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Abstract: This study attempts to estimate spatial soil moisture in South Korea (99,000 km2) from
January 2013 to December 2015 using a multiple linear regression (MLR) model and the Terra
moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (LST) and
normalized distribution vegetation index (NDVI) data. The MODIS NDVI was used to reflect
vegetation variations. Observed precipitation was measured using the automatic weather stations
(AWSs) of the Korea Meteorological Administration (KMA), and soil moisture data were recorded at
58 stations operated by various institutions. Prior to MLR analysis, satellite LST data were corrected
by applying the conditional merging (CM) technique and observed LST data from 71 KMA stations.
The coefficient of determination (R2) of the original LST and observed LST was 0.71, and the R2 of
corrected LST and observed LST was 0.95 for 3 selected LST stations. The R2 values of all corrected
LSTs were greater than 0.83 for total 71 LST stations. The regression coefficients of the MLR model
were estimated seasonally considering the five-day antecedent precipitation. The p-values of all the
regression coefficients were less than 0.05, and the R2 values were between 0.28 and 0.67. The reason
for R2 values less than 0.5 is that the soil classification at each observation site was not completely
accurate. Additionally, the observations at most of the soil moisture monitoring stations used in
this study started in December 2014, and the soil moisture measurements did not stabilize. Notably,
R2 and root mean square error (RMSE) in winter were poor, as reflected by the many missing
values, and uncertainty existed in observations due to freezing and mechanical errors in the soil.
Thus, the prediction accuracy is low in winter due to the difficulty of establishing an appropriate
regression model. Specifically, the estimated map of the soil moisture index (SMI) can be used to
better understand the severity of droughts with the variability of soil moisture.

Keywords: spatial soil moisture; MODIS LST; MODIS NDVI; conditional merging; multiple linear
regression model

1. Introduction

Soil moisture (SM) is an important state variable governing the partitioning of rainfall into runoff
and water that infiltrates the soil. Although the water contained in soil is only a tiny fraction of all
the water on the Earth, it influences important extreme events, such as floods and droughts [1]. SM is
existing soil water stored among soil particles and pores. Moreover, SM is a hydrometric factor that
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plays a crucial role in the exchange of water and energy in the land and atmosphere. Notably, SM has
been studied in the agricultural field regarding plant growth, water resources field for rainfall-runoff,
and meteorological field regarding interactions between the atmosphere and land [2].

There are multiple ways to estimate SM, including in situ networks and satellite remote
sensing. Traditional in situ measurements provide valuable information on SM at different soil
depths. Many field techniques are available, such as oven drying, neutron probe, time/frequency
domain reflectometry (TDR/FDR), and capacitance measurements [3]. TDR, tension-measuring,
and gravimetric methods are available to measure SM through ground observations. However, these
methods are expensive and time consuming when used on large areas. Most allow point measurements,
which provide information on the SM content at specific points only. In addition, reliability of the
point data is also poor due to the short observation period as well as many missing data. Therefore, in
situ SM is regarded as the true value of SM and is commonly used as a reference to validate remotely
sensed SM retrieval [4–6]. However, in situ SM data of point scale are difficult to use as spatial SM [7–9]
in large areas.

The estimation of spatial SM can be divided into direct measurement using microwave satellites
and indirect measurement using land surface parameters related to SM without using microwave
satellite data. First, microwave satellites are widely used because they allow the continuous observation
of spatial SM over a wide area [10,11]. However, there are several limitations to directly and
immediately using SM data based on satellites: (1) the relatively low spatiotemporal resolution of the
data; (2) the only regional optimization algorithms for satellite soil moisture estimation are available
from the National Aeronautics and Space Administration (NASA), European Space Agency (ESA), and
Japan Aerospace Exploration Agency (JAXA); (3) the satellite data have not been calibrated and verified;
and (4) radio interference. Nevertheless, many studies have been actively conducted to calibrate spatial
SM based on satellite data compared to point-based observations of SM over wide areas [12–14].
For example, using the AMSR satellite, Kim et al. [15] obtained AMSR2 spatial SM data and performed
a correction process using observed SM data. In addition, other studies have proposed microwave
satellites SM downscaling method using MODIS and in situ data [16–19]. Second, spatial SM can be
estimated from land surface parameters such as LST and NDVI without using microwave satellite
data [20]. Moreover, LST has a unique relationship with spatial SM [21]. Examples of applications as
non-microwave satellites using moderate resolution imaging spectroradiometer (MODIS) LST data are
as follows. Cai et al. [22] obtained SM retrieval form Terra MODIS L1B data. Kim et al. [23] improved
the spatial SM of AMSE-E through the integration of MODIS land surface temperature (LST), the
enhanced vegetation index (EVI) and albedo. MODIS data have been successfully used to increase the
accuracy of spatial SM estimates.

Although MODIS LST has been used in various ways, MODIS LST should be regenerated using
gap-filling and correction processes, which can convert global data to region data. Notably, daily
MODIS LST datasets (MOD11_L2) have missing values due to clouds and atmospheric conditions [24].
In some previous studies, MODIS LST was corrected by spatial interpolation and geostatistical
methods [24,25]. To overcome this issue, geostatistical methods (e.g., kriging, inverse distance
weighting and spline methods) can be applied to ground measurements by matching the spatial
scale with satellite-based products [26,27]. In rainfall research, various strategies for combining
satellite-based and observed data have been widely used to overcome the limitation of areal
representativeness of point scale measurements and the high variability in satellite-based datasets.
This method, which is called “conditional merging (CM)” in Sinclari et al. [28], uses the radar field to
estimate the error associated with the ordinary kriging method based on rain gauges and to correct
it [29]. In general, previous studies that have used the CM method yielded reasonable results compared
to ground-based measurements and exhibited improved spatial and temporal variability [30].

The overall goal of this study was to estimate spatial SM based on MODIS LST and normalized
difference vegetation index (NDVI) data via multiple linear regression (MLR) analysis (Figure 1).
The specific objectives of the study were as follows: (1) to correct MODIS LST using the CM method;
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(2) to develop the MLR model using corrected MODIS LST, MODIS NDVI data, and interpolated
precipitation (PCP); (3) to generate the spatial distribution of SM using normalized regression
coefficients; (4) to assess spatial SM estimates and (5) to compare the SM index (SMI) and standardized
precipitation index (SPI) to evaluate the usability of spatial SM.

Figure 1. Flow chart of the study. For the satellite data, MODIS is the Terra moderate-resolution
imaging spectroradiometer. For the soil moisture data, AAOS is the automated agriculture
observing system operated by KMA, TDR is the time domain reflectometry, and RDA is the rural
development administration.

2. Materials and Methods

The study analyzed SM based on satellite data via correlation analysis. Principle component
analysis was used to effectively select independent variables among the environmental attributes of
SM. Finally, MLR model was developed using MODIS LST, MODIS NDVI, and PCP from various
regression scenarios. In this study, various satellite data and observed point data were used with 1 km
spatial resolution (Table 1). The soil map data (soil type, field capacity, and wilting point) obtained from
the Korea Rural Development Administration (KRDA) were rasterized from a 1/25,000 vector map.

Table 1. Description of data specifications.

Data Temporal
Resolution

Spatial
Resolution

Reference
Resolution Duration Note

MODIS land surface temperature (LST) Daily 1 km 1 km 2013–2015 Satellite data
MODIS normalized difference

vegetation index (NDVI) 16 day 500 m 1 km 2013–2015 Satellite data

Precipitation Daily 687 stations 1 km 2013–2015 Point data
Soil moisture Daily 58 stations 1 km 2013–2015 Point data
Observed LST Daily 71 stations 1 km 2013–2015 Point data

Soil map 1 km 1 km Investigated data

2.1. Satellite Data

The LST is a key variable used in a wide range for monitoring of surface radiation budget,
climate change, hydrological cycle and ecosystems. In spite of the recognized importance of LST,
observed LST on land are not yet adequate for assessing diurnal cycles or analyzing seasonal and
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inter-annual variability because of large spatiotemporal variations. MODIS LST (MOD11A1) and
MODIS NDVI (MOD13Q1) were used as satellite datasets in this study. The MODIS land products
include the energy balance product, vegetation parameter product, and land cover/land use product
(http://modis-land.gsfc.nasa.gov/). These products have been widely applied in global and regional
monitoring, modeling and assessment.

2.1.1. MODIS LST

MODIS LST is estimated using a statistical regression-based method based on 12 MODIS thermal
infrared (TIR) bands, with an option for non-linear physical retrieval. The regression coefficients of the
statistical retrieval are derived using a fast radiative transfer model with atmospheric characteristics
taken from a dataset of 12,208 global profiles of atmospheric temperature, moisture, and ozone [31].
Notably, the accuracy of the product may be affected by errors in land surface emissivity (Eva Borbas,
personal communication). The MODIS LST (MOD11) product is retrieved using the generalized
split-window algorithm [32,33]:

Ts = C +
(

A1 + A2
1−ε

ε + A3
∆ε
ε2

)
× T31+T32

2

+
(

B1 + B2
1−ε

ε + B3
∆ε
ε2

)
× T31−T32

2

(1)

ε = (ε31 + ε32)/2) (2)

∆ε = ε31 − ε32 (3)

where Ts is LST, T31 and T32 are brightness temperatures in MODIS bands 31 and 32, respectively, ε31

and ε32 are surface emissivities in MODIS bands 31 and 32, respectively, and C, A1, A2, A3, B1, B2, and
B3 are regression coefficients [34]. MOD11A1 data are daily level-3 global LST products gridded in the
Sinusoidal projection (version 4) at spatial resolution of 1 km and collected twice per day using the
generalized split-window algorithm [33,35,36].

2.1.2. MODIS NDVI

The MODIS sensors onboard the Terra satellite acquire data in 36 discrete spectral channels with a
spatial resolution of 250 m for the visible bands, 500 m for the near-infrared bands, and 1000 m for the
remaining thermal infrared bands (http://modis.gsfc.nasa.gov/). To obtain the MODIS NDVI data
among the products, the MODIS 500-m NDVI 16-day composite scenes (MOD13Q1) from January 2013
to May 2015 were retrieved from the Land Processes Distributed Active Archive Center (LP DAAC,
https://lpdaac.usgs.gov/).

NDVI is a distributed vegetation condition index based on differences in the reflectivity of near
infrared light. The NDVI reflects the presence of vegetation on a pixel basis and provides measures
of the amount and condition of vegetation within a pixel [31]. NDVI values were calculated using
Equation (4) in each grid cell:

NDVI =
NIR − RED
NIR + RED

(4)

where NIR is the near infrared band (MODIS band 2), and RED is the red band (MODIS band 1). In this
study, MODIS NDVI composited to 16 days was resampled from UTM format and a 500 m resolution
to the WGS84 projection and a 1 km spatial resolution for the MODIS LST reference.

2.2. Observed Data

2.2.1. Automatic Weather Stations (AWSs)

The Korea Meteorological Administration (KMA) operates the AWSs, which include 687 stations
throughout South Korea, to continuously monitor weather conditions (Figure 2a). The average distance
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between stations is approximately 13 km, and the raw data are collected in 10 min intervals. The data
set used in this study is archived at 24 h intervals.

Figure 2. Distributions of observation stations: (a) the 687 automatic weather system (AWS) stations
for continuous monitoring throughout South Korea and (b) the 58 soil moisture stations used for
calibration of the multiple linear regression (MLR) model.

In this study, we used 687 AWS precipitation data points during the simulation period. First, we
obtained minute-scale precipitation data from KMA and compared it with the operation period data.
Second, minute-scale precipitation data were converted into daily data, and the data were interpolated
using the inverse distance weighting (IDW) method based on the 1-km spatial resolution of the MODIS
LST reference.

2.2.2. Soil Moisture and Soil Data of the Stations

To develop a model for expected SM, the regression model requires observed SM data from
various stations. This study used SM data measured by KMA at 9 stations, the Hydrological Survey
Center (HSC) at two stations, K-water (Korea Water Resources Corporation) at 7 stations and the
Rural Development Administration (RDA) at 40 stations (Table 2 and Figure 2b). The automated
agriculture observing system (AAOS) operated by KMA provides observations of weather phenomena
that are closely related to agriculture at 10 auxiliary agricultural weather observatories located
throughout the country, including the Suwon (SW) meteorological observatory, which is a basic
agricultural meteorological observation office according to the technical regulations of the World
Meteorological Organization (WMO). In this study, SM data at 10 cm of depth were collected at 9 sites
(the Seogwipo and Andong sites did not provide good SM data and were not used. The technical
specifications of the KMA data were previously reported [37]. Stations No. 10 to No. 12 are flux
towers. Nos. 10 and 11 are within the Han River basin, the largest river basin in South Korea (total
area of 34,406 km2), and are operated by HSC, and No. 12, which is operated by K-water, is located
in the Geum River basin at an elevation of 688.568 m and a height of 25 m to avoid the effects of
the reservoir and canopy. Nos. 13 to 18 are installed in the Yongdam Dam watershed in the Geum
River basin and are operated by K-water. These data were measured using time domain reflectometry
(TDR) at an average depth of 10 cm. The data are provided by the Yongdam Experimental Catchment
(http://www.ydew.or.kr/kdrum/main/main.do). The observed stations from No. 19 to the end of the
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list are operated by RDA and utilize TDR. These data were provided by the Agricultural Meteorology
Information Service (http://weather.rda.go.kr). All SM data were prepared from January 2013 to
December 2015, but some data, especially RDA data, were prepared for a limited period of the time
because of the short observation period.

Table 2. Agrometeorological observation network of the Korea Meteorological Administration and the
other observation points with soil type.

No. Station Latitude Longitude Soil No. Station Latitude Longitude Soil

1 CW 38.20 127.25 Sand 30 MM 36.01 127.68 Loam
2 SW 37.27 126.99 Sand 31 NI 35.43 127.44 Loam
3 SC1 35.07 127.24 Sand 32 JJ4 35.62 127.51 Clay
4 CJ 36.64 127.44 Sand 33 JJ5 35.62 126.90 Clay
5 CC1 37.90 127.74 Loam 34 YG2 35.28 126.47 Clay
6 SS1 36.77 126.50 Loam 35 GO 35.27 127.30 Loam
7 BS 34.76 127.21 Loam 36 HH4 34.97 127.07 Clay
8 CC2 35.68 127.51 Loam 37 HH5 35.05 126.54 Clay
9 GB1 35.81 127.63 Silt 38 YD 34.83 126.67 Clay

10 JC1 35.97 127.42 Loam 39 HS 34.53 126.56 Clay
11 HB 37.22 126.95 Loam 40 HU 34.58 126.65 Clay
12 YC 37.17 127.30 Loam 41 JG 34.51 126.30 Clay
13 IJ 37.27 127.43 Silt 42 BU 34.76 127.09 Silt
14 YY1 37.51 127.51 Loam 43 YJ 34.79 127.65 Clay
15 HH1 38.11 127.69 Clay 44 GJ 35.82 128.81 Clay
16 PU 37.54 128.45 Loam 45 CY 36.04 128.38 Clay
17 HH2 37.71 127.86 Loam 46 SD2 35.91 128.25 Loam
18 II 38.06 128.17 Loam 47 SC2 36.45 128.17 Clay
19 CH 36.62 127.42 Loam 48 YY3 36.85 128.56 Silt
20 CO 36.72 127.46 Clay 49 CC4 36.39 129.08 Sand
21 YS2 36.21 127.72 Silt 50 YO 35.99 128.93 Clay
22 JB 37.16 128.18 Sand 51 PB 36.11 129.31 Loam
23 NG 36.21 127.14 Clay 52 GG4 34.99 128.33 Silt
24 GD 36.20 127.28 Loam 53 TG2 34.90 128.40 Silt
25 YS3 36.74 126.81 Silt 54 JC2 35.20 128.12 Clay
26 CC3 36.43 126.78 Loam 55 SY 35.04 128.07 Clay
27 HH3 36.59 126.64 Clay 56 HJ 35.13 128.28 Clay
28 JJ3 35.76 127.44 Loam 57 GG5 35.68 127.92 Loam
29 GB2 35.75 126.85 Clay 58 HH6 35.55 128.11 Sand

2.3. Conditional Merging (CM) Technique

The CM technique [38–40] is a method of spatial interpolation suited for merging spatially
continuous grid-based measurements and point measurements. The method has the advantage of
precisely preserving the spatial covariance structure of spatially continuous grid-based measurements
while maintaining the accuracy of the point-based measurements. The algorithm has been applied
and showed superior performance to the traditional geostatistical approaches, especially in obtaining
spatial rainfall fields in several regions across the world [29,30,40–42]. The CM technique is also known
as the kriging error correction technique based on radar-based or satellite-based data. Geostatistical
merging methods such as mean field bias correction (MFB), range-dependent adjustment (RDA),
Brande spatial adjustment (BRA), ordinary kriging (KRI), kriging with external drift (KED), and CM
technique have been tried. Goudenhoofdt et al. [29] performed and evaluated various methods for
combining spatial and gauge data. They found that the CM and KED techniques provided the best
methods of improving the spatial interpolation of gauges values. Therefore, CM technique was selected
among various methods in this study.

In this study, the CM technique includes the following six processes: (a) observed LST are collected
at 71 stations of KMA; (b) LST values measured at the 71 stations are interpolated using the ordinary

http://weather.rda.go.kr
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kriging technique with 1 km spatial resolution of the MODIS LST reference; (c) satellite LST data are
collected with 1 km spatial resolution; (d) the satellite LST at the 71 gauging stations are extracted and
then spatially interpolated using the ordinary kriging technique with 1 km spatial resolution of the
MODIS LST reference; (e) the residual between (c) and (d) is calculated; and (f) the residual values of
(e) are added to the data from (b) to produce the final satellite-observed composite LST dataset with
1 km spatial resolution (Figure 3).

Figure 3. Conditional merging process for MODIS LST: (a) Observed LST are collected at 71 stations of
KMA; (b) LST values measured at the 71 stations are interpolated using the ordinary kriging technique;
(c) Satellite LST data; (d) Satellite LST at the 71 gauging stations are extracted and then spatially
interpolated using the ordinary kriging technique; (e) Residual between (c) and (d); (f) Residual values
of (e) added to the data from (b).

2.4. Multiple Linear Regression Model and Scenarios

Regression analysis is commonly used to measure the relationship between two or more variables,
predicting the behavior of a dependent or endogenous variable according to one or more independent
or explanatory variables. Multiple linear regression (MLR) models are frequently used as empirical
models or approximating functions and to establish a mathematical model to describe a real-world
phenomenon. Generally, the relationship between the dependent and the independent variables is
given as presented as in Equation (5) [43].

Y = C + β1X1 + β2X2 + β3X3 + β4X4 + . . . + βnXn (5)

where Y is the dependent variable, C is a constant, X1, X2, X3, X4 and Xn are independent variables,
and β1, β2, β3, β4 and βn are regression coefficients.

From input data, including MODIS LST, MODIS NDVI, PCPn, PCPn-1, PCPn-2, PCPn-3, PCPn-4

and PCPn-5, were used to develop the model. Notably, PCPn is the precipitation on the observation
day. PCPn-5, PCPn-4, PCPn-3, PCPn-2, and PCPn-1 indicate antecedent precipitation from five days to
one day (Table 3).
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Table 3. Eight regression scenarios for MLR model using MODIS LST, MODIS NDVI, precipitation
of the observation day (PCPn), one day antecedent precipitation (PCPn-1), two-day antecedent
precipitation (PCPn-2), three-day antecedent precipitation (PCPn-3), four-day antecedent precipitation
(PCPn-4), and five-day antecedent precipitation (PCPn-5).

Scenario LST NDVI
PCP (mm)

n n-1 n-2 n-3 n-4 n-5

1 # #
2 # #
3 # # #
4 # # # #
5 # # # # #
6 # # # # # #
7 # # # # # # #
8 # # # # # # # #

Note: # denotes an independent variable used in the regression scenario.

2.5. Seasonal Analysis and Normalization of the Regression Coefficients

In a previous study [44], several input datasets were selected, such as LST, NDVI, sunshine hours
and precipitation, and twelve scenarios were developed according to the combinations of input data.
In addition, the correlation increased when the model coefficients were evaluated on a seasonal basis
due to the reverse correlation between MODIS NDVI and SM in spring and autumn. Therefore, the
MLR regression coefficients were calculated by seasonal analysis.

In general, statistical analysis and normalization should be performed to reduce uncertainty
in MLR models. The disadvantage of unnormalized regression is that the independent variables
usually have different units. Thus, it is difficult to compare the relative influence of each independent
variable on the dependent variable. The unnormalized regression coefficient is dependent on the
measurement scale, while the normalized regression coefficient is not. Normalization typically shows
which independent variable has the largest influence on the dependent variable in MLR analysis.
In this study, the normalization was performed using the min–max normalization expression given in
Equation (6) [45].

Normalization =
(Independent variable − Minmum Independent variable)

(Maximum Independent variable − Minimum Independent variable)
(6)

2.6. Soil Moisture Index (SMI)

Spatially distributed SM is often used in spatial drought indices. The SM-based drought index,
known as the SMI, provides the severity and duration of an agricultural drought for an area of interest.
Available water for plants is defined as the quantity of soil water between field capacity (FC) and
the lower limit of extractable water, which is known as the wilting point (WP), and this stored water
is extracted by plant roots [46]. Available water is therefore an important metric for quantifying
agricultural droughts if it is converted into an index. In this study, available water is first calculated
based on the observed or modeled SM that is normalized by the maximum available water for plants,
calculated as the difference between the field capacity and wilting point, to derive the SMI. This index is
classified from no drought to extreme drought to quantitatively assess droughts in space and time [47].
In general, the SMI reflects the level of agricultural drought. However, SMI has not yet been evaluated
as an authorized drought index in South Korea by lack of spatial confidence. Therefore, this study
additionally examined the efficiency of spatial SMI compared to the standardized precipitation index
(SPI), which is widely used as a meteorological drought index. In South Korea, the SPI distribution is
provided by the Drought Information System (http://drought.kma.go.kr) of the KMA.

The SMI is computed based on the soil characteristics and SM conditions, and the parameters
include FC, WP and SM. The soil map data (FC, WP and soil type) were obtained from the KRDA

http://drought.kma.go.kr
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(Figure 4). Then, the soil map was rasterized at a 1 km spatial resolution. We used these data to
estimate the SMI. The dominant soils are sand (31.2%) and loam (38.8%). The FC ranges from 9% to
40%, and the average FC of all regions is 22.1%. Additionally, the WP ranges from 3% to 15%, with an
average WP of 5.6% in all regions. The SMI equation is given as follows.

SMI =

[
5 × (SM − WP)
(FC − WP)

− 5
]

(7)

This equation yields SMI values ranging from less than −5 to 0. Thus, the actual SM in the soil
column is normalized based on the available water content (AWC) in the soil column. This normalized
value then used to compute the index. The range is chosen via a method similar to that of the
U.S. Drought Monitor to maintain consistency and compare the drought severity. An SMI of 0 indicates
no drought, but conditions could be heading toward drought or moving out of a drought. An SMI of
−1 reflects a low-intensity drought, while an SMI of −5 reflects an extreme drought [47].

Figure 4. Distribution map of soil information with a 1 km spatial resolution: (a) Soil type (silt, clay,
loam and sand); (b) soil field capacity (FC); and (c) soil wilting point (WP).

3. Results and Discussion

3.1. Corrected MODIS LST Data

The leave-one-out cross-validation method was used to assess the performance of the CM
technique in predicting the LST values at ungauged locations. In this technique, observed LST
stations are assumed to be nonexistent at given gauge locations, and a spatial interpolation technique
(CM) is applied to obtain the values at these points. Then, the estimated values obtained from the CM
technique are compared to the original values at all measurement locations. All observed daily LST
data measured by 71 stations of KMA from January 2013 to December 2015 (Figure 5).

For verifying LST by CM, some LST stations were assumed to be ungauged stations for verifying
LST in green ellipses of Figure 5. LST stations used for verification considered three conditions: (1) the
locations in coastal and inland regions; (2) the proximity of the SM observation station; and (3) each
land use. From that, 129, 192 and 238 stations are selected by coastal and agricultural area (129), coastal
and pasture area (192), and inland and forest area (238) for verifying LST.

After excluding three stations, the CM technique was applied to calculate the corrected LST
distribution. The coefficient of determination (R2) values were high at all stations, including verified
stations, and varied from 0.89 to 0.99. Overall, the calibration results at the three points excluded
from the CM process showed good results between observed and simulated values (Figure 6). Finally,
monthly spatial distribution map of corrected LST was generated by the CM technique from 2013 to
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2015. Figure 7 shows monthly spatial distribution maps of corrected LST from April to September in
drought years (2013–2015).

Figure 5. Map of observed land surface temperature (LST) stations: ellipses (in green) denote the
stations excluded from the conditional merging (CM) process and used for verification. The number
above each pentagon (in red) is the LST station number.

Figure 6. Comparison of observed and simulated LST graphs at verified stations: (a) 129 sites;
(b) 192 sites; and (c) 238 sites. The left graphs are the original MODIS LST values. The right graphs are
the corrected MODIS LST values after applying conditional merging (CM).
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Figure 7. Final monthly spatial distribution maps of LST during drought years.

3.2. Optimal Regression Equation and Regression Coefficients

To determine the optimal regression scenario, the regression coefficients of MLR equations were
assessed (Table 4). Moreover, scenario 9 was additionally added to assess how the result of corrected
MODIS LST would be affected in R2. In the correlation analysis, R2 was used to assess the results.
The weighted effect of each regression coefficient on SM is given in Table 4. Scenario 1 only used
MODIS LST and PCPn to estimate SM, and the resulting R2 was 0.22. However, R2 increased to 0.24
and 0.45 when LST, PCPn, PCPn-1, PCPn-2, PCPn-3, PCPn-4, and PCPn-5 were included. From this
result, Scenario 8, which included nine independent variables, was selected as the optimal regression
equation. Additionally, the R2 of Scenario 9 decreased by 0.06 when original MODIS LST was applied,
compared with the result of Scenario 8.

From an optimal regression equation, the regression coefficients of the MLR model were
re-estimated based on the four soil classes (clay, loam, sand, silt) and four seasons (spring, summer,
autumn, winter) considering the antecedent precipitation for up to five days. The regression coefficients
of optimal scenario were divided into 16 regression coefficients over four seasons and four soil
types (Table 5). Each regression coefficient was presented with the p-value to confirm the statistical
significance, and the coefficient of determination (R2) was used for correlation analysis. Overall,
the p-values of all the regression coefficients were less than 0.05, except for the autumn and winter
regression coefficients of NDVI for silt, indicating statistical significance. The reason for the high
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p-values of the regression coefficients of NDVI for silt in autumn and winter is that most of the
observations corresponding to silt are provided by the RDA and the data are insufficient (data were
available for a period of less than a year).

Table 4. Regression coefficients of multiple linear regression for each scenario.

Scenario Constant Corrected
LST

Original
LST

NDVI
PCP (mm)

R2
N n-1 n-2 n-3 n-4 n-5

1 18.950 0.441 0.126 0.24
2 33.427 −14.955 0.155 0.22
3 29.526 0.604 −23.512 0.124 0.30
4 29.265 0.610 −3.842 0.100 0.174 0.35
5 29.163 0.610 −24.145 0.110 0.153 0.134 0.37
6 29.065 0.609 −24.397 0.118 0.159 0.117 0.125 0.40
7 28.946 0.608 −24.608 0.117 0.168 0.123 0.108 0.111 0.43
8 22.484 0.585 −25.071 0.099 0.142 0.113 0.091 0.080 0.086 0.45
9 23.942 0.082 −5.465 0.140 0.182 0.142 0.126 0.090 0.099 0.39

Table 5. Regression coefficients in four seasons and for four soil types.

Soil Type Season Con. LST NDVI
PCP (mm)

R2
n n-1 n-2 n-3 n-4 n-5

Silt

Spring 23.698 −0.109 −0.045 0.103 0.155 0.110 0.088 0.080 0.104
0.44(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Summer
25.503 −0.314 6.693 0.052 0.068 0.045 0.037 0.024 0.028

0.38(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Autumn
21.111 −0.190 6.963 0.120 0.152 0.106 0.090 0.076 0.072

0.29(0.000) (0.000) (0.080) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Winter
20.514 0.829 1.374 0.091 0.206 0.242 0.171 0.162 0.176

0.29(0.000) (0.000) (0.060) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Clay

Spring 31.684 0.170 −31.417 0.038 0.067 0.035 0.030 0.031 0.021
0.67(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Summer
14.239 0.770 −20.071 0.021 0.024 −0.002 −0.002 0.016 0.003

0.60(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Autumn
31.562 0.685 −37.067 0.048 0.073 0.055 0.047 0.031 0.021

0.57(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Winter
29.505 0.510 −20.468 −0.050 0.059 0.038 0.008 0.008 0.020

0.40(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Loam

Spring 28.995 −0.152 −8.580 0.127 0.174 0.143 0.124 0.110 0.116
0.45(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Summer
18.458 −0.145 6.881 0.096 0.110 0.093 0.081 0.073 0.079

0.53(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Autumn
23.911 −0.159 −1.427 0.163 0.210 0.164 0.143 0.133 0.127

0.39(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Winter
22.260 0.211 6.528 0.237 0.300 0.272 0.224 0.197 0.227

0.28(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Sand

Spring 19.595 −0.170 0.830 0.113 0.165 0.108 0.091 0.076 0.103
0.42(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Summer
13.837 −0.117 9.896 0.070 0.076 0.053 0.047 0.037 0.040

0.36(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Autumn
21.085 −0.288 3.611 0.112 0.126 0.086 0.062 0.053 0.050

0.44(0.000) (0.036) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Winter
13.794 0.477 9.598 0.244 0.308 0.267 0.211 0.170 0.188

0.29(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: () indicates p-value. Within a column at each scale, means followed by the same letter are not significantly
different (p-value < 0.05). R2 is the coefficient of determination.
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The MLR coefficients showed that R2 increased from 0.07 to 0.24 when we estimated the coefficient
seasonally compared with the coefficients that were not estimated seasonally (0.22 to 0.43). These
results indicate that the correlation between observed soil moisture and estimated SM was improved
by considering seasonal and soil type patterns. Nevertheless, the reason for the low R2 of less than 0.5
was that the soil classification for each observation site was not complete. It was difficult to classify the
soil classes of the RDA’s stations (from No. 19 to 58) because these stations were not stabilized; the
stations have only been measuring SM since December 2014. In addition, the classification of 12 soil
types into four soil types also contributed to the poor accuracy. Therefore, if we add more soil moisture
observations or extend the observation period and refine the soil classification to more than four soil
types, the simulation results would improve.

The seasonal regression coefficients showed the highest correlation in all four soil classes in spring
and summer. Because of the characteristics of the monsoon climate in South Korea, where precipitation
is concentrated in summer, there are many values that are effective for regression analysis based on
antecedent precipitation, and it is estimated that the correlation is high. However, the reason for the
low R2 of the four soil types in winter is that SM data in winter are associated with high uncertainty
because the soil is frozen, which can cause instrument errors.

3.3. Soil Moisture by Regression Coefficients of Optimal Scenario

Using the optimal scenario, the accuracy of SM estimation was evaluated via comparison to
observed SM at 58 stations. SM was estimated using the regression coefficients, and the accuracy
with respect to the observed SM was verified by R2 and root mean square error (RMSE) (Table 6).
The graphs between observed SM and estimated SM at major stations are illustrated in Figure 8.

Table 6. Summary of the average (2013–2015) R2 and root mean square error (RMSE) values at 58 soil
moisture stations.

Station R2 RMSE (%) Station R2 RMSE (%) Station R2 RMSE (%)

1 0.54 2.02 21 0.61 1.63 41 0.53 5.22
2 0.36 9.64 22 0.68 1.09 42 0.39 2.17
3 0.39 12.21 23 0.55 3.32 43 0.55 2.48
4 0.35 2.88 24 0.35 4.06 44 0.39 3.65
5 0.48 1.61 25 0.35 1.25 45 0.60 1.14
6 0.34 3.21 26 0.34 0.56 46 0.60 2.09
7 0.39 2.93 27 0.31 4.16 47 0.44 0.46
8 0.48 1.62 28 0.52 3.57 48 0.50 3.75
9 0.38 2.53 29 0.59 4.62 49 0.42 2.41
10 0.76 0.82 30 0.34 2.55 50 0.51 0.86
11 0.43 3.56 31 0.50 3.74 51 0.40 2.51
12 0.52 1.91 32 0.33 1.77 52 0.47 1.42
13 0.41 1.68 33 0.53 5.91 53 0.36 3.80
14 0.32 2.44 34 0.47 1.42 54 0.32 2.00
15 0.52 3.80 35 0.60 2.04 55 0.43 2.39
16 0.42 3.10 36 0.61 1.55 56 0.45 0.46
17 0.59 2.59 37 0.60 1.05 57 0.54 5.22
18 0.68 2.31 38 0.60 0.76 58 0.35 2.55
19 0.41 0.71 39 0.30 4.31
20 0.68 1.26 40 0.55 1.86

R2 and RMSE for all soil types ranged from 0.30 to 0.76 (R2) and 0.46% to 12.21% (RMSE).
The overall R2 and RMSE were greater than 0.4 (R2), indicating a constant correlation. Most of the
RMSEs were less than 5.0% (RMSE), but the RMSEs at Stations 1 and 2 were greater than 9.0% (RMSE).
The main errors may have been associated with the artificial water supply. Unlike other stations, these
two stations are located near upland crop and paddy field areas. Therefore, the observed SM was
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likely influenced by the agricultural water supply in addition to precipitation during the irrigation
period from April to June.

Figure 8. Comparison of observed soil moisture and predicted soil moisture for each soil type. The black
line is observed soil moisture, and red points are soil moisture values predicted using the multiple
linear regression model. These graphs are representative results of each soil type.
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Notably, R2 and RMSE in winter were poor, as illustrated by the many missing values, and
uncertainty exists in observations due to freezing and mechanical errors in the soil. Thus, the prediction
accuracy is low in winter due to the difficulty of establishing an appropriate regression model.
Additionally, some observations with low correlations did not fit the soil properties. After refining the
soil classes in further research, it is expected that the R2 and RMSE of these observatories, as well as
those of the other observation sites, will increase because of the characteristics of the regression model.
Currently, 43 of the 58 stations are occupied by loam and clay, and these 43 stations are calculated
using one regression equation for each season. Therefore, as mentioned above, improvement of the
soil classification is necessary.

3.4. Distribution of Estimated Soil Moisture

The SM distribution by soil type was estimated using normalized regression coefficients (Table 7).
The monthly distribution maps of spatial SM and spatial precipitation (PCP) were generated from
2013 to 2015 (Figure 9). From the results of the monthly distribution map, spring drought was severe
until March due to the absence of rain in 2013 and 2015. As seen from Figure 9, there was no rainfall in
other regions, except for northeastern South Korea, until January. Therefore, SM was relatively low
compared with other regions. Because PCP was observed throughout South Korea from March to
April, SM increased by 5–6%. However, SM in May decreased due to the absence of rain. These results
show that SM depends on spatial PCP pattern.

Table 7. Normalized regression coefficients in four seasons and for four soil types.

Soil Type Season Con. LST NDVI
PCP (mm)

n n-1 n-2 n-3 n-4 n-5

Silt

Spring 0.426 −0.082 −0.040 0.565 0.825 0.584 0.463 0.426 0.297
Summer 0.472 −0.170 0.003 0.266 0.321 0.193 0.151 0.103 0.123
Autumn 0.322 −0.030 −0.037 0.535 0.652 0.463 0.405 0.351 0.330
Winter 0.030 0.757 −0.022 0.024 0.187 0.249 0.157 0.135 0.145

Clay

Spring 0.632 0.411 −0.719 0.129 0.142 0.128 0.087 0.091 0.125
Summer 0.635 0.509 −0.627 0.329 0.250 0.218 0.210 0.212 0.169
Autumn 0.307 1.499 −1.156 0.054 0.183 0.082 0.126 0.049 −0.045
Winter −0.089 0.846 −0.069 0.205 0.376 0.302 0.230 0.223 0.144

Loam

Spring 0.621 −0.224 −0.065 0.327 0.454 0.375 0.318 0.275 0.280
Summer 0.329 −0.110 0.116 0.424 0.473 0.415 0.358 0.325 0.355
Autumn 0.657 −0.383 0.083 0.334 0.448 0.343 0.300 0.283 0.271
Winter 0.382 0.146 0.119 0.210 0.263 0.233 0.198 0.174 0.195

Sand

Spring 0.469 −0.271 0.006 0.222 0.323 0.214 0.182 0.148 0.205
Summer 0.248 −0.080 0.164 0.240 0.260 0.183 0.163 0.128 0.138
Autumn 0.499 −0.372 0.033 0.331 0.368 0.253 0.186 0.162 0.152
Winter 0.137 0.357 0.173 0.316 0.401 0.353 0.275 0.224 0.247

Note: Standardization was performed for each independent variable. The equation is given as follows:
Standardization = (Variable (constant, LST, NDVI, PCPn) − Minimum variable (constant, LST, NDVI,
PCPn)/Maximum variable (constant, LST, NDVI, PCPn) − Minimum variable (constant, LST, NDVI, PCPn)).

In particular, in the June SM map, the SM in the western part of the Korean Peninsula sharply
decreased because there was no rainfall for the three months after March from 2013 to 2015. This trend
is due to the monsoon climate of the area. All areas of South Korea are affected by monsoons,
and wet and dry seasons occur each year, with seasonal variations in precipitation. Usually, June
through August (summer) is the wet season, and most of yearly rainfall occurs during this period.
Approximately 30% of the annual rainfall occurs in the other 9 months.
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Figure 9. Spatial comparison of monthly (2013–2015) (a) soil moisture and (b) rainfall throughout
South Korea.

3.5. Comparison of Drought Index

The SMI and SPI in 2015, an extreme drought year, are illustrated in Figure 10. The SPI was
extremely low (dry) in Gyeonggi and Gangwon Provinces (northern part of South Korea) on 1 January
2015. In March and May, SMI and SPI values show that drought was alleviated by rain. However,
the SMI and SPI levels remained severe in Gyeonggi and Gangwon Provinces. This drought was
resolved by large-scale rainfall events in July, and the SMI approached zero in southern regions where
rainfall occurred. After July, the soil moisture naturally increased and decreased according to the
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precipitation. This pattern is consistent with the tendency of SPI. Coupling with SPI, SMI can be used
as meteorological drought index in forested area and agricultural drought index in cultivation area.

Figure 10. Comparison of the soil moisture index (SMI) and standardized precipitation index (SPI):
green and red dashed circles indicate areas where the SMI and SPI exhibited good agreement.

4. Conclusions

This study estimated the spatial SM of South Korea from January 2013 to December 2015 using
an MLR model and MODIS satellite data and evaluated the results by comparison with observed SM
data at 58 stations. From the original MODIS LST data, daily spatial LST was corrected using CM
technique. Additional satellite data (NDVI of Terra MODIS) were used to reflect vegetation variation.
The observed precipitation measured from AWSs of the KMA considered during the simulation
period was interpolated using the IDW method to match the spatial resolution of 1 km. Although
the USDA textural classification, which divides soil into 12 classes, is one of the most widely used
soil classification systems, the soil was classified into four types (loam, sand, clay and silt) based on
the largest proportion of soil in South Korea. Finally, the regression coefficients of the MLR model
were estimated seasonally considering the five-day antecedent precipitation. The primary results are
summarized as follows:

1. The R2 of MODIS LST corrected by CM were between 0.83 and 0.99 at all LST stations. The results
showed the values were generally accurate compared to the observed LST.

2. The p-values of all the regression coefficients were less than 0.05, except for a few coefficients of
NDVI for silt, indicating statistical significance. The R2 values of the regression coefficients for
the 4 soil classes were between 0.28 and 0.67. The reason for the low R2 values of less than 0.5 is
that the soil classification for each observation site was not completely accurate.

3. The seasonal regression coefficients showed the highest correlation in all four soil classes in
summer due to the characteristics of the monsoon climate in South Korea, where precipitation is
concentrated in summer. There are many values that are effective for regression analysis based
on antecedent precipitation.

4. When we simulated SM using the estimated regression coefficients, the overall R2 was greater
than 0.4 at most observation sites (approximately 66%), except for some observations. Therefore,
as mentioned above, improvements in soil and season classification are necessary.
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5. For distributing spatial SM, normalized regression coefficients were estimated using min–max
normalization. Normalization typically showed relationship which independent variable has the
largest influence on the dependent variable in MLR analysis. In this study, the normalization was
performed using min–max normalization.

6. In the spatial soil moisture distribution, simulated SM tends to increase and decrease with
precipitation. This tendency is more clearly seen in the SMI map, where the SMI decreases from
−2 to −3, indicating a weak drought. From March to April in 2014, PCP was observed throughout
South Korea. Thus, SM also increased by 5–6%. These results showed that approximately 60% of
the drought areas predicted by the SMI and SPI overlapped.

The result of the CM technique in this study showed that the accuracy of MODIS LST data
improved by 20–30%. In regression analysis, the most important variables for estimating SM include
2-day, 3-day, 4-day and 5-day antecedent precipitation, LST and NDVI. SM exhibits spatially different
patterns, even in areas with the same land use and soil characteristics. Overall, this study develops
a high-resolution and accurate spatial distribution of SM for the first time based on satellite data.
The results of this study showed that spatial resolution improved by 90% (10 km to 1 km) and R2

increased by 62% (0.30 to 0.49) compared with the spatial resolution (10 km) and R2 (0.30) of a previous
study [48] based on AMSR2 satellite data. Although machine learning methods such as MLR and
artificial neural network (ANN) may achieve better accuracy, there are still some limitations. The MLR
model is trained with a large number of samples, and the more training samples that are available,
the better the model fits the data. This fact draws on a requirement for the abundance of historical
satellite data and contemporary in situ SM observations. If the satellite data and in situ SM archive is
not abundant enough, then the relation values cannot be fully represented by historical observation
pairs [49]. Notably, this study is the first to spatially estimate SM using MODIS LST corrected using the
CM technique in South Korea. Therefore, this study provides a framework for accurate SM prediction
in ungauged areas. Future research study could be improved if the soil classification is further
subdivided and the soil moisture regression coefficient is simulated based on more observed data.
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