in range and it may converge to a wrong point in regions with
poor texture, even with appropriate seed point [1]. The latter properties reduce the reliability of the
matching technique. Adding geometric constraints could potentially help refine to achieve more
reliable matching results [13]. An advantageous characteristic of the LSM technique is its flexibility
in incorporating geometric constraint equations into matching equations In this regard, the LSM can
be combined with the geometric constraint [14,15], or separately, used to improve the precision of
provided seed points [16].

The epipolar geometry constraint is one of these constraints that can be defined using orientation
information (in the form of rigorous or rational polynomial camera (RPC) model) of satellite stereo
imagery. The well-known epipolar line pairs of stereo images acquired by frame cameras, can be
locally assumed for matching of satellite linear array stereo images [16]. Even though the epipolar
geometry in linear array images is not defined as a straight line [17], the approximate epipolar lines
can be defined using the Shuttle Radar Topography Mission (SRTM) elevation model and the RPC
model [18]. The epipolar constraint is capable of increasing the convergence radius and rate of the
matching [12], reducing the number of false matches [19], and significantly reducing the dimensions
of the search space [20].

Here, in the image matching algorithm, the RPC models are used to provide the seed points in
the coarse matching step and to restrict the search space in the form of a geometric constraint. As a
result, the reliability of the matching is increased by employing the known orientation parameters
of the stereo images. Additionally, a new weighting approach is proposed in this study in order to
combine the RPC intersection of corresponding rays as the geometric constraint to the LSM method.
The primary prerequisite of this combination is the assignment of the appropriate weight for different
types of observations. It is expected that better results could be achieved if observations from different
types have equal accuracy and reliability. Improving the definition of the weight matrices could create
these better results. In this context, an optimal weighting technique for the second-order design (SoD)
of geodetic networks [21] has been proposed. Since, different types of observation are involved in the
SoD stage (angles and distances), they have proposed assigning a weight to observations in a way that
the same average redundancy numbers are obtained for all types of observations.

In this manuscript, with the aim of increasing the reliability of satellite image matching, we
decided to utilize this technique for combining geometric constraint equations and least-squares image
matching equations. This means that the point coordinates (geometric nature) observations of the
geometric constraint were combined with the grey level (radiometric nature) observations of LSM in
an optimal manner. In comparison with the unit weighting, the proposed method can significantly
improve the precision of the space intersection of the corresponding rays. Additionally, this method,
as a purely statistical technique, was compared with a conventional weighting method that uses the
radiometric content of images.
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2. Geometrically-Constrained LSM

As stated in the introduction section, the main problem facing this study is finding an accurate
corresponding point on the second image given a fixed point on the first image. In most precise
satellite image matching methods the LSM technique is used. An image matching method, guided by
the object space, is used to reduce the inherent ambiguity in this problem. The LSM technique has the
ability to combine with a large variety of geometric constraints. Some of these constraints must first be
linearized and organized in the least squares framework and then added to the LSM equations. Here,
relying on the known sensor orientation parameters, the space intersection equations are used as a
geometric constraint. The framework of constrained image matching strategy is illustrated in Figure 1.

The space intersection of corresponding rays is written based on the stereo viewing geometry.
Here, the point in the first image and the initial position of the point in the second image are known.
Each point presents two observations in which their weight should be assigned in a way to achieve
appropriate redundancy numbers relative to the average redundancy number of the LSM observations.
A higher weight leads to a smaller redundancy number, which means reduced reliability and freedom
of the observation, and vice versa.
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2.1. Least Squares Image Matching (LSM)

The LSM equation, based on an affine geometric transformation and a linear (drift and offset)
radiometric transformation, was formed as follows:

f (x, y)− τ(x, y) = T1
(

g
(
x′, y′

))
, (1)

where f is the grey value of the template window which is formed centered on the point in the
first image, g is the grey value of the search window which is formed centered on the seed point
in the second image, τ is the true error function, (x, y) are the pixel coordinates of the point in the
template window, and (x′, y′) are the pixel coordinates of corresponding point in the search window.
Additionally, T1 is the radiometric transformation, and T2 and T3 are 2D affine transformations
as follows:

T1
(

g
(

x′, y′
))

= r1 + r2.g
(
x′, y′

)
, (2)

x′ = T2(x, y) = a1 + a2x + a3y, y′ = T3(x, y) = b1 + b2x + b3y (3)

where ai and bi are affine transformation parameters, r1 and r2 are the parameters of the linear
radiometric transformation. Substituting T1(g(x′, y′)) from Equation (2) and x′, y′ from Equation (3)
within Equation (1), the following equation yields:

f (x, y)− τ(x, y) = r1 + r2.g(a1 + a2x + a3y, b1 + b2x + b3y) (4)
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By expanding Equation (4), the grey level matching equations written for each pixel pair in
two homologous windows are given by:

f (x1, y1)− g0(x1, y1)

f (x2, y2)− g0(x2, y2)
...
...

f (xn, yn)− g0(xn, yn)



=



gx1 gx1 x1 gx1 y1 gy1 gy1 x1 gy1 y1 1 g0(x1, y1)

gx2 gx2 x2 gx2 y2 gy2 gy2 x2 gy2 y2 1 g0(x2, y2)
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
gxn gxn xn gxn yn gyn gyn xn gyn yn 1 g0(xn, yn)





da1

da2

da3

db1

db2

db3

dr1

dr2



(5)

where gxi and gyi are the grey level derivatives of the i-th pixel in two directions, and g0 is the grey
value of the search window in each iteration, which must be interpolated from the search image.
By adding three zero columns to the end of the design matrix in Equation (5), we reach the following
expression which readily combines the constraint equations:

lM + εM = AMx (6)

where lM are the grey level differences between pixels of the two image windows, εM is the residual
vector, and AM is the design matrix of LSM with the added zero columns. The vector of unknown
parameters of the combined system can be written as:

x = [da1, da2, da3, db1, db2, db3, dr1, dr2, dϕ, dλ, dh]t (7)

where (dϕ, dλ, dh) are the differentials of geodetic coordinates of points that are added to the LSM
unknown vector from the geometric constraint (Section 2.2). As can be seen from vector x, the geodetic
coordinates of the intersection point, along with resulted error ellipsoid of each point, could be
estimated during the matching process. The geodetic systems, especially WGS84 (World Geodetic
System 1984), establish a geocentric terrestrial reference system. In this system, each point on the
Earth’s surface is defined using geodetic latitude ϕ, geodetic longitude λ, and ellipsoid height h [22].

In general, Equation (6), without adding any constraint equations, can be used only to improve
the precision of the initial corresponding (seed) points, provided that the coarse matching step was
performed with high reliability, e.g., using manual matching [23].

2.2. Geometric Constraint Based on the RPC Space Intersection

Space intersection equations for satellite stereo images are generally formed based on the RPC
model. The forward rational functions are as follows [24,25]:

Ln
i =

Pi1(ϕn, λn, hn)

Pi2(ϕn, λn, hn)
, Sn

i =
Pi3(ϕn, λn, hn)

Pi4(ϕn, λn, hn)
(8)

where
(

Ln
i , Sn

i
)

are the normalized line and sample coordinates of a point in the i-th image, (ρn, λn, hn)

are the normalized geodetic coordinates of the point in ground space, and P1–P4 are the third-order
polynomials related to the ith image. The coefficients of these polynomials are calculated by the image
provider and are included in the RPC files of stereo images.
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Each corresponding points extracted from stereo images are related to a specific point in the
ground space. The coordinates of the ground point are the common parameters between these
equations. Thus, the space intersection consists of four equations where, somehow, the two relations
of Equation (8) are written for each of these corresponding points, individually. The equations of the
RPC space intersection are written based on the following expressions:

Li = FLi (ϕ, λ, h) = Ln
i .Lsci + Lo fi

Si = FSi (ϕ, λ, h) = Sn
i .Ssci + So fi

(9)

where FLi and FSi are the rational polynomial functions defined in Equation (8), Lsci and Ssci denote the
scale values for the two image point coordinates, and Lo fi

and So fi
are the offset values for the image

point coordinates. Similarly, the normalization values (scale and offset) for the geodetic coordinates of
the ground point will be used in the linearized model in Equation (10). These normalization values are
provided in the RPC files of stereo images.

The linearized model of space intersection equations for two corresponding rays can be written in
the matrix form as:


FL1 − L1

FS1 − S1

FL2 − L2

FS2 − S2

 =



0 0 − ∂FL1
∂ϕ − ∂FL1

∂λ − ∂FL1
∂h

0 0 − ∂FS1
∂ϕ − ∂FS1

∂λ − ∂FS1
∂h

1 0 − ∂FL2
∂ϕ − ∂FL2

∂λ − ∂FL2
∂h

0 1 − ∂FS2
∂ϕ − ∂FS2

∂λ − ∂FS2
∂h




dL2

dS2

dϕ

dλ

dh

 (10)

where (L1, S1) are the center pixel coordinates of the template window in the first image, and (L2, S2)

are the center pixel coordinates of the moving search window in the second image. It should be
noted that all coordinates in Equation (10) are denormalized. The relationship between the vector
of unknown parameters and observations in the geometric constraint, according to Equation (10),
can be established:

lG + εG = AGx (11)

where lG is the observation equations of geometric constraint, εG is the residual vector, and AG is the
design matrix of geometric constraint with added zero columns.

2.3. Combined System of Constrained Matching Equations

While LSM uses all the pixels in the template window, the geometric constraint is only written for
a point of this template window and is usually the center point. Therefore, selecting the appropriate
image coordinate system for combining the equations is important. The rational functions for each
known object point can provide the coordinate values of the point in the pixel coordinate system,
which is defined for the image. On the other hand, LSM equations are defined for each matching point
in a way that its origin coincides at the matching point position in the search window. These two
coordinate systems only differ in the location of the origin of the two systems (Figure 2).

The translation parameters of the corresponding point in the search image are the common terms
between the LSM and the geometric constraint equations. These parameters are independent of the
origin of the coordinate system:

dx = dL2, dy = dS2 (12)

According to Equations (5) and (10), and also common unknown parameters between the LSM
equations and the geometric constraint equations, are as follows:

da1 = dL2, db1 = dS2 (13)
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Each observation set with its assigned weight matrix should be joined into the equation system.
The unknown parameters of the equation system are estimated based on the least-squares method:

x̂ =
(

At
MWM AM + At

GWG AG
)−1(At

MWMlM + At
GWGlG

)
, (14)

where WM and WG are the weight matrices of LSM and geometric constraint observation equations,
respectively. These two sets of equations have different types of observations and, as a result,
the definition of the weight matrices is a critical step.
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Figure 2. Relationship between two parallel coordinate systems in the combined system. The LS
pixel coordinate system is a 2D Cartesian system and its origin coincides with the top-left corner of
the original (satellite) image. The L- and S-axis are taken along the image rows and image columns,
respectively. The xy pixel coordinate system is a 2D Cartesian system and its origin coincides with
the center of the image window. Each image window has its own coordinate system which is used in
forming the LSM equations.

2.3.1. Proposed Weighting Method

Assigning the appropriate weights should lead to achieving the following goals: the point in the
first image must be kept fixed during the matching iterations; the corresponding point must have
sufficient freedom to satisfy geometric constraints; and the precision of estimated unknown parameters
should be improved.

Application of the Redundancy Matrix

One way of determining the effectiveness of different types of observations in the final results
is to compare the redundancy numbers of these observations in the redundancy (reliability) matrix.
The redundancy matrix relates the observations vector to the estimated residual vector, which is
expressed using the following equation:

ε̂ = l− Ax̂ = (I −
(

ATWA
)−1

ATW)l = Rl, (15)

The geometric interpretation of this matrix in the least-squares approximation is given in Figure 3.
The least squares estimation x̂ projects the observation vector l onto the subspace M which is spanned
by the columns of the matrix A [26]. In this way, the redundancy matrix R, is a projection matrix which
projects the observations vector to the orthogonal complement of the subspace M.

The rmn elements of the redundancy matrix indicate the effectiveness of the observation m to
the estimated residual value of observation n. All elements of this matrix are between zero and one.
Redundancy numbers are the diagonal elements rnn of the redundancy matrix which can be used as a
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reliability measure so that large values of them (close to one) provide the possibility to discover the
gross errors [27].
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Weight Design Using the Redundancy Matrix

In the proposed approach, the weight of the constraint observations was considered to be relatively
small, since the constraints can only be applied to one pixel, while all of the pixels in the image window
were involved in the least squares matching equations.

Assuming unit weights for LSM observations, the weights of constraint observations are assigned
as follows:

• Weight of S2: By assigning a unit weight, the redundancy number of this observation is about
half of the average redundancy number of the LSM observations (see Section 3.4). Thus, we must
provide more freedom for this observation in order to direct the LSM window toward a more
precise position. Therefore, a small weight should be assigned for this component (relative to the
unit weights of the LSM observations).

• Weight of L2: The initial value of this component is captured from the coarse matching step. At this
step, the elevation model of the study area as well as the RPCs of the image pair have been utilized,
which minimize the along-track error [28]. Thus, the initial value of this component is very close
to the desired final value and therefore, its weight should be large enough relative to the weight
of S2. This condition is met automatically by maintaining the unit weight of this component.

• Weight of L1 and S1: Owing to the presence of εG in Equation (11), the estimated values of L1, S1

would be different from their initial values but it contradicts main goals of this research where
the point in the first image assumed fixed during the image matching procedure. The common
approach to deal with this issue is raising weight of the observations. However, after updating
the weight of the S2 observation, the obtained redundancy numbers for these two observations
were reduced to approximately zero. Thus, similar to what was considered for the L2 component,
there was no need for an additional scale factor to fix the position of the point in the first image.

According to the above discussion and taking inspiration from the work of [21], we decided to
divide the observations into two groups. One of the constraint equations formed a single-member
group and the other three constraint equations, along with the LSM equations (1225 equations assuming
a 35 × 35 window), formed another group. The member of the single-member group is a point
coordinate, and most of the members of the other group are grey levels. In other words, these two
groups have different type of observations.

We tried to equalize the redundancy numbers of these two groups, which led to higher freedom
for S2. By analyzing the diagonal values of the redundancy matrix, an additive scaling factor for the
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single-member group was calculated. In this manner, the weight of each group of observations was
assigned properly for achieving better matching results.

Thus, the matrix form of the equations in Equations (6) and (11) should be rewritten as follows:

l̃1 + ε̃1 = B1x,
l̃2 + ε̃2 = B2x,

(16)

where the indices denote the group number, l̃1 includes l1 and the first three elements of the l2 vector, l̃2

is a single-element vector, B1, B2 are the new design matrices, and ε̃1, ε̃2 denote the new residual vectors
after grouping. The proposed weighting approach was formulated on the basis of two general criteria:

1. The average redundancy number of two groups of observations must be equalized
(uniform redundancy).

2. For higher reliability, the average redundancy number of each group should be as close as possible
to one (high redundancy).

In order to satisfy simultaneously both criteria, the average redundancy number of the two groups
must be equal to the fixed value of the average redundancy number of all observations:

ri = r (17)

where i = 1, 2 is the index of groups, ri = tr(Ri)/ni, r = tr(R)/n and n denotes the number of
observations. In this situation, each group will have the largest number of its redundancy number and,
at the same time, the uniformity of the redundancy numbers will be maintained. Combining these
equations yields:

tr(Ri) = niri = νi i = ni
ν

n
(18)

where ν is the degree of freedom of the system and the sum of diagonal elements of the redundancy
matrix. As a result, we assigned unit weights for the first group and then an optimal technique
for estimating the weight of the second group was adopted. Considering the observations were
divided into two groups, the equality in Equation (18) depends on the weight of the second group
of observations, which is obtained by estimating the scale factor K for this weight matrix. This scale
factor applied only to the second group, which is related to the S2 observation:

tr(R2) = n2 − tr
(

B2

(
BtWKB

)
Bt

2 × K×W2

)
=

n2

n
ν (19)

where W1 and W2 are the weight matrices of the two groups of observations and B, W are the design
matrix and weight matrix related to the system of equations. Using the rule tr(UV) = tr(VU):

tr
(

K× Bt
2W2B2

(
BtWKB

))
+

n2u
n

= 0, (20)

where WK is the modified weight matrix of the system of equations:

WK = W + (K− 1)× P, (21)

P =


0 0 . . . 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1


n×n

, (22)
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Substituting WK from Equation (21) within Equation (20) and using the normal equation
notation gives:

tr(K× N2(N + (K− 1)× N2)
−1) +

n2u
n

= 0 (23)

Referring to [21] after expanding Equation (23) by Taylor series, a quadratic equation yields:

ak2 + bk + c = 0 (24)

where a = tr
(

N2N−1N2N−1), b = −
[
tr
(

N2N−1N2N−1)+ tr
(

N2N−1)], and c = n2u
ntr(N2 N−1)

. Between

the two roots of Equation (24), one with a minus sign for the square root of the discriminant expression
is accepted. Solving for k was continued until it converged to one. Practically, this convergence occurs
in less than 10 iterations. Multiplying the outputs from all iterations gives the desired scaling factor K:

K = ∏
j

k j (25)

where j is the iteration index. A scheme of the proposed weighting and unit weighting approaches
is presented in Figure 4. In each case, the combined system was solved assuming unit weights
for all of observations and then using the Helmert VCE method [29,30] the variance factors of the
two observation sets were calculated. Again, the system was solved, this time with the updated
weights applying the estimated variance factors.
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2.3.2. Precision Estimation

After calculating least-squares residuals, the a posteriori variance factor is given by:

σ̂2
0 =

ε̂t
1WM ε̂1 + ε̂t

2WK
G ε̂2

v
(26)

where WK
G is the modified weight matrix of the geometric constraint observations, as seen in

Equation (28). At the beginning, due to the lack of preliminary information, unit weights are often
assumed for all observations. After estimating the variance components, the scaling factors for each
weight matrix were obtained and then the image matching procedure should be repeated based on the
new set of weights. As a result, by applying the estimated scale factors α1 and α2, the final form of the
covariance matrix of the combined system is as follows:

Cl =

[
α1σ2

0,1W−1
M 0

0 α2σ2
0,2W−1

G

]
(27)

After estimating the coefficients α1 and α2, constrained matching was repeated with the new
weights. In the proposed approach before performing variance estimation, the scaling factor K was
introduced to the weight matrix of the geometric constraint as the following equation:

WK
G = WG + (K− 1)×


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


4×4

(28)

Considering the change in one of the weight matrices, a new estimate of the covariance matrix
of the observations will be obtained, which should be close to the previous covariance matrix.
This covariance matrix can be estimated as follows:

CK
l =

[
β1σ2

0,1W−1
M 0

0 β2σ2
0,2
(
WK

G
)−1

]
(29)

where β1 and β2 are the estimated scale factors using the Helmert VCE method. Then, the covariance
matrix of unknown parameters yields:

ĈK
x̂ = ĈK

δ̂
= σ̂2

0

(
AtCK

l A
)−1

(30)

2.4. Discussion on the Execution Speed

The LSM technique is usually employed to increase the precision of the matching results. However,
the nonlinearity of the mathematical model and the use of a neighborhood around each point directly
affect the processing time of the image matching step. This mathematical model is linearized around
an approximate position of the seed point and is solved iteratively. In each iteration, after the geometric
transformation, a new window should be interpolated from the second image. The larger the size of
the window, the longer the interpolation process takes.

Here, the coarse matching method performs a 1D search and calculates the correlation coefficient
pixel by pixel. Due to the fact that the search is performed in the line direction of the image, the
search interval length depends on the elevation range of the study area. For CARTOSAT-1 stereo
images, according to the spatial resolution of these images, a one meter increment in the elevation
range appears as four pixels in the line direction which should be added to the search interval length.

The presence of the constraint equations do not have a significant effect on the execution speed,
because the number of constraint equations is much lower than the number of the LSM equations.
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Additionally, these equations are written based on rational functions which operate only with the
coordinates of the points and do not require the complicated process, e.g., grey level interpolation.

In summary, the desired precision of the image matching, the size of the matching window,
the quality of the image texture in the neighborhood of the seed point, the elevation variations of the
study area, as well as the spatial resolution of the stereo images, are effective at the convergence speed
of the utilized image matching algorithm.

3. Experimental Results

In order to test the proposed method, 16 points on a regular grid in the first image were
considered. The image matching step, through the unit weighting and proposed weighting methods,
was implemented. Relying on the redundancy matrix, we controlled the amount of displacement
of the points on both images during image matching iterations. Estimated residual vectors of the
observations demonstrated the success rate of the proposed method. Additionally, the performance of
the method was assessed through analysis of the error ellipses in the object space.

3.1. Study Area and Data

The experimental data used in this study is a part of the ISPRS benchmark dataset which consists
of a pair of CARTOSAT-1 sub-images from the LaMola region of Catalonia, Spain, captured on
5 February 2008, which was supplied in Orthokit format (Figure 5) [31]. Additionally, the improved
RPCs of the images are also provided.
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Figure 5. CARTOSAT-1 stereo pair from the LaMola region; (a) forward image (along-track look
angle: +26◦) which is used as the second image and, (b) afterward image which is used as the first
image (along-track look angle: −5◦), and (c) the location of the study area (red hatched rectangle) in
Catalonia, Spain.

We have chosen this dataset because the image matching strategy which was adopted requires
precise RPCs of the stereo image. Additionally, the one-arc-second SRTM file of the study area was
available from the USGS website [32]. Some specifications of the dataset and test area are presented in
Table 1.
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Table 1. Test region and dataset specifications.

Test Region Properties

Region Name LaMola
Approximate Area (km2) 16

Lower Left Position (WGS84-UTM 31 N) 416400 E-4608600 N
Region Elevation Range 1 (m) 331–1115

Region Type Steep Mountainous-Forests
Image Size (Pixels) 2488 × 2784

1 Elevation range is derived from LiDAR data provided with the benchmark data.

3.2. Coarse Matching Step

The RPC model can be used for finding the approximate corresponding point. By transferring the
point on the first image to multiple levels of elevation in the object space, and then transferring all
points of intersection to the second image, the search space for matching is limited to a straight line.

Using RPCs of the image pair, at first, each point, were transferred to the SRTM elevation model.
Then, the point of intersection were projected to the second image, which will be the center of the 1D
search space, due to the low resolution of the SRTM elevation model. The search was performed along
the line direction (along-track direction) of the second image to find the initial corresponding point. In
each position of the search space, a normalized cross-correlation (NCC) value was calculated and the
position defined by the maximal NCC coefficient was then introduced as the seed point to the precise
matching step.

3.3. Precise Matching Step

In order to extract highly-accurate corresponding points between the stereo images, strict
thresholds must be applied, especially to the bidirectional matching shift (da1 and db1). Although,
the value of 0.1 pixels is sufficient for the CARTOSAT-1 stereo images [33], in this experiment the value
of 0.05 pixels is selected for the shift threshold. Moreover, in order to avoid false matching, the number
of iterations should be limited to 20 and the normalized correlation coefficient of two windows in the
last iteration should be greater than 0.8.

Optimum Weight Estimation

The iterative solution of k j coefficients for a sample point is given in Table 2. The product of the
values in all iterations gives the final value of this scaling factor, K = 0.0113. Considering that an
almost identical value was obtained in the other adopted points all over the test area, this value was
used in order to update the weight matrix of the second group of observations.

Table 2. Improving weights of the constraint observation (second group).

Iteration Number (j) kj

1 0.0142
2 0.7973
3 0.9999
4 1

For a comparison with other methods, scaling factors in all points were computed using Zhang’s
method [15], which was originally proposed by the authors of [34]:

K =
1

m× n ∑
(

g2
x + g2

y

)
(31)
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where K is equal to the average of the squared grey level derivatives in the m–by–n image window.
The computed scale factors are given in Table 3. As we have seen, the scaling factors for the weight
matrix are not much different from the results of the proposed approach. The differences are due to
the impact of the radiometric content in the image windows which are not considered in our approach.
It should be noted that in this method both points were displaced and, hence, the scaling factors were
applied to all observations in the geometric constraint equations.

Table 3. The estimated scaling factors, K, for the geometric constraint using Zhang’s method on the
16 points.

Point
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

K 0.0171 0.0089 0.0210 0.0846 0.0151 0.0262 0.0200 0.0142 0.0183 0.0187 0.0334 0.0175 0.0233 0.0229 0.0350 0.0160

3.4. Analysis of the Results

In order to evaluate the effect of the proposed approach on the results of adjustment, three points
from among the 16 points were selected. Results of the statistical information on the redundancy
numbers of all the observations collected in both cases is presented in Tables 4 and 5.

Table 4. Statistical information on the redundancy numbers for different types of observations—unit
weighting case. For instance, the results for three points are presented.

Number
LSM Observations GC Observations All Observations

rmin rmax rmean rL1 rS1 rL2 rS2 rmin rmax rmean

1 0.9412 0.9991 0.9935 1.70 × 10−6 0.4424 1.78 × 10−6 0.5573 1.70 × 10−6 0.9991 0.9910
2 0.9580 0.9990 0.9935 1.62× 10−6 0.4183 1.70 × 10−6 0.5269 1.62 × 10−6 0.9990 0.9910
3 0.9577 0.9985 0.9935 1.67 × 10−6 0.4381 1.75 × 10−6 0.5519 1.67 × 10−6 0.9985 0.9910

Table 5. Statistical information on the redundancy numbers for different types of the
observations—proposed weighting case. For instance, the results for the three points are presented.

Number
LSM Observations GC Observations All Observations

rmin rmax rmean rL1 rS1 rL2 rS2 rmin rmax rmean

1 0.9412 0.9991 0.9935 3.39 × 10−8 0.0088 3.55 × 10−8 0.9912 3.39 × 10−8 0.9991 0.9910
2 0.9576 0.9990 0.9934 3.45× 10−8 0.0089 3.63 × 10−8 0.9900 3.45 × 10−8 0.9990 0.9910
3 0.9575 0.9985 0.9935 3.41 × 10−8 0.0089 3.58 × 10−8 0.9908 3.41 × 10−8 0.9985 0.9910

The matching window with a size 35 × 35 pixels, introduces 1225 grey level observations
(one observation per pixel, which is described in Equation (5)) to the system of equations. By adding
four observations from the geometric constraint, the number of observations reaches 1229, whereas
the number of the unknown parameters is 11 (Equation (7)). Therefore, the degree of freedom
and average redundancy number of the combined system will be v = 1229 − 11 = 1218, and
r = 1218/1229 = 0.9910, respectively.

As is clear in Tables 4 and 5 in the proposed approach relative to the unit weighting approach,
the redundancy number of observation S2 is much closer to the average redundancy of the system,
marked in bold.

In both cases, after completing the least squares adjustment, the covariance matrix of the unknown
parameters was calculated. The estimated standard deviations in the coordinates of the intersection
point were calculated from covariance matrix elements. These standard deviations present error
estimates in the reference axes directions. Then, the estimated error can be shown through the
orientation and lengths of the semi-axes of the standard (68% confidence level) error ellipse [35].
Therefore, in order to complete a comparison, the planimetric error ellipses depicted around the
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estimated intersection points resulting from the two cases are shown in Figure 6. For more confidence,
all of the error ellipses were plotted at the 95% confidence level.

For a better understanding of the dimensions of the error ellipses, which were obtained in
arc-degrees, they have been converted to lengths on the reference ellipsoid in meters as follows [36]:

dX = Ncos(ϕ)dλ, dY = Mdϕ (32)

where M =
a(1−e2)√

(1−e2 sin2 ϕ) 3
and N = a√

(1−e2 sin2 ϕ)
, a and e are the semi-major axes and eccentricity of

WGS84 ellipsoids, respectively. Additionally, dX and dY denote the dimensions of the error ellipses in
meters. The values of dλ and dϕ are estimated in degrees. Therefore, this effect should be taken into
account in the estimated covariance matrix of the unknowns, with the aim of acquiring error ellipsoid
dimensions in meters.
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As can be seen in Figure 6, the size of error ellipses is not uniform, even if only the unit weighting
approach is considered. In order to clarify the main reason of this discrepancy, we should consider the
texture of the template window (Figure 7). The area-based matching methods have the potential to
achieve highly-precise results if the template window is well-textured. The uniqueness of each template
window in the search area can be evaluated using an autocorrelation function [37]. The existence of
the sharp autocorrelation peak at the center of the window is essential for the good performance of the
local (intensity-based) image matching techniques.

Error ellipsoids are the general way to illustrate the confidence region of estimated parameters
in 3D. However, in our computed points, one of the axes of the error ellipsoids was almost vertical,
implying the correlation between vertical and horizontal components is small and insignificant. For this
reason, we treated them as independent components. Hence, the confidence regions of the vertical and
horizontal components are presented individually. The error ellipses for horizontal components are
shown in Figure 6 and the intervals for vertical components are shown in Figure 8.
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Figure 7. Application of the autocorrelation function for evaluating the suitability of a template window
for area-based image matching. The autocorrelation surfaces are presented at four points of 16 points,
with two points having the smallest error ellipses (points 8 and 10) and two points with the largest
error ellipses (points 7 and 12). The resulting autocorrelation surfaces (3D view and contour plot) show
(a) a single sharp peak at point 8, (b) a single sharp peak at point 10, (c) a single weak peak at point 7,
and (d) a smooth single peak at point 12, which cannot guarantee a unique corresponding point in the
second image. The peaks at the three points (8, 10, and 12) are shown by the dashed red marks.
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Error ellipsoids are the general way to illustrate the confidence region of estimated parameters 
in 3D. However, in our computed points, one of the axes of the error ellipsoids was almost vertical, 
implying the correlation between vertical and horizontal components is small and insignificant. For 
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In each of the 16 points, the intersection position of corresponding rays (as the center of the
error ellipse) has been changed after applying the proposed weighting approach relative to the unit
weighting case. However, in order to make a true comparison, the error ellipses resulting from
two weighting approaches are illustrated as concentric ellipses in Figure 9.

The length of the error ellipses axes were significantly decreased at all 16 points. Table 6 shows
their numerical values. As can be seen, in our proposed method the shapes of the error ellipses are
almost circular (smaller eccentricity) and this implies that the variances of the errors are distributed
isotropically on the horizontal plane.
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Table 6. Properties of the error ellipses resulting from the two weighting approaches.

Unit Weighting Proposed Weighting

Point
Number

a
(meters)

b
(meters)

Azimuth
(degrees) e 1 a

(meters)
b

(meters)
Azimuth
(degrees) e

1 0.37 0.29 16.13 0.39 0.06 0.05 9.48 0.23
2 0.45 0.35 15.75 0.38 0.07 0.06 10.35 0.24
3 2.12 1.63 14.76 0.41 0.29 0.29 –6.34 0.03
4 0.35 0.28 13.36 0.37 0.06 0.05 10.77 0.15
5 2.64 3.43 –74.30 0.70 0.50 0.52 –7.18 0.05
6 0.24 0.20 17.82 0.34 0.05 0.03 9.17 0.57
7 4.22 3.24 14.76 0.41 0.60 0.61 –0.28 0.05
8 0.19 0.16 13.16 0.29 0.04 0.03 10.95 0.58
9 1.08 0.84 15.92 0.40 0.16 0.16 31.19 0.03
10 0.12 0.11 15.77 0.25 0.04 0.02 8.30 0.77
11 0.98 0.77 15.50 0.39 0.15 0.14 15.89 0.10
12 4.60 3.53 14.27 0.41 0.65 0.67 3.30 0.04
13 1.07 0.83 15.87 0.40 0.16 0.15 29.45 0.03
14 0.67 0.52 15.09 0.40 0.10 0.10 27.44 0.03
15 1.39 1.07 14.74 0.41 0.20 0.20 –4.57 0.03
16 0.87 0.68 14.29 0.40 0.13 0.13 28.05 0.020

1 Eccentricity.

4. Discussion

An analysis of the results and comparison with the unit weighting method shows the success
of the proposed approach in achieving the predetermined goals. In the Figure 10, the computed
residuals for the observations of the image points are illustrated. As can be seen in Figure 10, using
the proposed method, residuals of the first image observations are close to zero. As expected, by
assigning small values to the redundancy number of the given point observations in the first image
makes it possible to significantly fix the position of this point during the image matching iterations.
Additionally, by increasing the redundancy number of the sample component in the second image,
the residual of this observation in all points increased. In other words, the point in the second image
was moved toward the epipolar plane with more freedom.
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It is remarkable that two observations of four intersection observations, which are related
to coordinates of a corresponding point on the search image, take new values in each iteration.
This is because of the influence of some unknown LSM parameters on these two observations.
After computing the differential values of affine transformation model shift parameters, they are
used to update the corresponding point coordinates. This is the reason that applying a scale factor to
the weight of a corresponding point’s sample component leads to a change on the image matching
result and improvement on the intersection precision. It is clear that if these observations were
given constant values, adding a scale factor would have no effect on the improvement of unknown
precision estimation.
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Figure 10. The redundancy numbers and their impact on the residuals of the corresponding point
observations resulting from two weighting approaches. The redundancy numbers (left side) and the
obtained residuals (right side) from (a) the line component in the first image; (b) the sample component
in the first image; (c) the line component in the second image; and (d) the sample component in the
second image.

5. Conclusions

A more reliable image matching strategy leads to a more accurate scene reconstruction, which
is usually achieved by introducing geometric constraints. Before adding any geometric equations to
the radiometric equations of LSM, the optimal weights of different types of observations should be
determined. Referring to a previous study that used the redundancy matrix to determine the optimal
weights in second-order design of geodetic networks, in this study, the weights were determined
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from the redundancy matrix analysis. The conventional application of the redundancy matrix was the
internal reliability test after performing the least squares technique.

Assuming the unit weight for all observations and the estimate of the resulting redundancy
matrix, we decided to update the weight of just one observation (S2). In this way, the redundancy
number of this observation increased about two times and equalized with the average redundancy
number of the other elements of the observation vector. The higher the redundancy number, on the one
hand, increases the internal reliability, and on the other hand, improves the flexibility of the geometric
constraint to improve the image matching performance. It should be noted that in the image matching
procedure, the coordinates of the point in the second image were treated as an observation of the
geometric constraint and as an unknown parameter of the LSM.

The proposed weighting approach introduces some changes in the estimated values of unknown
parameters and also in the estimated covariance matrix. As a result, the size of the planimetric error
ellipses of the intersection points in the object space were decreased significantly. In this regard,
the geometric mean of two axes of these ellipses by the proposed weighting was reduced 0.17 times
relative to the unit weighting approach.

A comparison with a similar approach was performed and the same results were obtained using
the two approaches in half of the points. However, different scale factors were achieved in other
points due to neglecting the grey level of pixels within the matching window in the proposed method.
In future research, the proposed method, which is based only on statistical analysis, can be combined
with radiometric content of the matching windows.
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