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Abstract: Grassland, as the primary vegetation on the Qinghai-Tibet Plateau, has been increasingly
influenced by water availability due to climate change in last decades. Therefore, identifying the
evolution of drought becomes crucial to the efficient management of grassland. However, it is not
yet well understood as to the quantitative relationship between vegetation variations and drought
at different time scales. Taking Qinghai Province as a case, the effects of meteorological drought on
vegetation were investigated. Multi-scale Standardized Precipitation Evapotranspiration Index (SPEI)
considering evapotranspiration variables was used to indicate drought, and time series Normal
Difference Vegetation Index (NDVI) to indicate the vegetation response. The results showed that
SPEI values at different time scales reflected a complex dry and wet variation in this region. On a
seasonal scale, more droughts occurred in summer and autumn. In general, the NDVI presented a
rising trend in the east and southwest part and a decreasing trend in the northwest part of Qinghai
Province from 1998 to 2012. Hurst indexes of NDVI revealed that 69.2% of the total vegetation
was positively persistent (64.1% of persistent improvement and 5.1% of persistent degradation).
Significant correlations were found for most of the SPEI values and the one year lagged NDVI,
indicating vegetation made a time-lag response to drought. In addition, one month lagged NDVI
made an obvious response to SPEI values at annual and biennial scales. Further analysis showed
that all multiscale SPEI values have positive relationships with the NDVI trend and corresponding
grassland degradation. The study highlighted the response of vegetation to meteorological drought
at different time scales, which is available to predict vegetation change and further help to improve
the utilization efficiency of water resources in the study region.

Keywords: grassland; Qinghai-Tibet Plateau; standardized precipitation evapotranspiration index;
normal difference vegetation index

1. Introduction

Drought is generally defined as “a period of abnormally dry weather long enough to cause a
serious hydrological imbalance” [1]. Climate warming increases its frequency. The regions of drought
have been expanding and the degree of drought has been gradually increasing across the globe [2].
As a result, the issues of drought have attracted extensive attention [3].

Drought monitoring and assessment help to predict future drought advancement, especially
summer drought, and make water resources management plans [4]. At present, researchers have
proposed a variety of drought indexes to reflect the degree and characteristics of drought, such as the
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Palmer Drought Severity Index (PDSI) [5,6], Standardized Precipitation Index (SPI) [7], and Surface
Wetness Index (H) [8]. The simplicity of the calculation of these indexes enable the worldwide usage
to assess drought assessment associated with agriculture, water management, net primary production,
and summer wildfires under global warming conditions [9–12]. More recently, Vicente-Serrano
proposed a new climate drought index, the Standardized Precipitation Evapotranspiration Index
(SPEI) [13,14]. The SPEI not only retains the advantages of the PDSI, but it is also suitable for
making multi-spatial and multi-temporal scale comparisons. It takes into account both potential
evapotranspiration (PET) and precipitation in determining the degree of drought [13,14]. Compared
to the SPI, the SPEI can better account for the effects of temperature variability and temperature
extremes on drought assessment [15]. Studies showed that the SPEI reaches higher correlation with
crop yields than the SPI [9]. Thus, this index can capture the impact of temperatures on water demand,
which makes it into a useful tool to monitor and evaluate the degree of drought. Currently, more and
more studies are using the SPEI to evaluate the drought levels at different temporal and spatial
scales. For example, Potopová et al. [16] studied the performance of the SPEI at various time lags
for agricultural drought risk assessment. The change trends and the influence of El Niño-Southern
Oscillation (ENSO) on droughts in Northern Chile have been analyzed in detail based on SPEI [17].
The relationship between low frequency drought and climate index in Beijing was also identified by
using a series of values of the SPEI [18].

In recent years, drought conditions in the Qinghai-Tibet Plateau, which is called as “roof of the
world”, have received a lot of attention due to climate change. Although the northeastern Qinghai
province is abundant of water resources with the honor of being the “water tower” in China, various
degrees of drought have occurred in the Qinghai Province in the last few decades due to climate
change, which exhibited a low-frequency drought. The authors of [19,20] explored the spatio-temporal
characteristics of dryness and wetness conditions across the Qinghai Province; Tian et al. [21] studied
the effects of drought on the archaeal community in the soil in the Qinghai-Tibet Plateau. Many studies
showed that the frequency of drought has increased and the vegetation covers also have changed
owing to climate change in this region [19]. Therefore, it is of great importance to study the drought in
Qinghai area. The distribution, characteristics, and changing trends of drought in Qinghai Province
can provide scientific basis for drought monitoring, prediction, and prevention measures.

The ecological effects of drought are usually reflected by its impact on vegetation that are sensitive
to climate change [22,23]. Grassland, which strongly depends on water resources, will be affected by
climate change and drought frequency. In Qinghai province, the grassland dynamics has exhibited
a continuous degradation process in different regions since the 1970s [24]. It is clear from some
studies that grasslands show a response to drought that may be hysteretic [25]. Monitoring grassland
degradation and identifying the contributing rate of climate change is crucial to grassland management.

The changes in grasslands can be characterized by the Normal Difference Vegetation Index (NDVI),
as it is an important index to reflect the degree of vegetation coverage and its changes over time [26,27],
it is widely applied in the research of vegetation conditions at large scales [28,29]. In recent years,
with the development of technology, especially the application of remote sensing technology that can
provide continuous NDVI information on vegetation conditions over time, a number of studies on
NDVI trends have been undertaken [25,30,31]. The direction of NDVI change can be revealed using
linear regression analysis [32] and the significance of change can be shown using the Mann-Kendall
(M-K) analysis [33]. The vegetation trends and the persistence of the change can be analyzed by
the Hurst index [34], which calculates estimates through the R/S (Rescaled Range) analysis method.
Hou et al. [35] analyzed the characteristics of vegetation cover change in the eastern coastal areas of
China; Xie et al. [36] studied the hydrological alteration analysis method, which was based on the
Hurst coefficient. Thus, it is better suited than correlation models to simulate future vegetation change
under uncertainties in future climate changes.

The responses of the NDVI to climate change have been extensively studied on regional and global
scales. Li et al. [37] studied the response of vegetation to climate change and human activity based
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on the NDVI; Birtwistle et al. [38] found large seasonal-scale changes in the NDVI along channels,
which was useful in determining when and where flow events have occurred. Fu and Burgher [39]
analyzed the correlation between NDVI dynamics and climate, surface water, and groundwater.
In Western China, especially in the Qinghai-Tibet Plateau, many studies have shown that the climate
has changed, becoming warmer and wetter [40,41]. In the eastern parts of China, in spite of the low
frequency of droughts, desertification and oasis degradation have been reported [42]. Therefore,
increasing attention is being paid to those studies that use the NDVI to assess the ecological status in
China [43]. However, the response of NDVI to SPEI at multiple scales for the Qinghai-Tibet Plateau is
still not well understood.

The objectives of this study were to (1) investigate the frequency and intensity of drought in
Qinghai Province based on SPEI at different scales to study the spatio-temporal and multi-scale
characteristics of drought in this region; (2) analyze the spatio-temporal characteristics and changing
trend of vegetation based on NDVI from 39 main meteorological stations in Qinghai Province,
combining the Mann-Kendall method and Hurst index; and (3) explore the correlation between
multiscale SPEI, NDVI with different time-lags, and NDVI trends, which provided the scientific basis
for the efficient management and protection of vegetation.

2. Materials and Methods

2.1. Study Area

Qinghai Province is located in the northeastern part of the Qinghai-Tibet Plateau (31◦32′–39◦12′N,
89◦24′–103◦04′E) with an area of 721,000 km2. The topography is complex and diverse with an average
elevation of 3000 m [20,44]. Because Qinghai Province belongs to the inland hinterland, far from
the sea, the warm air mass is not easy to invade due to the terrain acting as a barrier. Furthermore,
the region is controlled by the plateau monsoon and the East Asian monsoon, which leads to changes
in the frequency and the uniform spatio-temporal distribution of precipitation. The annual average
precipitation ranges from 50 mm to 450 mm—Cold Lake Town has recorded the lowest precipitation
of 15 mm and Jiuzhi County has recorded the highest value of 774 mm [45]. Averagely, Qinghai has
received one of the lowest amounts of precipitation and has become the most arid region compared
to others in the same latitude in the northern hemisphere [46]. In addition, climate is characterized
by strong solar radiation and frequent weather disasters [47]. The unique natural environment of
Qinghai Province determines the flora and vegetation types. The main vegetation types include alpine
shrubs and alpine meadows with forest coverage of only 2.65% [20]. In the past 30 years, the drought
in Qinghai Province has gradually aggravated and become one of the main meteorological disasters
due to climate change and agricultural development. Therefore, it will be significant to study and
analyze the spatio-temporal regularity of drought and the relationship between climate and vegetation
in Qinghai Province.

The spatio-temporal characteristics of meteorological factors were studied based on the analysis
of monthly data from 39 meteorological stations (Figure 1).

2.2. Data Sources and Methods

The meteorological data were acquired from National Climate Center (NCC) of the China
Meteorological Administration, National Meteorological Information Center, and included monthly
temperature, precipitation, wind speed, relative humidity, and actual water vapor pressure. The 39
stations are almost evenly distributed in Qinghai Province (Figure 1), which can reflect the
overall meteorological characteristics of Qinghai. These data are continuous with no missing value,
which ensures their uniformity. The quality and homogeneity of the climatic records from these
stations were checked and controlled using the cumulative deviations test and the standard normal
homogeneity test [48,49].
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Systéme Pour l’Observation de la Terre Vegetation (SPOT VEGETATION) time-series 10-day
composite images (http://www.vito-eodata.be/) derived from the vegetation instrument of the SPOT
4 and 5 satellites were used to calculate the temporal and spatial NDVI values. The resolution of the
data is approximately 1 km [40,50]. Each composite consists of a digital number (DN) file ranging from
0 to 255 and a status map (SM) file. Further, the NDVI data was derived by NDVI = −0.1 + 0.004 × DN.
Using this equation, the NDVI values were restricted to the range between −0.096 (DN = 1) and
0.92 (DN = 255). Then NDVI data were pre-processed with a Maximum Value Compositing (MVC)
method to avoid the errors and uncertainty resulting from large solar zenith angles and cloud cover [50].
The MVC method for NDVI at monthly scale retains only the highest spectral value on a per-pixel basis
for the series of NDVI data. The yearly NDVI was calculated by averaging the monthly maximum
NDVI based on a per pixel basis, which provided annual information about the vegetation conditions
in Qinghai province. The equation was calculated as follows:

NDVIyear =
∑12

i=1 NDVImonth
12

(1)

where NDVImonth is the monthly maximum NDVI. NDVImonth was calculated by maximizing the three
ten-day sets of data including NDVI1, NDVI2, and NDVI3, which refer to the maximum NDVI in the
first ten days, second ten days, and third ten days of each month, respectively [50].

2.2.1. Trend Analysis for Vegetation Change

Temporally, the changing trend and intensity of NDVI can be analyzed using linear regression
and then fitted to simulate the trend of each raster grid in the study region. The slope of the equation
represents the changing intensity and can reflect the spatial distribution of change in the vegetation
cover at different periods [32]. The advantage of this method is that it can be fitted using data for all
years and thus can eliminate the influence of random and accidental factors on vegetation growth in
the study period. Thus, slope values calculated can reflect the actual conditions of vegetation changes
in a specified period [51]. The slope is calculated as follows:

http://www.vito-eodata.be/
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Slope =
n×∑n

i=1 i× NDVIi − (∑n
i=1 i)

(
∑n

i=1 NDVIi
)

n×∑n
i=1 i2 − (∑n

i=1 i)2 (2)

where, n is the number of years that are being studied; NDVIi is the mean value of NDVI at time i;
Slope is the trend of the NDVI, when Slope > 0, the trend is positive in n years, and Slope < 0 indicates
that the trend is negative in n years.

In order to determine the significance of the NDVI trends, the Mann-Kendall non-parametric test
method was used. The values of Kendall inclination β and the Z statistics are generally estimated [52].
β is an unbiased estimate for long-term trends, when β > 0, the sequence shows a significant upward
trend; when β = 0, the sequence shows no significant trend; and when β < 0, the sequence shows
a significant downward trend [53]. Based on the Z statistics, results can be divided into significant
changes (Z > 1.96 or Z < −1.96) and non-significant changes (−1.96 ≤ Z ≤ 1.96).

2.2.2. Hurst Index Analysis Method

The Hurst index (H), proposed in 1951, is used to quantitatively describe the persistence over
time series data sets [54]. It is widely applied in the field of natural sciences as many time series data
sets, such as in the field of hydrology, geology, and climate, and data such as earthquake frequency,
sunspots, etc. Vegetation cover changes are similar to hydrology, climate, and geochemistry, which are
a natural phenomenon with self-similarity and long-range dependence [34,35]. The Rescaled Range
Analysis (R/S analysis) in terms of the asymptotic behaviour of the rescaled range is usually used to
estimate the Hurst values of vegetation [55].

The characteristics of the Hurst index are as follows [56]: The value of H ranges from 0 to 1 and it is
calculated based on the least-square theory. When 0 < H < 0.5, the time series dataset is discontinuous,
that is, the change in the future is expected to be different to the current trend of change. The lower
the value of H, the higher is the discontinuity. When H = 0.5, the dataset is considered to be relatively
independent with a standard Gauss distribution, which does not have continuity. When 0.5 < H < 1,
the time series dataset is continuous, that is, the change in the future is similar to the current trends,
and values of H closer to 1 indicate stronger continuity.

2.2.3. The Standardized Precipitation Evapotranspiration Index

The Standardized Precipitation Evapotranspiration Index (SPEI) is a multi-scale drought index
based on climatic data, which combines the advantages of the SPI and Palmer drought index (PDSI) [13].
It is based on a monthly climate water balance that describes the degree of deviation of regional dry and
wet conditions from climatological mean ones, by standardizing the difference between precipitation
and potential evapotranspiration (PET). The PET is calculated using the Thornthwaite equation
(Thornthwaite, 1948) which is a function of monthly mean temperature. Then the difference between
the precipitation (P) and PET for the month i is calculated according to:

Di = Pi − PETi. (3)

The calculated Di values are aggregated at different time scales, following the same procedure as
that for the SPI. Because there may be negative values in the original data sequence Di, the SPEI uses
the three-parameter log-logistic probability distribution. The probability distribution function of the D
series, according to the log-logistic distribution, is given by

F(x) =

[
1 +

(
α

χ− γ

)β
]−1

(4)

where α, β, and γ are scale, shape, and location parameters, respectively, for D values in the range
(γ < x < ∞). The next step is to define W parameter using following equation
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W = −2ln(P) (5)

where P is the probability of exceeding a determined D value. When P is greater than 0.5, P in
Equation (5) is replaced by 1 − P and the sign of the resultant SPEI is reversed. Finally, SPEI is
calculated as

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (6)

where C0 = 2.515517, C1 = 0.802853, C2 =0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.
A full description of the methodology and validation is described by Vicente-Serrano et al. [13].

In this study, SPEI 3, SPEI 6, SPEI 12, and SPEI 24 were used and to represent the characteristics of 3, 6,
12, and 24 months, respectively. The calculation was performed using ‘SPEI’ package of R software
(http://www.Rproject.org/).

Based on the drought classification criteria of SPEI established by the China Meteorological
Administration, the intensity of drought in the study area was determined. The SPEI ranges and their
corresponding meanings are listed in Table 1.

Table 1. Intensity of drought based on Standardized Precipitation Evapotranspiration Index
(SPEI) values.

SPEI Value Range Drought Grade

<−2 Extreme drought
[−2, −1.5] Severe drought
[−1.5, −1] Moderate drought
[−1, −0.5] Slight drought

>−0.5 No drought

2.2.4. The Correlation between NDVI and SPEI

To reveal the vegetation response to climate factors, we carried out correlation analysis by linear
regression model between SPEI and NDVI values. The NDVI values corresponding to SPEI values
were extracted from the NDVI layers by a 5 km × 5 km rectangle at the sites of the meteorological
stations to reflect the local average NDVI. Using the SPEI and the NDVI data for the 39 sites from 1998
to 2012, we determined the correlation coefficient at different time scales and explored the correlation
and hysteresis. For the annual scale, we used the NDVI values of the year and one year lagged NDVI
series. In order to eliminate the impact of extreme climate, we analyzed the correlation coefficients
between annual average NDVI and annual average SPEI. For the monthly scale, previous studies found
the time lag of the vegetation responses to climate to generally be shorter than a quarter; therefore,
this study considered the time lags for 0–3 months [57]. The correlation coefficient of variables reflect
the vegetation responses to SPEI at different scales. When r > 0, the two variables are positively
correlated, and when r < 0, the two variables are negatively correlated. Further, when |r| ≥ 0.7,
the two variables are considered to be highly correlated; when 0.5 < |r| < 0.7, then they are moderately
correlated; when 0.3 < |r| < 0.5, the correlation is considered low; and when |r| < 0.3, the correlation
between them is considered very weak.

The procedure for our working procedure is illustrated in Figure 2.

http://www.Rproject.org/
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3. Results

3.1. Changes of the SPEI Values in Qinghai Province

3.1.1. Multi-Scale Characteristics of SPEI

The average SPEI values of 39 meteorological stations at different time scales spanning 3, 6, 12,
and 24 months are displayed in Figure 3. Result showed that SPEI values at smaller time scales such as
SPEI 3 and SPEI 6 had high-frequency fluctuations, which indicated a more obvious change between
the wet and dry status. On the contrary, the larger time scale SPEI values exhibited lower variabilities
and revealed long-term drought or wetness. However, irrespective of the time scale, the general trend
in the SPEI changes was similar.
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SPEI 3, in comparison to the SPEI of longer time scales, showed the largest fluctuation amplitude
which was sensitive to short-term precipitation and temperature change and it fully reflects the
characteristics of short-term drought irregularity and frequency of Qinghai Province. The values of
SPEI 6 also showed a relatively large fluctuation amplitude owing to the impact of temperature and
precipitation, which indicated that the semi-annual frequency of drought is high in Qinghai. SPEI 12
and SPEI 24 more clearly reflect the changes of drought over the years in Qinghai Province. SPEI 24
showed that the frequency of drought from 1961 to 1990 was low, that most of years had no drought,
or even had wet years, and only a few years recorded a drought phenomenon. However, the lower
SPEI 24 values in 1990s reflected the high drought intensity and moderate intensity droughts began to
appear. Moreover, the duration of drought was longer, spanning over a few years such as in 2001.

Our results show that the SPEI of multi-time scales can clearly quantify water balance anomalies
with respect to long-term dry and wet conditions [13]. Therefore, it can obtain the status of water
resource availability from rainfall indirectly, and can effectively reflect the degree and duration of
drought in Qinghai Province.

3.1.2. Seasonal Distribution of SPEI

Influenced by the westerly climate, plateau monsoon, and the East Asian monsoon climate, the
frequency of precipitation in Qinghai Province changed significantly for decades and the spatio-
temporal distribution is uneven [58]. It can be seen from Figure 4 that the seasons for drought mainly
appeared in spring, summer, and autumn.
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From the SPEI values in spring, the trend was not obvious (R2 = 0.0015). However, the positive
and negative fluctuations in the year were larger with slight drought in some years. The drought
in summer mainly occurred in June, and the SPEI showed a decreasing trend compared to spring.
Furthermore, the time and intensity of drought both increased and some moderate droughts were
recorded. The drought in autumn generally occurred in September, and the values of SPEI showed
a downward trend from 1961 to 2012 with R2 of 0.14, which indicated that the trend of drought in
autumn in Qinghai was strong. However, the intensity of drought was relatively weaker in some years.
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In winter, the changes of SPEI and the positive and negative fluctuations were both not obvious, with
no drought in most years from 1961 to 2012.

Based on our results of SPEI changes at the seasonal scale in Qinghai Province in recent 51 years,
it can be seen that the intensity of drought in spring, summer, and autumn differed, while drought in
winter was rare. In addition, the values of SPEI in autumn decreased most and the next was in summer.

3.2. Changes in NDVI in Qinghai Province

3.2.1. Spatio-Temporal Characteristics of NDVI

It can be seen from Figures 5 and 6 that the vegetation coverage in Qinghai Province had great
spatial differences, with an average annual NDVI value of 0.44. The eastern part of the study region
was mainly scattered alpine meadow with a higher NDVI level, while the western part had a low NDVI
level with desert grassland. The average annual NDVI fluctuated, but presented an increasing trend
over 15 years (R2 = 0.5172). Between 2001 and 2005, the values increased continuously. The lowest value
of NDVI in the 15 years appeared in 2001, while the highest value appeared in 2010. The increasing
trend in the NDVI (R2 = 0.5172) over the years suggests that the vegetation coverage in Qinghai
Province has increased.

The slopes of the NDVI changing trends in Qinghai Province were derived using linear regression.
Based on this, the trend in the NDVI change and the spatial variation of these 39 sites were determined.
Figure 5 shows that there exists great spatial variation in the slope values (in different colors) across the
study area over the 15 years. In general, positive slopes were recorded for the eastern and southwestern
parts of Qinghai Province, except for Minhe, Guizhou, and Xining stations, indicating an increase in
the vegetation coverage. However, the slopes recorded for the northwestern part of Qinghai were less
than 0, which suggested that in this region, the areas with vegetation coverage have reduced.
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3.2.2. Trend Analysis of Vegetation Cover Change

The result of the Mann-Kendall non-parametric test indicated that 61.5% of study area changed
significantly and 38.5% did not change significantly (Figure 6). For example, MangYa, LengHu,
DaChaiDan, WuLan, TongDe, and TuoTuoHe stations showed a significantly increased trend at
0.05 confidence level. GoLuo, DaRi, HeNan, JiuZhi, and BanMa also showed an increasing trend but
they were not significant at 0.05 confidence level. Further, XiNing, GuiZhou, and MinHe showed a
decreasing trend but they were also not significant at 0.05 confidence level.

Based on the annual NDVI data from 1998 to 2012 in Qinghai Province and the R/S analysis,
we also calculated the Hurst index of NDVI for each monitoring site (Figure 6). The result showed that
69.2% of the sites had a strong positive persistence in the area with vegetation cover (Hurst index >0.5),
and in 30.8% of the sites, the trend was not persistent (Hurst index <0.5). In particular, the proportion
of area that showed continuous improvement reached 64.1%, which was mainly seen in the
MangYa, LengHu, TuoLe, YeNiuGou, XiaoZaoHuo, DaChaiDan, DeLingHa, and MuoMuHong areas.
The proportion of area that showed continuous degradation was 5.1%, which included XiNing and
MinHe. The proportion of area that showed a reverse continuous degradation was 28.2%, which mainly
included in QiLian, GangCha, GeErMu, WuDaoLiang, YuShu, and GuoLuo areas. The remaining 2.6%
of the study area showed a trend of reverse continuous improvement.

3.3. Correlation Analysis between NDVI and SPEI

3.3.1. Correlation between NDVI and SPEI at an Annual Scale in Qinghai Province

The correlation coefficients of annual maximum NDVI and SPEI at different time scales are shown
in Table 2. Although the correlation between NDVI and SPEI at the different time scales were all
positive, SPEI 3 showed a weak correlation with NDVI, while SPEI 12, and SPEI 24 were highly
correlated and the coefficients were greater than 0.8. In addition, the correlations with NDVI from
SPEI 3 to SPEI 24 increased, and SPEI 24 was the most significant. We also found that the correlation
between the NDVI values from the following year and SPEI was much higher than the correlation
between NDVI and SPEI for the same year. However, SPEI 24 was an exception. Therefore, our results
show that the annual maximum NDVI of Qinghai and the annual average SPEI at different time scales
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have different and positive correlations, which indicated that SPEI is one of the factors that affect the
change in NDVI. More important, the results verified the hypothesis that NDVI values indicating the
vegetation cover have time-lag effects of vegetation responses to response to the SPEI level.

Table 2. The correlation of annual maximum NDVI and SPEI at multi-time scales.

NDVI Series SPEI 3 SPEI 6 SPEI 12 SPEI 24

NDVI for the year 0.3596 0.5801 0.8097 ** 0.8927 **
One year lagged NDVI series 0.6652 * 0.7534 ** 0.8325 ** 0.8035 **

* Significant correlation at the 0.05 level, ** Significant correlation at the 0.01 level.

The correlations between SPEI at different time scales and annual average NDVI were analyzed,
and the correlation coefficients were shown in Table 3. The annual average NDVI instead of annual
maximum NDVI was used in the analysis to avoid the extreme values of NDVI. We found that the
annual average NDVI and SPEI at different time scales were also positively correlated as a whole.
However, the correlations were much lower than those between annual maximum NDVI and SPEI.
In addition, the correlation coefficient was lower than that for one year lagged NDVI series (Table 3).

Table 3. The correlation of annual average NDVI and SPEI at multi-time scales.

NDVI Series SPEI 3 SPEI 6 SPEI 12 SPEI 24

NDVI for the year 0.3011 0.5734 0.5321 0.3202
One year lagged NDVI series 0.5611 0.7285 ** 0.8137 ** 0.7680 **

* Significant correlation at the 0.05 level, ** Significant correlation at the 0.01 level.

Finally, in order to clearly investigate the relationship between vegetation cover and drought, we
analyzed the correlation between annual average NDVI and SPEI for each site (Figure 7). There existed
a strong correlation between NDVI and SPEI 3 only in XingHai and QuMaCai, and with SPEI 6 in
ChaKa, XingHai, QuMaCai, and QingShuiHe. However, NDVI of DuNing, XiNing, XingHai, QuMaCai,
MaDuo, and QingShuiHe showed a strong correlation with SPEI 12. The correlations between NDVI
of DuLan, XiNing, XingHai, QuMaCai, YuShu, MaDuo, and QingShuiHe, and SPEI 24 were strong.
Therefore, the response of vegetation cover to drought can be identified according to SPEI 12 and
SPEI 24.
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3.3.2. Correlation between NDVI and SPEI at a Monthly Scale in Qinghai Province

The maximum NDVI values for the growth peak period in growing season (June to September)
for the 39 sites in Qinghai Province were obtained by maximum synthesis method. The correlation
between NDVI and SPEI at different time scales was then analyzed at a monthly scale (Figure 8).
We found that the NDVI and SPEI at different time scale were positively correlated but the strength of
this correlation differed. The NDVI correlation with SPEI 12 and SPEI 24 were much higher than with
SPEI 3 and SPEI 6.
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The time-lag effect on NDVI by drought was further analyzed using NDVI data from one month,
two months, and three months later. The results showed that the correlations between NDVI for that
month and SPEI 12 were highest with a correlation coefficient of 0.6869. One month lagged NDVI
and two months lagged NDVI also showed a high correlation with SPEI 12 and SPEI 24. However,
the correlation between the NDVI value for three months lagged NDVI and SPEI at different time
scales was relatively low (Table 4).

3.3.3. Correlation between NDVI Trend Indicators and SPEI at Different Scales

It could be deduced that the NDVI trend in the study period might also correlated with SPEI at
different scales. The correlation analysis between SPEI values and NDVI trend indicators including
Slope, Z-value, and Hurst in these 39 meteorological stations were further explored (Figure 9). The
results showed that all SPEI values had a significantly positive correlation with Slope values and a
weak positively with Hurst index (Figure 10).
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Table 4. The correlation coefficients of month change of NDVI and SPEI.

NDVI Series SPEI 3 SPEI 6 SPEI 12 SPEI 24

NDVI for the month 0.0181 0.4609 0.6869 ** 0.5106
One month lagged NDVI series 0.0066 0.3745 0.8403 ** 0.8221 **
Two months lagged NDVI series 0.0650 0.1805 0.6289 * 0.8582 **

Three months lagged NDVI series −0.1249 −0.2152 0.1141 0.5454

* Significant correlation at the 0.05 level, ** Significant correlation at the 0.01 level.

4. Discussion

We used the Standardized Precipitation Evapotranspiration Index (SPEI) and Normal Difference
Vegetation Index (NDVI) to analyze drought scenarios and the impacts of drought on vegetation.
Many innovative approaches have been used in this paper. These include: (1) analysis of drought
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at different time scales and seasonal scales; (2) combining linear regression, Hurst index, and Mann-
Kendall analysis to comprehensively study the changing trend in vegetation; and (3) analysis of
correlation and hysteresis between multi-scale SPEI and NDVI.

4.1. Implications of SPEI for Water Resource Management for Grassland

The climate in Qinghai Province is considered to be varied, which is indicated clearly by the
incidence of drought at different time scales. This further confirms the hotspot status of the area about
climate [59]. In recent decades, many studies focusing on droughts in China have been undertaken to
understand the effects of climate change and the ecological effects of drought. The knowledge of the
spatio-temporal characteristics of multiple time scale droughts is important for water management
and drought risk assessment. For SPEI application, Gao et al. [60] undertook a comparative study of
the historical drought data using SPEI and showed the suitability of SPEI for assessing the intensity of
drought in northeast China. In this paper, we first compared the SPEI at different time scales. SPEI for
short time scales (SPEI 3) can reflect seasonal drought, while SPEI 12 or SPEI 24 with longer time scales
reflect annual characteristic of drought. The Soil Moisture Index (SMI) was correlated with the SPEI
with short time scales [61]. It was also verified that the SPEI and Streamflow Drought Index (SDI)
reflecting hydrological droughts are closely related and the correlation coefficients increased from SPEI
1 to SPEI 12 [62]. Homdee et al. [63] also showed that when the time scale is longer, the response of
SPEI to drought is slower. At the seasonal time scale, our results indicated that autumn and summer
had droughts that are more frequent. However, Yang and Liu [64] suggest that the seasons of drought
were spring and autumn in east Qinghai province, which may be because they did not consider the
entire region.

4.2. Relationship between Multi-Scale SPEI and NDVI Dynamics

Remote sensing methodologies can supply valuable information necessary for the climate
analysis and have greatly altered the water resource assessment due to their capability to capture
the spatiotemporal variations in the hydro-meteorological variables. Estimation of land surface
characteristics could be considered as an indirect but efficient way for potential applications in water
resource management. Our results further indicated that, temporally, the NDVI showed an increasing
trend, implying that ecological conditions have improved in recent years. In addition, the lowest value
observed in 2001 reflects the extreme drought event experienced that year [65]. Spatially, most regions
of Qinghai showed a slight increasing trend indicated by the value of the slope at each site. This further
corroborates that the ecological environment has been better, which may be related to increased
precipitation and human protection. According to the persistence analysis of NDVI, the majority
of the study sites showed a Hurst index greater than 0.5, indicating that the positive persistence of
NDVI was stronger. The improved status of vegetation could possibly be explained by the policy of
afforestation [66].

With the aim to identify the time scales and regions affected easily by droughts, the correlation
between NDVI and SPEI at different time scales was calculated for the 39 meteorological stations.
The results indicated that the SPEI 12 and SPEI 24, especially of the next year, were highly correlated
to NDVI, while SPEI 3 and SPEI 6 were not. This may have been because the effect of drought at
shorter time scales was not obvious. Cheng et al. [67] have verified that the influence of precipitation
on vegetation growth over short time scales was slight. In addition, the SPEI 3 and the SPEI 6 of the
following year showed higher correlation with the NDVI, as the impact of change in climate does not
instantly reflect in the vegetation. This lag effect on vegetation by drought has also been reflected in
other studies [68]. The significance correlation between all SPEI values and Slope values indicated that
high-level drought could lead to a more severe grass degradation. There were no large differences
between SPEI values at different scales, which also implied that short-period drought also contributed
greatly to the grass degradation. Our results could be helpful to grassland management, such as
irrigation before growing seasons and prediction of the drought based on the SPEI calculation.
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There are still some limitations in this study. First, we did not study the changes between different
vegetation types. Second, the change of vegetation was not only affected by climate but also human
activities; thus, it is necessary to further explore the reasons of change in NDVI. Finally, different
resource management methods and patterns should be explored for the healthy development of
grassland in Qinghai-Tibet in our future studies [69].

5. Conclusions

The frequency of drought in Qinghai Province had an overall increasing trend from 1961 to 2012,
with intense status in some years. The change in the SPEI value differed with different time scales, i.e.,
the smaller the time scale, the more obvious was the change in the SPEI value. On a seasonal scale,
the intensity of drought was highest in autumn, followed by summer and spring. Winter recorded the
lowest intensity of droughts. Analyzing the change in vegetation cover in Qinghai Province over time
using NDVI values, our study indicated that the values presented an increasing trend from 1998 to
2012 and a continuous increase from 2001 to 2005. Analyzing the spatial variation in the vegetation
coverage in Qinghai Province, we found the values of slope for most regions were greater than zero.
However, Xining, Guizhou, and MinHe were exceptions. Thus, the NDVI values increased over time
and the area where the vegetation cover has improved was much greater than that of degraded area.
In 39 study sites, 5.1%, including XiNing and MinHe, showed continuous degradation in vegetation
cover. Sites including QiLian, GangCha, GeErMu, WuDaoLiang, YuShu, and GuoLuo showed a
reverse continuous degradation and accounted for 28.2% of the study sites. For 2.6% of the study sites,
the trend could not be clearly ascertained.

The correlation between SPEI and NDVI indicated that the annual maximum NDVI and annual
average NDVI had a positive correlation with SPEI at different time scales, while the NDVI for the
following year showed a strong positive correlation. On the monthly scale, the correlation between
NDVI and SPEI were more complex—NDVI for a month, one year, two years, and three years later
were positively correlated with SPEI 12. This indicates that the SPEI is one of the major influencing
factors of NDVI.
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61. Kędzior, M.A.; Zawadzki, J. SMOS data as a source of the agricultural drought information: Case study of

the Vistula catchment, Poland. Geoderma 2017, 306, 167–182. [CrossRef]
62. Li, Y.; He, J.; Li, X. Hydrological and meteorological droughts in the Red River Basin of Yunnan Province

based on SPEI and SDI Indices. Prog. Geogr. 2016, 35, 758–767.
63. Homdee, T.; Pongput, K.; Kanae, S. A comparative performance analysis of three standardized climatic

drought indices in the Chi river basin, Thailand. Agric. Nat. Resour. 2016, 50, 211–219. [CrossRef]
64. Yang, F.; Liu, L. Study on occurrence pattern and trend of drought in east Qinghai province. Arid Zone Res.

2012, 29, 284–288.
65. Fu, Y. The meteorological disasters in Qinghai province in 2001: A review. J. Qinghai Meteorol. 2002, 1, 37–42.
66. Liao, Q.; Zhang, X.; Ma, Q. Spatiotemporal variation of fractional vegetation cover and remote sensing

monitoring in the eastern agricultural region of Qinghai Province. Acta Ecol. Sin. 2014, 34, 5936–5943.
67. Cheng, G.; Zhang, B.L.; Chang, C.H. Correlation analysis on typical vegetation ndvi with temperature and

precipitation in Otintag sandy land. Hubei Agric. Sci. 2013, 52, 1298–1303.
68. Zhao, S.; Gong, Z.; Liu, X. Correlation analysis between vegetation coverage and climate drought conditions

in north China during 2001–2013. Acta Geogr. Sin. 2015, 70, 717–729.
69. Song, M.; Peng, J.; Wang, J.; Dong, L. Better resource management: An improved resource and environmental

efficiency evaluation approach that considers undesirable outputs. Resour. Conserv. Recycl. 2016, 128, 197–205.
[CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0022-1694(03)00178-1
http://dx.doi.org/10.1111/gcb.12945
http://www.ncbi.nlm.nih.gov/pubmed/25858027
http://dx.doi.org/10.1016/j.chemer.2013.03.006
http://dx.doi.org/10.1016/j.ecoinf.2016.03.006
http://dx.doi.org/10.1016/j.geoderma.2017.07.018
http://dx.doi.org/10.1016/j.anres.2016.02.002
http://dx.doi.org/10.1016/j.resconrec.2016.08.015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources and Methods 
	Trend Analysis for Vegetation Change 
	Hurst Index Analysis Method 
	The Standardized Precipitation Evapotranspiration Index 
	The Correlation between NDVI and SPEI 


	Results 
	Changes of the SPEI Values in Qinghai Province 
	Multi-Scale Characteristics of SPEI 
	Seasonal Distribution of SPEI 

	Changes in NDVI in Qinghai Province 
	Spatio-Temporal Characteristics of NDVI 
	Trend Analysis of Vegetation Cover Change 

	Correlation Analysis between NDVI and SPEI 
	Correlation between NDVI and SPEI at an Annual Scale in Qinghai Province 
	Correlation between NDVI and SPEI at a Monthly Scale in Qinghai Province 
	Correlation between NDVI Trend Indicators and SPEI at Different Scales 


	Discussion 
	Implications of SPEI for Water Resource Management for Grassland 
	Relationship between Multi-Scale SPEI and NDVI Dynamics 

	Conclusions 

