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Abstract: The accurate detection of land subsidence rates in urban areas is important to identify
damage-prone areas and provide decision-makers with useful information. Meanwhile, no precise
measurements of land subsidence have been undertaken within the coastal Port-Said City in Egypt
to evaluate its hazard in relationship to sea-level rise. In order to address this shortcoming, this
work introduces and evaluates a methodology that substantially improves small subsidence rate
estimations in an urban setting. Eight ALOS/PALSAR-1 scenes were used to estimate the land
subsidence rates in Port-Said City, using the Small BAse line Subset (SBAS) DInSAR technique.
A stereo pair of ALOS/PRISM was used to generate an accurate DEM to minimize the residual
topography effect on the generated interferograms. A total of 347 well distributed ground control
points (GCP) were collected in Port-Said City using the leveling instrument to calibrate the generated
DEM. Moreover, the eight PALSAR scenes were co-registered using 50 well-distributed GCPs and
used to generate 22 interferogram pairs. These PALSAR interferograms were subsequently filtered
and used together with the coherence data to calculate the phase unwrapping. The phase-unwrapped
interferogram-pairs were then evaluated to discard four interferograms that were affected by phase
jumps and phase ramps. Results confirmed that using an accurate DEM (ALOS/PRISM) was essential
for accurately detecting small deformations. The vertical displacement rate during the investigated
period (2007–2010) was estimated to be −28 mm. The results further indicate that the northern
area of Port-Said City has been subjected to higher land subsidence rates compared to the southern
area. Such land subsidence rates might induce significant environmental changes with respect to
sea-level rise.
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1. Introduction

1.1. SAR Interferometry

Differential Interferometry Synthetic Aperture Radar (DInSAR) is a technique which can measure
the vertical ground movement of an area in millimeter accuracy [1]. In the last decade a number
of Synthetic Aperture Radar (SAR) space-borne satellites have been launched and operated using
different wavelengths and polarizations. These repeat-pass interferometric SAR (InSAR) systems
have repeatedly proven their efficiency due to their high precision and high spatial resolution [1–3].
When the SAR system images the ground, both amplitude (strength) and phase (time) of the
backscattered signals are recorded by the receiving antenna. By computing the phase difference
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from two SAR images acquired at different times, it is possible to generate a radar interferogram,
which contains information about the (static) topography and any displacement in the slant range
direction that may have occurred between the two SAR image acquisition dates.

Radio interferometry was developed after the Second World War. U.S. military performed the first
experiments with airborne radar (SAR) interferometry for topographic mapping in 1971 as reported by
Graham in 1974 [4] who used two vertically deployed antennas to record the relative phase difference
of the backscattered signals. The application of interferometry derived from satellite data using the
repeat-pass method, where the satellite revisits an acquisition area after a certain period, was first
demonstrated by Li and Goldstein using historic Seasat data [5].

The main focus of radar interferometry in early applications was on topographic estimation,
yielding elevation accuracies comparable with optical methods. A problem in those early applications
was that for an effective baseline larger than zero, the topographic signal was always mixed with
the deformation signal. A suitable solution to this problem was differential interferometry, where
the topographic signal obtained from a so-called reference elevation model was scaled to the
baseline conditions of the deformation interferogram and subtracted from it, yielding a differential
interferogram [6]. The first demonstration of differential radar interferometry for mapping the
displacement field of the Landers earthquake was reported by Massonnet et al. [7]. It follows that an
accurate reference digital elevation model is crucial to minimize the effect of the residual topography
and improve the generated interferograms, and thus, enhance the final DInSAR results.

Most of the different factors limiting interferometry applications are related to ground surface
features and the geometry of radar acquisitions [8]. The interferogram shows the phase difference
(φ), which represents the difference in distance measured in the radar line of sight (LOS) and includes
mainly topography, orbital shifting, surface deformation, and atmospheric effects:

∆∅ = ∆∅Topo + ∆∅Defo + ∆∅Atm + ∆∅Noise (1)

Several sources of uncertainty arise when calculating the deformation of the surface between
the two acquisitions, namely (∅Deformation), (∅Topography) which is related to errors in the topographic
model, (∅Orbit) represents the orbital errors, (∅Noise) represents the total noise introduced due to the
instrument and (∅Atmosphere) is related to errors produced by atmospheric delay mainly caused by the
differences in tropospheric water vapor content between scenes at low surface elevations [9].

SAR Interferometry (InSAR) calculates the difference of the phases of two SAR images acquired
over the same point from two different positions in space and at different times. Differential
interferometry (DInSAR) provides an accurate surface deformation by subtracting the topographic
phase from SAR interferograms using an independent DEM, as performed in this study or from
another InSAR image depending on the method the interferograms were generated. There are different
methodologies in differential interferometry (e.g., two-pass, three-pass, and four-pass interferometry)
and with relatively new advanced algorithms (e.g., the Permanent Scatterers (PS) and the Small
BAseline Subset (SBAS)) [9–11]. These techniques enable the mapping of subtle vertical surface
movements (e.g., due to subsidence) down to millimeters [12–17].

In this study, the differential synthetic aperture radar interferometry technique (DInSAR), using
the Small BAseline Subset (SBAS) algorithm [11] was used to monitor the land subsidence rates in
Port-Said City of Egypt, in an attempt to obtain precise detection of land deformation of the study area.

1.2. Land Subsidence in the Nile Delta

The Nile Delta of Egypt is among the most densely populated agricultural areas in the world,
with 1360 inhabitants per km2 [18]. Its coastline is about 400 km long, from Alexandria in the west
to Port-Said and the outlet of the Suez Canal in the east. The low elevation and flat relief of the Nile
Delta make it a vulnerable area which is easily subjected to different environmental hazards such as
shoreline retreat and sea level rise [19–24]. The combination of land subsidence and sea level rise in
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coastal areas may result in serious problems and has a significant and direct impact on the economy,
environment and society [22,25,26].

Hereher [22] stated that around one quarter of the Nile Delta’s area would be flooded if the
sea-level raises 1 m. Consequently, over two million people would be enforced to abandon their homes
and around 214,000 jobs and over US $35 billion in land value, property, and tourism would be lost [27].
Furthermore, Stanley and Clemente [26] add that the construction of new dams in the upper Nile
Basin will only exacerbate the problem of subsidence by reducing Nile water and sediment supply to
the lower Nile Basin and Egypt’s delta margin. Consequently, updated maps of the Nile Delta and
coastal cities of Egypt provide decision makers with useful information for integrated development
and sustainable use of natural resources.

Numerous studies have recorded the vertical land subsidence velocities of the Nile Delta by
using in situ observations [23,26,28–32] as well as remote sensing techniques [15,19,33–40]. Across
the northern Delta, about 87 continuous sediment drill cores from the National Museum of Natural
History (NMNH) of the Smithsonian Institution were used to provide estimates of its subsidence [41].
These drill cores are between 10 and 45 m long and were recovered along transects across the Nile
Delta at intervals of 5 to 15 km [41]. The average vertical ground movement rate was recorded as over
4 mm/year across the Nile Delta, while the maximum rates of subsidence were estimated at the east of
the Damietta promontory (the eastern down-stream branch of the River Nile). Recently, Stanley and
Clemente [26] reported that the maximum subsidence rates have been estimated as 8.4 mm/year in
the NE Delta. The highest subsidence velocities were attributed to the major eastern Mediterranean
fault system with accelerated velocities attributed to the thick belt of Holocene sediments (Figure 1).
This unique geological setting has important implications on subsidence rates in Port-Said City and
will be discussed in a later section.
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Figure 1. The top map shows the average thickness of Holocene sediments in the northern delta
(modified after Stanley and Clemente, [26]) and the bottom map shows the regional structural setting
of the northern Nile Delta (modified after Mosconi et al. [42]).

Becker and Sultan [19] used a set of 14 ascending ERS-1 and ERS-2 satellite radar images of the
Nile Delta covering the period from 1992 to 1999 to estimate the land subsidence rates. They reported
the maximum vertical subsidence velocity as ranging from 6 to 8 mm/year. The study concluded that
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the maximum rates of subsidence correlate with relatively recent deposition and distribution of young
sediments [19]. In another study, a total of 46 descending SAR scenes were used for measuring land
subsidence rates on the north portion of the Nile Delta [39]. Scene acquisition dates range from 1992 to
2000 covering a time span of approximately 8 years. In this study, the delta was subdivided into three
tracks, i.e., northwestern, north-central, and northeastern tracks.

In the northwestern track, the maximum measured rate of uplift was 12.6 mm/year and maximum
measured rate of subsidence was 11.0 mm/year with average subsidence velocity of 0.7 mm/year for
the entire section. In the north-central track, the maximum measured rate of uplift was 12.7 mm/year
and maximum measured rate of subsidence was 16.8 mm/year. In the northeastern track, the
maximum calculated rate of uplift was 4.1 mm/year and maximum calculated rate of subsidence was
10.2 mm/year.

Repeated GPS observations for six stations over the Nile Delta covering the period from 2012 to
2015 were compiled, processed, and analyzed to estimate the land subsidence rate by Hoda et al. [32].
Results of the Hoda et al. [32] study show that land subsidence exists in Port Said and Tanta (Figure 2),
while the remaining four stations of the Nile Delta show uplift with vertical land movements ranging
from +4.9 to −6.5 mm/year, while the horizontal ground movements vary from 4.2 to 6.6 mm/year in
the northeast direction [32].
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No precise geodetic measurements have been conducted within Port-Said City to estimate the
modern land subsidence rate using the Differential Interferometry SAR method. The only detailed
work that has been conducted so far in this area was performed by Gaber et al. [43] where they used
the DInSAR technique based on a reference DEM derived from freely available SRTM data, which has
limited vertical and horizontal accuracy. The other few existing DInSAR studies in the Delta region
do not cover Port-Said City, even though it is considered as one of the most important coastal cities
in Egypt. The motivation to extend our previous work [43] was driven by the need to improve the
generated interferograms by minimizing the effect of the residual topography component in order
to obtain more precise subsidence measurements. Thus, in this work, a field calibrated and more
accurate reference DEM was derived from the ALOS/PRISM sensor for Port-Said City with its almost
flat topography, resulting in much higher accuracies for land subsidence rates than previously possible
by applying the differential interferometry SAR method.
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2. Materials and Methods

2.1. Study Area and Geological Setting

Port-Said Governorate lies in the northeastern side of the Nile Delta extending about 30 km along
the coast of the Mediterranean Sea and north of the Suez Canal between latitudes 31◦00′N and 31◦20′N,
and longitudes 32◦00′E and 32◦30′E (Figure 3). The Governorate is bounded by the Mediterranean Sea
from the north, Lake Manzala from the west, Lake Malaha from the east, and has a total area of about
1351 km2 with an approximate population of 517,216 [44].
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The geology of Port-Said is composed of thick layers of sands and pebbles at its base
(Pleistocene Mit Ghamr Formation) which are overlain by coastal sands and deposits from the Nile
floods (Holocene Bilqas Formation) [45]. The plate tectonic development of the eastern Mediterranean
plays an important role in shaping the Nile Delta region. It is bounded by the northern margin of the
African Plate, which extends from the subduction zone adjacent to the Cretan and Cyprus arcs to the
Red Sea where it drifted apart from the Arabian plate.

The Nile Delta has been affected by small-scale earthquakes along existing minor faults.
The Pelusium Line Fault (Figure 1 bottom map) is the main structural feature along the study area,
trending NE to SW and bounding the eastern part of Port Said City [29,46,47]. The implications of the
Pelusiac Fault system on current subsidence rates in Port-Said City are largely unknown although
there might be a possible contribution by this fault system.

2.2. Field Work

This work builds on and significantly refines previous work done by Gaber et al. [43] in several
aspects. For instance, a significantly higher number of 347 well distributed Ground Control Points
(GCPs) were collected from the field (Figure 4). The increased number of GCPs was necessary to
improve the accuracy of calculated ground elevations. Leveling instrument (Sokkia B40) together with
the GPS (Leica viva GS15) were used define field points as reference GCPs to convert the height values
of the ALOS/PRISM derived DEM for Port-Said from relative to absolute values. GPS (Leica viva



Remote Sens. 2017, 9, 752 6 of 22

GS15) was used for calculating two Bench Marks (BM), one of them in Port-Said at 31◦15′31.32′ ′N
and 32◦16′35.83′ ′E and another one in Port-Fouad at 31◦14′46.59′ ′N and 32◦18′54.66′ ′E (Figure 4).
Precision leveling (Sokkia B40) was conducted to achieve precision measurements in vertical height
and horizontal distance resolutions with respect to the BM (Figure 4).
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2.3. DEM Generation from ALOS/PRISM Data

In order to obtain precise detection of land deformation of Port-Said area with millimeter accuracy
through the DInSAR technique, a very accurate DEM with proper spatial resolution should be used
to minimize the effect of the residual topography on the generated interferograms [48]. Previous
DInSAR subsidence studies of the Nile Delta have used widely available DEMs such as SRTM and
ASTER as reference DEMs with low spatial resolution and low height accuracy [19,39,43]; consequently,
accurate elevation values and deformation results were not possible to achieve. As shown in Equation
(1), generating an accurate DEM is very important for accurate estimation of the topographic model
(∅Topography) and thus detection of small deformations.

In this work, a stereo pair of ALOS/PRISM (nadir and backward) images acquired on the
9th of September 2014 over Port-Said City with a wavelength range of 0.52 to 0.77 µm, level
1B2R (geo-reference data), and gain mode 2, was used to generate an accurate DEM with 2.5 m
spatial resolution. It should be noted that ALOS/PRISM data are available for the entire world at
moderate costs. Extracting a DEM from a stereo pair of ALOS/PRISM data requires image processing
software [49], and is a multi-step decision making process involving the setting of many parameters.
They are briefly summarized here.

During the epipolar generation process, the nadir viewing image was used as the left stereo pair
while the backward viewing image was used as the right stereo pair. To define the relationship between
the two stereo images and get an absolute DEM, 50 ground control points (GCPs) and 23 tie points
were used with 0.825 maximum y parallax (maximum displacement of pixels between two images in y
direction). Subsequently the epipolar geometry was calculated and generated automatically by the
ENVI software. It is very important to re-project the stereo pair so that the left and right images have
a common orientation. The DEM generation was carried out using epipolar images to minimize the
effect of noise in the PRISM data. To validate the quality of the generated DEM from ALOS/PRISM
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stereo-pair of Port-Said City, two different tests were carried out: (1) checking the quality of the
generated DEM with 16 field collected GCPs; and (2) comparing it with the widely available SRTM
DEM. It was found that the accuracy of the output ALOS/PRISM DEM was significantly higher than
the SRTM one with a RMS error of 2.598 m. This finding is further elaborated in Section 3 (Results).
Such obtained accuracy is consistent with [50] results that evaluated the accuracy of the generated
DEMs from ALOS/PRISM at Kanagawa Prefecture (Japan), and found that the vertical accuracy ranges
from 2 m (plain area) to 5 m (mountainous area) with a horizontal accuracy of around 10 m.

2.4. ALOS/PALSAR Data Processing

The differential synthetic aperture radar interferometry technique (DInSAR), using the Small
BAseline Subset (SBAS) algorithm [11] was performed to monitor the land subsidence rates in Port-Said
City of Egypt. The same set of eight ALOS/PALSAR images that were used in Gaber et al., 2014
(observation number 608 and center frame number 610), covering the period from 12 November
2007 to 4 April 2010 were used from an ascending orbit with right looking mode and 34.3◦ incident
angle. PALSAR data were obtained in FBS (Fine Beam Single polarization observation mode with
HH polarization) with high spatial resolution on the ground surface (about 7 m), and were used to
estimate the required displacements information (Table 1). These eight ALOS/PALSAR images were
converted from the Committee on Earth Observing System (CEOS) format to Single Look Complex
format (SLC). Thereafter the ALOS/PALSAR data were clipped to the area of interest in Port-Said City
to focus on the urban areas only which have high coherence pixels values to reduce the computational
time. Figure 5 summarizes the processing workflow applied in this study using the SBAS module.

Table 1. The ALOS/PALSAR data characteristics (note that TB of 2009 images is very large).

Year Date Day/Month Perpendicular Baseline (m) Critical Baseline (m) Temporal Baseline (Days)

2007 12 November
28 December 501.919 13,066.59 46

2008 14 November
30 December 631.823 13,059.13 46

2009 28 May
17 November 828.926 13,054.03 184

2010 2 January
4 April 620.006 13,071.28 92
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2008 
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30 December 
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2009 
28 May  

17 November 
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2010 
2 January  

4 April 
620.006 13,071.28 92 
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The correlation between the two complex SAR images decreases systematically with increasing
baseline length until it completely disappears [51]. The critical baseline is the baseline length for which
the two SAR images become completely decorrelated. Thus, calculating perpendicular, temporal and
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critical baseline were necessary to examine the validity of DInSAR and can be expressed mathematically
for flat surfaces using the following equation [52,53]:

B⊥crit =
λr0 tan(θi)

mδr
(2)

where the carrier wavelength is λ, r0 is the slant range, the incident angle θi and the effective critical
baseline B⊥crit are all defined in a plane perpendicular to the flight paths. Therefore, δr is the slant-range
resolution and m is the factor equal to two for a repeat-pass, where each radar image is acquired
with its own illuminator. Based on the previous equation, the SLC PALSAR image, which had been
acquired on 14 November 2008, was chosen automatically as the super master image by generating a
connection graph between the eight ALOS PALSAR images using the SARscape software. Figure 6
shows the relative positions of the used slave SAR images with respect to the super master position,
and was used to understand and evaluate the connections between the slave and master images. Every
acquisition should be connected with others and if a group of acquisitions cannot be connected to the
main network, all the acquisitions belonging to this group are discarded. For this reason, it is suggested
to collect images at regular time intervals with small baselines (Figure 6). All slant ranges of the eight
PALSAR images were co-registered with super master geometry, which was used as reference image.
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Figure 6. Plots show: time versus relative position (top); and time versus perpendicular baseline
(bottom). Selected acquisitions are displayed as green points and the super master as yellow.

During the interferometric generation stage, it is important to define the slant range multi-look.
This is typically calculated in order to obtain an almost square pixel of the same sensor resolution.
It is necessary to work with a multi-look image greater than 1:1 to increase the signal to noise ratio
(SNR) of the interferograms and provide a robust coherence estimation and speed up the processing of
large areas.
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Each master and slave SAR images acquired with a certain temporal separation were combined
to generate 22 interferograms. Ideally, a zero-baseline configuration would result in interferograms
whose phase information would only be related to the LOS displacement in the scene. The orbit error
contribution and atmospheric parameter ∆∅Atm were corrected during SAR analysis, and the phase
noise was reduced by applying an adaptive filter. The orbital correction was carried out after processing
the SAR data into displacement time series using the small baseline approach of [11]. In addition, the
atmospheric correction was performed by estimating the statistical properties of SAR signals. An initial
set of 22 wrapped interferogram-pairs was generated during the interferometric generation stage,
and wrapped interferogram-pairs were subsequently filtered and used together with the coherence
data to calculate the phase unwrapping. The wrapped interferograms were analyzed in order to
discover unwanted behaviors or data problems (Figure 7) such as inaccurate orbits, un-coherent pairs,
atmospheric artifacts, phase jumps, phase ramps, etc.
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Figure 7. (a) Wrapped interferogram phase with strong phase ramp (mostly in range direction)
originated from the orbit inaccuracies, together with a large atmospheric artifacts (master; 14 November
2008 and slave; 28 May 2009); (b) wrapped interferogram phase in high coherent area with small
atmospheric artifacts (master; 14 November 2008 and slave; 12 November 2007); and (c) well
unwrapped phase in high coherent areas (master; 14 November 2008 and slave; 4 April 2007).

The wrapped interferograms with strong residual phase ramps originated from the orbit
inaccuracies, together with large atmospheric artifacts were corrected by removing the residual
phase frequency. The very large temporal or perpendicular baseline between the two acquisitions,
especially the SAR data that was acquired in 2009 (Table 1) resulted in generating a total of four
wrapped interferograms with very low coherence and these pairs were discarded. Small atmospheric
artifacts and phase jumps were removed during the refinement and the re-flattening steps. The phase



Remote Sens. 2017, 9, 752 10 of 22

unwrapping was performed and the 18 unwrapped interferogram pairs were evaluated to discard
the interferograms that were affected by large phase jumps and ramps. Subsequently, the 18
well-unwrapped interferograms were chosen for further processing for estimating subsidence rate.
Unwrapped interferogram phases were refined and re-flattened by the residual phase method to
estimate and remove the remaining phase constants and phase ramps, in order to relate the changes in
slant range to the deformation only (due to subsidence).

Therefore, about 50 well distributed GCPs with an RMS horizontal error of 0.029 m were selected
to refine and re-flatten the unwrapped interferogram images in order to remove the remaining phase
and phase ramps (Figure 8). The ALOS/PRISM generated DEM was used as a reference DEM because
of its high accuracy. The locations of the selected GCPs were carefully chosen on the geocoded
unwrapped phase interferogram so that they would not be located in the residual topography fringes,
phase jumps or displacement fringes. Only four reference points from the selected 50 GCPs were used
in this study and their displacement are assumed to be 0. The locations of these reference points were
selected from the unwrapped phase file based on the following criteria: (a) no phase jump or ramps;
(b) no residual topography fringes; and (c) no displacement fringes if known. Thus, the final DInSAR
output measurements are relative to these selected reference points [54].
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Figure 8. (a) Unwrapped interferogram before the refinement and re-flattening steps (master;
14 November 2008 and slave; 12 November 2007); and (b) well-unwrapped interferogram after the
refinement and re-flattening steps.

The phase information of such refined unwrapped interferograms was converted into height to
estimate the residual topography. As phase information characterizes the displacement of the reflecting
surface in the radial (line of sight) direction and land subsidence is most likely in the vertical direction,
the LOS displacement was converted into vertical displacement using the following equation [55]:

∆S =
∆R

cosθ(inc)
(3)

where ∆S is the surface displacement in the vertical direction, ∆R is the LOS displacement and θ(inc) is
the incidence angle. Linear mode was used for first estimation of displacement rate, because there is
no prior information about the displacement behavior of the study area. The resulting displacement
pattern using the first inversion step is affected by the atmospheric artifacts. However, by applying the
second estimation inversion, these artifacts were minimized [54].

The next step provides a more refined estimation of the velocity. At this stage, the displacement
location and its spatial coverage can be already retrieved. The estimated residual topography may
be affected by ramps, atmospheric artifacts or other distortion, thus the wavelet functionality can be
used for correct residual topography estimation [54]. Since in this study the SBAS processing chain
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was used [54], the wrong residual topography estimation will compromise the final SBAS geocoding,
causing horizontal shifts in the results. Thus the wavelet number of levels, which refers to the power
of two bases, determines what is kept of the estimated residual topography [56]. Berardino et al. [11]
suggested setting this value as a function of the reference DEM (which was used for the interferogram
flattening) resolution.

Thus, the wavelet number used in this study was set to zero level because of the high fidelity of
the reference DEM derived from ALOS/PRISM data. Due to the DEM’s high spatial resolution, its
sensitivity is large enough to estimate the average residual topography to almost 0 m with a standard
deviation equal to 9.5 m (Figure 9a). Moreover, the accuracy of the SRTM DEM data was checked in
order to compare its results with the field calibrated ALOS/PRISM DEM. The 0 wavelet numbers was
also used with the SRTM data and showed average residual topography equal to −52.5 m and high
standard deviation equal to 35.1 m (Figure 9b). Meanwhile the two wavelet numbers were also used
with the SRTM data and showed average residual topography equal to −1.5 m and high standard
deviation equal to 25.03 m (Figure 9c). It is obviously clear that even after using large wavelet number
with the freely available SRTM data, the PRISM data with 0 wavelet number showed an improved
estimation for the average residual topography.
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Figure 9. Statistic of the estimated residual topography: (a) using 0 wavelet numbers for the
ALOS/PRISM DEM, where the average residual topography becomes almost 0 m and the standard
deviation is significantly reduced and equal to 9.5 m; (b) using 0 wavelet for the SRTM DEM, where the
average residual topography becomes −52.5 m and standard deviation equal to 35.1 m; and (c) using
wavelet number equal to 2 for the SRTM, where the average residual topography becomes −1.5 m and
high standard deviation equal to 25.03 m.
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The second estimation of the displacement using the Small Baseline Subset (SBAS) technique [11]
was performed to recover the final processed displacement time series from the atmospheric artifacts,
taking into account a coherence threshold applied to the input stack of the unwrapped phase (Figure 10).
Finally, all the obtained results were geocoded to adopt two constraints: the velocity precision threshold
and the height precision threshold. To estimate meaningful thresholds, in terms of coverage and
precision, the statistic tool was used (Figure 11). Consequently, the velocity precision threshold value
of seven and the height precision threshold value of three were used (Figure 11).
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The deformation component can be isolated from the non-deformation component by addressing
phase noise due to changing scattering properties over time. This is achieved by using the phase
behavior of the radar signals to select pixels with minimal decorrelation [57]. Pixels that retain a
high degree of correlation (high coherence) were used to show their subsidence. The first step output
deformation results were calculated for all pixels, which show high and low coherence in terms of
signal phase behavior. Finally, the deformation of the pixels that have equal to or more than (≥) 0.3
and 0.4 coherence values were calculated and plotted on the WorldView-2 optical satellite images to
accurately estimate the vertical displacement rates and avoid the man-made changes.
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3. Results

In recent years, a number of researchers have been interested in measuring land subsidence rates
in the Nile Delta region by using radar interferometric techniques [15,19,31,38,39,43]. However, most
of those studies were based on inaccurate topographic measurements introducing uncertainties in
the resulting subsidence rates. Therefore, in this study we focus on modern land subsidence rates
in Port-Said City as measured using the SBAS DinSAR technique. DInSAR technique is becoming a
very reliable quantitative geodetic tool for monitoring deformation, compared to other more simple
quantitative tools (leveling, total station and GPS). Furthermore, SBAS is a radar interferometric
technique that relies on an appropriate combination of differential interferograms created by SAR image
pairs characterized by a small orbital separation (baseline), which reduces the spatial decorrelation
phenomena [11].

In this study, the land subsidence was calculated only within the urban areas of Port-Said City
where coherent pixels could be located to ensure that the obtained land subsidence results would
be more accurate. Moreover, generating an accurate DEM was considered crucial to detect small
deformations accurately.

Figure 12 illustrates the comparison between the extracted DEM from ALOS/PRISM data with
respect to the calculated points in the field using the total station and the SRTM DEM. The figure
shows around 10 m height differences between the SRTM and PRISM DEM data. This is because the
generated DEM using ALOS/PRISM has around 2.5 m vertical height accuracy, while the SRTM has
around 16 m absolute vertical height accuracy and around 10 m relative vertical height accuracy [58].
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vs. ALOS/PRISM; and (b) ALOS/PRISM vs. total station measurements.

The higher spatial resolution of the ALOS/PRISM DEM provides more surface variation details
than the SRTM DEM. Figure 13 shows the differences between the DEMs, i.e. the one derived from
SRTM (Figure 13a) and the one generated from ALOS/PRISM (Figure 13b). The estimated average
residual topography and the standard deviation are clearly minimized using the field calibrated
ALOS/PRISM data. Consequently, the corresponding estimated velocity was significantly improved
by the adopted new method.
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Figure 13. Comparison of: (a) the SRTM derived DEM; and (b) the newly generated DEM from
ALOS/PRISM of Port-Said City.

In this work, the 2009 SAR data pairs were not found appropriate for DInSAR applications due to
their high temporal decorrelation and changes in the urban areas. However, the other DInSAR pairs of
2007, 2008 and 2010 show well-defined fringes in filtered differential interferograms.

It can be clearly observed in Figure 14 that most of the subsidence rates are located in the
northern part of Port-Said City, where dense buildings and skyscrapers are located, but some are in the
southwestern part of the study area. The subsidence was checked in the field by observing many cracks
in the buildings and their lower ground level position compared with the street level. Subsequently, the
Line of Sight (LOS) deformation and subsidence rate for each of the fringes were calculated, and finally
the weighted average of subsidence rate was calculated for continually subsiding areas, i.e., areas
where overlapping fringes were seen in multiple interferograms. The subsidence rates were extracted
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from the different interferograms, which represent different years, and combined together to obtain
the total subsidence rate affecting the study area.
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Figure 14 shows that the vertical displacement mainly takes place in the northern part of the urban
area in Port Said City as well as in Port-Fuad. During the period from 2007 to 2008, the maximum
measured uplift rate was 6 mm/year with a maximum rate of 4 mm/year for 99% of all uplifted
areas. The maximum measured vertical subsidence rate was −11 mm/year with a maximum rate of
−9 mm/year for 99% of all subsidence areas.

From 2007 to 2009, the maximum measured uplift rate was 13 mm/year with a maximum rate
of 10 mm/year for 99% of all uplifted areas. The total measured vertical subsidence rate from 2007
to 2009 was −21.0 mm with a maximum rate of −19 mm for 99% of all subsidence areas (Figure 14).
The cumulative measurements of uplift rate from 2007 to 2010 were 18 mm with a maximum rate of
16 mm for 99% of all uplifted areas. The total measured vertical subsidence rate from 2007 to 2010 was
−28.0 mm with a maximum rate of−25 mm for 99% of all subsidence areas (Figure 14). These measured
rates of subsidence show the cumulative trend of the subsidence during the investigated period as
well as the subsidence rate is not constant over the different years.

Figures 15 and 16 show the estimated deformations at the high coherence pixels with values
≥0.3 and ≥0.4 and plotted on the WorldView-2 image. The obtained results were checked in the field
by locating, photographing and recording the coordinates of some deformed buildings in Port-Said
City. Many buildings show their ground level at lower elevation than the street level and have cracks,
which suggest that they have suffered from the land subsidence. Buildings affected by subsidence
and checked in the fields were plotted on the final land subsidence maps that were derived by using
SBAS DInSAR technique. The location of the affected buildings show high consistence with the SBAS
DInSAR estimated results (Figure 17).
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4. Discussion

Land subsidence in Port-Said is a growing concern because it will induce marked environmental
changes particularly with respect to coastline retreat and sea-level rise in the Mediterranean Sea.
Port-Said, one of the most important ports in Egypt, has witnessed significant urban development
over the past century. Natural gas extraction in the northern part of the Delta and within the urban
footprint of Port-Said has dramatically increased in the last decade. Gas pumping, natural sediment
compaction and seismic activities as well as the surface infrastructure (buildings density and height)
are factors that might cause or accelerate the observed land subsidence.

Furthermore, records from before the construction of Aswan High Dam show that the average
sediment load arriving to the Mediterranean coast was 134 Million tons [59,60]. By the time the
construction of the Aswan High Dam was finished in 1964, only 2% of the sediment load in the Nile
River makes it through the dam, leaving 98% of the sediment entrapped behind the dam in Lake
Nasser [28]. Thus, the construction of the Dam and barrages not only control the water flow, but also
the sediment load delivered to the Nile Delta. In addition, future dams such as the construction of
Ethiopia’s Grand Renaissance Dam (GERD) are expected to diminish Nile flow and sediment supply
to Egypt’s delta region even further [26].

In this study the estimated land subsidence rate for Port-Said City was found to be consistent
with previous research that have used a variety of techniques [19,23,26,28–30,32,39]. The results of
this work show that the northern part of Port-Said (coastal area) is suffering the highest subsidence
rates compared to other parts of the city. This might be due to the existence of numerous towers and
high-rise buildings and road traffic as well as intensive urban expansions and offshore natural gas
pumping not far from Port-Said’s coast. In addition, this part of the city is underlain by relatively thick
compactable fine-grains sediments compared to the southern part. Port-Said City is located at the
northeastern part of the Nile Delta and surrounded by two lagoons indicating in geological terms a
clearly depositional environment.

The proximity of Port-Said City to El-Manzala and El-Malaha lagoons implies the existence of
shallow groundwater table conditions. The increased pressure applied to the ground by high-rise
buildings may alter groundwater flow patterns and plays a very important role during the compaction
of the upper sediments. Altered groundwater flow is restricted within compacted sediment areas
where the land subsidence occurs. Regions without extensive development have not yet experienced
groundwater flow alteration, thus resulting in observed land swelling. Thus, the uplifted areas
identified in this work have been most probably caused by exceeding aquifer poroelasticity under the
compaction forces of the urban buildings.

Sediment compaction and swelling are the most common subsidence and uplifting mechanisms,
respectively, and were both identified in this study. It follows that the compaction of the relatively
young Holocene sediments is expected to be the dominant factor affecting subsidence rates.
The identified pattern of the land subsidence rates has a strong spatial correlation with the distribution
thickness of the Holocene sediments (Figure 1). These Holocene sediments reach a thickness of up
to 47 m in the Port-Said area [41]. Stanley [41] stated that large scale tilting of the delta toward the
northeast resulted in the deposition of thicker accumulations of Holocene sediments in the northern
part of Port-Said City than any other parts of the Nile Delta. Moreover, active tectonic and seismicity
events have also been suggested as a mechanism driving increased subsidence rates in Port-Said [26].

The combined effects of groundwater depletion, natural gas pumping and urban expansion may
cause pronounced subsidence effects in large populated coastal cities such as Port-Said, especially if
insufficient sediment supplies counteract the effect and hidden normal faults enhance the land surface
drop. One such hidden fault is the Pelusiac Fault system (Figure 1 bottom) discussed in Section 2.1
(Study Area and Geological Setting). All aforementioned conditions support the importance of land
subsidence estimations in Port-Said City to provide decision-makers with critical information for
ensuring sustainable development and land-use.
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5. Conclusions

Port-Said City is one of the most important coastal cities in Egypt. Located at northeastern side of
the Nile Delta, it was chosen as a representative coastal city to estimate the modern land subsidence
rate. Until now, no precise geodetic measurements have been conducted within Port-Said City to
capture the present-day subsidence using the differential interferometry SAR method. In order to
accurately estimate small subsidence rates, a very accurate DEM has to be used, thus a stereo pair
of ALOS/PRISM data was used to generate a DEM with 2.5 m spatial resolution and ±2.5 m high
vertical accuracy. A total of 347 well distributed Ground Control Points (GCPs) were collected in
the field using leveling instrument and differential GPS in order to calibrate the height values of the
generated DEM. Furthermore, the PRISM DEM was compared to the widely used SRTM DEM and
the results showed a 10 m height differences with the PRISM DEM, which is matching the field GCP
measurements. Such accurate DEM was used as a reference elevation model to minimize the effects of
the residual topography and to improve the generated interferograms and consequently achieve more
accurate DInSAR results.

The total vertical subsidence rate during the investigated period from 2007 to 2010 was estimated
to be −28 mm. The obtained results show that the northern part and coastal areas of Port-Said City
exhibit the highest land subsidence rates compared to the southern part. This research found that
subsidence estimations in Port-Said City as based on DInSAR data analysis after minimizing the
effect of the residual topography, resulted in significantly improved rate estimations. Furthermore,
such improved subsidence estimations correlated very well with known distribution of subsurface
geology and structures as well as surface infrastructure (buildings density and height) providing
valuable information on sediment compaction and swelling patterns to decision makers for sustainable
development and land-use planning in Port-Said Governorate.
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