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Abstract: Classifying land cover is perhaps the most common application of remote sensing,
yet classification at frequent temporal intervals remains a challenging task due to radiometric
differences among scenes, time and budget constraints, and semantic differences among class
definitions from different dates. The automatic adaptive signature generalization (AASG) algorithm
overcomes many of these limitations by locating stable sites between two images and using them
to adapt class spectral signatures from a high-quality reference classification to a new image, which
mitigates the impacts of radiometric and phenological differences between images and ensures that
class definitions remain consistent between the two classifications. We refined AASG to adapt stable
site identification parameters to each individual land cover class, while also incorporating improved
input data and a random forest classifier. In the Research Triangle region of North Carolina, our
new version of AASG demonstrated an improved ability to update existing land cover classifications
compared to the initial version of AASG, particularly for low intensity developed, mixed forest,
and woody wetland classes. Topographic indices were particularly important for distinguishing
woody wetlands from other forest types, while multi-seasonal imagery contributed to improved
classification of water, developed, forest, and hay/pasture classes. These results demonstrate both
the flexibility of the AASG algorithm and the potential for using it to produce high-quality land
cover classifications that can utilize the entire temporal range of the Landsat archive in an automated
fashion while maintaining consistent class definitions through time.

Keywords: Landsat; land cover and land use change (LCLUC); classification; random forest; signature
extension; topography; National Land Cover Database (NLCD); time series

1. Introduction

The areal extents and distributions of different land cover types play a key role in many of the
ecological and biophysical processes operating within the Earth system, including the absorption of
solar radiation by the Earth surface [1], partitioning of absorbed radiation to latent and sensible heat
fluxes [2], hydrologic processes such as infiltration and overland flow [3], biodiversity [4], and the
movement of organisms within and among landscapes [5]. In addition, land cover maps serve as
critical inputs for constraining many models of Earth system processes [6–8]. Remote sensing provides
the means to map and monitor land cover and land use change (LCLUC) over large regions, at scales
ranging from the regional [9] to the global [10–13].

Remote sensing of LCLUC possesses several challenges, particularly when classifying images
from multiple dates. Developing accurate reference data for training and accuracy assessment of land
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cover maps is an expensive and time-consuming task with tradeoffs that often force researchers to
sacrifice ideal data collection procedures in order to remain within budget and time constraints [14].
The challenges inherent in the classification of land cover from single-date remotely sensed imagery are
compounded when attempting to monitor LCLUC using multi-temporal imagery. For example, when
classifiers are trained independently for each image, inconsistent class definitions among training
datasets increase the potential for semantic errors in change detection. Differences in cover class
designation between two maps from different dates could therefore result either from a genuine
change in land cover or from spurious change due to inconsistent class definitions between the two
maps. Automated approaches based on signature extension use class spectral libraries to map land
cover in multiple images based on a single set of class-specific spectral signatures. These approaches
attempt to enforce spectral consistency in class definitions between images, but are very sensitive
to variation in illumination, sun-sensor geometry, and atmospheric and phenological conditions
between images [15,16]. These signature extension approaches therefore depend on time-consuming
atmospheric correction procedures as well as anniversary date imagery which may not be available in
some regions due to frequent or persistent cloud cover. Unlocking the potential of remote sensing for
mapping and monitoring LCLUC hinges upon the development of algorithms that overcome these
limitations in a consistent and efficient manner.

The automatic adaptive signature generalization (AASG) algorithm [17] offers the potential to
develop automated, multi-temporal land cover classifications while maintaining consistent class
definitions and adjusting to radiometric variation among images. AASG uses a simple change
detection technique to identify pixels that remain stable between two image dates, using these
as the basis for extracting class-specific spectral signatures from subsequent, spatially coincident
imagery and a high-quality reference classification. These generalized signatures adapt to the
radiometric idiosyncrasies of the target imagery and serve as automated training data from which
a new classification can be obtained, thus maintaining consistency in class definitions between images
despite potentially large radiometric differences. Gray and Song [17] found that, unlike traditional
signature extension, AASG can produce accurate land cover maps even when atmospheric effects went
uncorrected and when large phenological differences existed between images (e.g., summer-winter
image pairs in a temperate region).

In this study, we refined the AASG algorithm initially developed by Gray and Song [17] in
order to increase accuracy and consistency of multi-temporal image classification, specifically through
the use of stable site identification parameters that are tuned for each individual land cover class
rather than globally defined thresholding parameters. We also incorporated improved input data,
including multi-season imagery and additional topographic information, and a random forest (RF)
classifier in place of maximum likelihood classification. We tested the updated version of AASG,
hereafter referred to as AASG2, in the Raleigh-Durham-Chapel Hill region of North Carolina, USA
using Landsat 5 TM imagery (path 16, row 35), a digital elevation model (DEM) from the Shuttle Radar
Topography Mission (SRTM), and the National Land Cover Database (NLCD) for reference land cover
classifications and comparison.

2. Materials and Methods

2.1. Automatic Adaptive Signature Generalization

The automatic adaptive signature generalization (AASG) algorithm automates the workflow for
conducting multi-temporal land cover classifications with minimal reference data requirements [17].
AASG ensures consistency in class definitions between images by automatically adapting class spectral
signatures to each image, thereby reducing the potential for semantic errors in LCLUC detection despite
potentially large radiometric differences between images. Because frequent cloud cover may limit the
availability of anniversary-date imagery, AASG’s signature generalization approach allows temporally
irregular imagery, including scenes in very different phenological states, to guide land cover change
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detection. AASG operates under the assumption that within a sufficiently large scene, conversion from
one land cover class to another is relatively rare, and thus the majority of the landscape will remain
stable between the dates of a reference image (I1) and a spatially coincident target image (I2).

Stable sites are selected in two steps. First, a larger group of potential stable sites are selected from
those pixels located near the mean of the image difference histogram (I2−I1; Figure 1). Specifically,
Gray and Song [17] identified stable pixels as those falling within a predefined number of standard
deviations from the mean of the image difference histograms, such that µk ± c × σk, where µk and σk
are the mean and standard deviation of the difference values for class k, respectively, and c is a globally
defined thresholding parameter determining the width of the interval. Second, due to the potential
for confusion arising from image misregistration and edge effects, especially along class boundaries
in multi-temporal imagery, a class-specific erode filter based on a user-defined kernel is employed to
ensure that only core pixels are retained as stable sites.
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Figure 1. Identification of stable pixels based on image difference histograms (I2−I1) for each land
cover class. Stable pixels are those within a given distance from the mean (µk) of class k.

Once the sets of pixels corresponding to stable sites between the training and target images
are determined, they can be coupled with their respective class labels from a high-quality reference
classification (C1) and used to develop class-specific spectral signatures in the target image (I2).
While the spectral signatures of stable cover classes may have changed greatly between the two
image dates due to variation in atmospheric and ground moisture conditions, vegetation phenology,
illumination/view geometry, etc., the identity of those classes will have remained unchanged.
Thus, the class-specific spectral signature sampled from stable sites in the target image (I2) can
be used as adaptive training data (in conjunction with the consistent class definitions determined
from the reference classification) to parameterize a unique classifier for the entire target image
(including non-stable sites) (Figure 2). The generalized signature derived for each target image
is adaptive in that it reflects the specific radiometric profile of the target image, and automated because
sampling in all subsequent imagery is entirely algorithmic and obviates the need for user-delineated
training data and image-specific radiometric correction procedures. The accuracy and efficiency of
AASG for performing multi-temporal image classification makes it especially attractive for large-scale
operational approaches.
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Figure 2. Workflow for the AASG method. Adapted from Gray and Song [17].

2.2. Class-Specific Thresholds for Stable Site Identification

In the initial version of AASG, hereafter referred to as AASG1, Gray and Song [17] tested global
c thresholding parameters of 0.25, 0.5, and 1.0. However, for scenes with large variation in both the
prevalence and within-class heterogeneity of land cover classes, these globally defined parameters
may be inadequate. Rather, the thresholds for identifying stable pixels can be tuned for each land
cover class to balance the needs for an adequate training sample size while minimizing the probability
of contaminating the training set with mislabeled pixels. We therefore tested a simple approach that
scales the proportion of pixels identified as stable for a given land cover class as a function of the total
number of pixels in the scene that are assigned to that class in the reference classification. For land
cover class k with Nk pixels in the reference classification, we define a set proportion, pk, of Nk to
identify as stable sites:

pk =


0.5, i f Nk ≤ 100

b − a × log10Nk, i f 100 < Nk ≤ 10·nmax
nmax
Nk

, i f Nk > 10·nmax

(1)

where nmax is a user-defined maximum number of pixels that can be identified as stable, and a and b
are parameters that scale pk between 0.1 and 0.5. The proportion of pixels considered stable therefore
declines as the prevalence of a given class increases, reflecting the need to achieve an adequately
large sample size for less prevalent land cover classes while reducing the probability of incorrectly
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including unstable pixels in the training set as class prevalence increases. Thus, for land cover classes
that constitute a very small portion of the landscape (Nk ≤ 100), half of the pixels are used as candidate
training pixels in AASG2 (Figure 3). However, we note that for such classes there may be high variance
in the training set due to small Nk and a higher likelihood of including unstable and mislabeled pixels,
and it may be appropriate to consider removing such a class from further analyses or to combine
it with a similar class. For land cover classes that comprise a large proportion of the entire scene
(Nk > 10·nmax), a maximum of nmax pixels are identified as stable and used as training candidates.
For classes with intermediate representation in the landscape, we scale the proportion of pixels used as
candidates from 0.5 to 0.1 as Nk increases. Once pk has been determined, the pk × Nk pixels nearest to
the class mean of the image difference histogram are considered to be stable. As in AASG1, the stable
site maps are eroded using a 3 pixel by 3 pixel filter window to minimize errors due to potential image
misregistration and mixed pixels along class boundaries.
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2.3. Topographic Metrics

Topography is an important driver of soil moisture [18], vegetation distribution [19,20],
and human land use [21]. Since topography plays such an important role in the movement of water
over and through landscapes, topographic indices can improve classification of land cover classes,
particularly those characterized by surface water [22] and wetlands [23,24]. In AASG1, the topographic
wetness index (TWI) was used as ancillary input data. In AASG2, we used a 30 m DEM from SRTM to
derive an expanded suite of topographic indices for use as predictor variables. In addition to elevation
and slope, we also used the upslope accumulated area (UAA), a modified UAA index (mUAA), and the
TWI as predictor variables in AASG2 classifications. UAA and TWI capture important aspects of
water flow and accumulation and are frequently used in watershed hydrology and spatial scaling
of ecosystem fluxes [25–28]. We calculated UAA, mUAA, and TWI using the System for Automated
Geoscientific Analyses (SAGA), a freely available geographic information system [29].

2.4. Multi-Season Imagery

In AASG2, we utilize imagery from multiple seasons per year as training data to increase
the robustness of classification predictions of target imagery. The use of multi-season, rather than
single-date imagery, mitigates against the potential for confusion and spurious classification especially
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for land cover classes that demonstrate large intra-annual variability and ephemeral reflectance
characteristics [9,30]. The use of multi-season imagery to inform class spectral signatures is especially
effective for classifications of phenologically variable cover types like agriculture. Without the
ability of multi-season imagery to capture a potentially short growing season for certain crops,
a single-date image from a pre-leaf-out or post-harvest date would likely fail to adequately capture
crop cover [31]. Similarly, the inclusion of both leaf-off and leaf-on imagery from temperate
regions allows for better prediction of sub-canopy cover types, such as ephemeral water bodies or
impervious surfaces, that would otherwise be obscured by the upper canopy in leaf-on imagery [32–34].
The inclusion of multi-season imagery for training and prediction is in keeping with other aspects of
the AASG algorithm which seek to minimize ephemeral reflectance characteristics and instead capture
a generalized spectral signature that is consistent for the entire time period of the training dataset.

2.5. Random Forest Classification

In AASG2, we replaced the maximum likelihood classifier used in AASG1 with a random forest
(RF) classifier. The RF, which consists of an ensemble of classification trees, is a machine-learning
technique that can be used in a variety of contexts for classification of multidimensional datasets [35].
Each “tree” in the “forest” is grown from a bootstrapped sample of the observations with the remaining
observations left “out-of-bag” (OOB). The final classification for a new or withheld observation is then
determined based on the majority vote of the trees. The OOB observations are also used to estimate
the importance of each predictor variable by randomly permuting each predictor, thus destroying its
information content, and measuring the increase in error of OOB observations as compared to the
original classifier. RF classifiers are not as susceptible as individual classification trees to over-fitting
or “overtraining” [35–38], and they are especially good at modeling nonlinearity and interactions
among predictor variables [39]. RF classifiers have demonstrated higher predictive accuracy than
more traditional classification methods in both ecology [39] and remote sensing [40], and have
demonstrated comparable predictive accuracy to other machine-learning methods (e.g., support
vector machines) [36,41]. In addition, RF models are relatively robust to error or noise in training
datasets [35,37,42], making them particularly appealing for mitigating potential errors in stable site
identification or assignment of class labels to stable sites.

2.6. Study Area and Remotely Sensed Data

We evaluated the performance of AASG2 in a 60 km × 60 km study area of the Research Triangle
region in North Carolina, USA. The Triangle has experienced rapid population growth and land
cover change over the past several decades, making it an ideal study area for validation of AASG2.
Specifically, over the past thirty years, the Triangle Region experienced accelerating LCLUC trends
driven by urbanization and interacting trends in timber and agricultural markets [43]. Changes were
unevenly distributed throughout the study area, with the greatest cover change occurring due to
urbanization near cities like Raleigh, Durham, Cary, and Apex, primarily at the expense of surrounding
agricultural fields and secondary forests [9]. Agricultural and forest land cover—including planted
pine, oak-pine mixed, and upland hardwood forests—experienced large transformations prior to and
during the study period owing to urban development as well as conversion among the two cover
types following market forces [9,43].

We obtained atmospherically corrected Landsat 5 TM surface reflectance over our study area from
the LEDAPS archive [44,45]. While atmospheric correction and conversion to surface reflectance are not
necessary for the development of high-quality land cover classifications with AASG [17], it is necessary
for the accurate calculation of spectral vegetation indices. We selected early-, mid-, and late-season
images from three single-year windows centered on the target classification dates of 2006 and 2011
(Table 1). While we attempted to collect anniversary date images for each season, image dates were
offset by a month or more due to the presence of clouds. Cloud-free summer images were unavailable
in 2006 and 2011, so we instead used images from 2007 and 2010, respectively. We transformed each
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image in the multi-season stack into “brightness” (KT1), “greenness” (KT2), and “wetness” (KT3)
components using the Kauth-Thomas tasseled cap transformation [46,47].

Table 1. Landsat 5 TM images used in this study.

Year
Season

Early Mid Late

2001 18 September 2001
2006 9 April 2006 18 August 2007 5 December 2006
2011 7 April 2011 10 August 2010 1 November 2011

For reference and comparison with the AASG classifications, we obtained the National Land Cover
Database (NLCD) classifications of our study region for the years 2001 [48], 2006 [49], and 2011 [50].
We excluded developed open space (class 21) from further analyses since it is spectrally similar to
other grass-dominated classes [51,52] and classification requires additional contextual information
such as municipal boundaries [9]. This class was masked from the reference classification, and any
pixels classified as developed open space in NLCD were reassigned to their most likely alternative
class based on the spectral signatures of the remaining NLCD classes.

2.7. Analyses

AASG requires a high-quality reference classification in order to extract class spectral signatures
for a new image. Here, we used the 2001 NLCD as the reference classification (C1) with a 2001
mid-season Landsat reference image (I1). We then used both AASG1 and AASG2 to classify land
cover for 2006 and 2011. First, for AASG1, we followed the original version proposed by Gray and
Song [17]. We used a global c thresholding parameter of 0.25 to identify stable sites in image difference
histograms based on the reflectance in the red band (Landsat 5 TM band 3). In AASG1, we used
a maximum likelihood classifier with ten predictors, including mid-season surface reflectance from
the six mid-season solar reflective bands of Landsat TM plus four additional spectral transformations
and ancillary datasets used in Gray and Song [17]: the normalized difference vegetation index,
the simple ratio vegetation index, the structural index [53], and TWI from SRTM. Second, for AASG2,
we used the updated procedures detailed in sections 2.2–2.5. Stable sites were determined from image
difference histograms calculated from mid-season KT1 using class-specific thresholding parameters.
We tested several values of nmax for determining stable sites. AASG2 was based on an RF classifier with
14 predictors: three KT indices from each image for the three seasons plus five topographic indices
(elevation, slope, UAA, mUAA, and TWI).

Gray and Song [17] showed that AASG is capable of producing accurate land cover maps,
with overall accuracies that meet or exceed those of traditional signature extension approaches.
To demonstrate that AASG2 further improves the ability to automatically update existing land cover
classifications, we compared predicted land cover from AASG1 and AASG2 to NLCD land cover for
2006 and 2011, which were not used in the training process. While the NLCD also contains error and
cannot be regarded as a “true” source of reference data, these comparisons provide a good benchmark
for testing whether AASG2 improves the ability to extend high-quality classifications to other time
periods compared to AASG1. Following standard accuracy assessment procedures, we present these
results in confusion matrices, which are normalized by the proportion of the landscape that is mapped
as each class [54]. From these confusion matrices, we calculated overall agreement (OA), user’s
agreement (UA), and producer’s agreement (PA) between the AASG and NLCD classifications for
each year.

3. Results

AASG1 and AASG2 were generally successful in reproducing the land cover patterns of the
NLCD in both 2006 (Figure 4) and 2011 (Figure 5). The major water bodies, which include Falls Lake in
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the northeast and Jordan Lake in the southwest, were clearly evident in all classifications. Both AASG
algorithms reproduced extensive areas of woody wetlands to the north of Jordan Lake and west of
Falls Lake in both years, though with varying degrees of success, as discussed below. The AASG
models also reproduced extensive agricultural fields, primarily hay/pasture, in the northwestern
portion of the study region. The major metropolitan areas of Raleigh, Durham, and Chapel Hill were
successfully mapped by both AASG models.
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With few exceptions, the total areal extent of each class as mapped by AASG2 was more similar
to the NLCD class extents than AASG1 (Figures 4 and 5, and Tables 2 and 3). This improvement is
particularly evident for low intensity development, mixed forest, grassland/herbaceous, and woody
wetlands. The extents of low intensity development and mixed forest were substantially
underestimated by AASG1, while AASG2 and the NLCD mapped very similar proportions of these
cover classes in both 2006 and 2011. The extent of grassland/herbaceous was overestimated by AASG1
and underestimated by AASG2 in both 2006 and 2011 compared to the NLCD. AASG1 overestimated
the extent of woody wetlands in 2006 but underestimated its extent in 2011, while AASG2 produced
woody wetland extents that were more stable from year to year and more similar to the NLCD.
The most notable differences in proportional land cover between the NLCD and AASG2 occurred in
the two agricultural classes. Relative to the NLCD, AASG2 overestimated the extent of hay/pasture
and underestimated the extent of cultivated crops.

Overall agreement between AASG2 and the NLCD was higher than that between AASG1 and the
NLCD in both 2006 (70.2% vs. 60.2%; Table 2, Tables S1 and S2) and 2011 (67.9% vs. 60.1%; Table 3,
Tables S3 and S4). When aggregated from the modified Anderson Level 2 classification system to
Anderson Level 1 (which combines the sub-divided developed, forest, agriculture, and wetland classes
into a single class each), the agreement with the NLCD increased to 74.8% in 2006 and 76.1% in 2011
for AASG1 and 81.8% in 2006 and 80.9% in 2011 for AASG2. Overall agreement between the NLCD
and AASG2 exhibited a monotonic increase with increasing nmax (Figure 6), suggesting that the RF
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model benefits from having a large training sample set that captures a large range of within-class
variability. The ability to identify a large training dataset is a major advantage of AASG. Traditional
manual delineation of training sets typically attempts to find the purest pixels representing a land
cover type, therefore losing the inherent within-class variability. The high within-class variability
included in large training samples would be a major challenge for conventional parametric classifiers,
such as the maximum likelihood classifier. However, since the RF is a nonparametric machine-learning
algorithm, the large within-class variability can be used in the classification, leading to improved
classification accuracy.

Remote Sens. 2016, 8, x FOR PEER REVIEW 9 of 16 

 

algorithm, the large within-class variability can be used in the classification, leading to improved 
classification accuracy. 

 
Figure 5. 2011 land cover from NLCD, AASG1, and AASG2. 

 
Figure 6. Overall agreement between NLCD and AASG2 as a function of nmax. 

  

Figure 5. 2011 land cover from NLCD, AASG1, and AASG2.

Remote Sens. 2016, 8, x FOR PEER REVIEW 9 of 16 

 

algorithm, the large within-class variability can be used in the classification, leading to improved 
classification accuracy. 

 
Figure 5. 2011 land cover from NLCD, AASG1, and AASG2. 

 
Figure 6. Overall agreement between NLCD and AASG2 as a function of nmax. 

  

Figure 6. Overall agreement between NLCD and AASG2 as a function of nmax.



Remote Sens. 2016, 8, 691 10 of 15

Table 2. Comparison of proportional land cover, overall agreement (OA), producer’s agreement (PA),
and user’s agreement (UA) in 2006. Full confusion matrices are presented in Tables S1–S2.

Class
NLCD AASG1 (OA = 60.2%) AASG2 (OA = 70.2%)

Cover Cover PA UA Cover PA UA

11 Open water 3.4% 2.5% 70.4% 97.5% 3.6% 89.7% 86.9%
22 Low intensity developed 13.7% 12.8% 63.8% 68.4% 13.6% 73.0% 73.4%
23 Medium intensity developed 3.4% 4.0% 55.9% 46.9% 3.4% 60.6% 61.0%
24 High intensity developed 0.9% 1.3% 57.7% 40.5% 0.9% 60.3% 61.5%
31 Barren land 0.3% 1.2% 12.7% 3.2% 0.4% 9.4% 7.2%
41 Deciduous Forest 32.5% 29.9% 68.0% 74.1% 29.6% 75.8% 83.3%
42 Evergreen forest 18.6% 21.3% 69.4% 60.8% 21.1% 79.5% 70.2%
43 Mixed forest 5.3% 0.9% 2.5% 14.8% 5.2% 36.2% 36.7%
52 Shrub/scrub 1.0% 0.1% 0.4% 6.2% 0.7% 16.7% 23.6%
71 Grassland/herbaceous 5.6% 8.9% 29.3% 18.4% 3.4% 23.5% 38.7%
81 Pasture/hay 11.6% 12.5% 73.4% 68.0% 15.9% 87.4% 63.6%
82 Cultivated crops 0.7% 0.8% 9.4% 8.5% 0.0% 2.6% 53.0%
90 Woody wetlands 2.9% 3.7% 41.4% 32.1% 2.2% 50.7% 65.7%
95 Emergent herbaceous wetlands 0.1% 0.2% 11.1% 5.2% 0.0% 3.9% 20.5%

Table 3. Comparison of proportional land cover, overall agreement (OA), producer’s agreement (PA),
and user’s agreement (UA) in 2011. Full confusion matrices are presented in Tables S3–S4.

Class
NLCD AASG1 (OA = 60.1%) AASG2 (OA = 67.9%)

Cover Cover PA UA cover PA UA

11 Open water 3.5% 2.6% 70.6% 95.3% 3.6% 92.6% 88.3%
22 Low intensity developed 14.1% 13.0% 64.9% 70.3% 14.1% 73.5% 73.1%
23 Medium intensity developed 4.0% 4.4% 54.4% 49.8% 3.5% 55.7% 62.8%
24 High intensity developed 1.1% 1.4% 57.6% 43.4% 1.0% 55.8% 60.6%
31 Barren land 0.3% 0.5% 6.0% 2.9% 0.1% 3.8% 12.2%
41 Deciduous Forest 31.1% 30.1% 70.9% 73.4% 31.3% 76.4% 76.0%
42 Evergreen forest 18.5% 21.0% 72.3% 63.7% 21.7% 78.3% 66.8%
43 Mixed forest 4.9% 2.7% 6.6% 12.2% 3.3% 22.6% 34.0%
52 Shrub/scrub 2.6% 0.0% 0.0% 5.2% 0.3% 3.8% 31.7%
71 Grassland/herbaceous 5.4% 10.6% 30.0% 15.3% 3.4% 19.6% 31.1%
81 Pasture/hay 11.1% 10.3% 66.0% 71.4% 15.2% 86.0% 62.6%
82 Cultivated crops 0.6% 1.6% 12.0% 4.3% 0.0% 2.7% 63.9%
90 Woody wetlands 2.9% 1.9% 31.3% 48.3% 2.4% 50.7% 60.2%
95 Emergent herbaceous wetlands 0.1% 0.1% 4.4% 9.7% 0.0% 1.7% 41.9%

Both AASG1 and AASG2 exhibited relatively high agreement with the NLCD for the surface
water class (UA ≥ 86.9% and PA ≥ 70.4%), which tends to be spectrally distinct from other classes
and exhibits low within-class spectral variability, though AASG1 had a much higher UA than PA for
this class. AASG1 had relatively low agreement with NLCD on low intensity developed (UA ≤ 70.3%
and PA ≤ 64.9%). Pixels classified as low intensity developed by the NLCD were most often confused
with medium intensity developed, evergreen forest, and grassland/herbaceous by AASG1. For both
versions of AASG, there was considerable confusion among forest classes (particularly with mixed
forest), though AASG2 had higher UA and PA than AASG1 for every forest class in both 2006 and 2011.
When aggregated to a single forest class, both the AASG1 and the AASG2 classifications showed high
agreement with NLCD classifications (UA ≥ 87.4% and PA ≥ 81.7%). AASG2 offered considerable
improvement over AASG1 in the ability to map woody wetlands, which were frequently confused with
deciduous forest by AASG1. Both AASG1 and AASG2 frequently disagreed with NLCD on mapping
the least prevalent classes: barren land, shrub/scrub, grassland/herbaceous, cultivated crops, and
emergent herbaceous wetland. For a given land cover class, the magnitudes of UA and PA from AASG2
classifications were typically quite similar. Asymmetries between UA and PA most often occurred for
classes with low prevalence in the landscape (e.g., cultivated crops and emergent herbaceous wetland),
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with the exceptions of evergreen forest and pasture/hay, each of which had higher total areal extents
in the AASG2 classifications than in NLCD and which had higher PA than UA.

The OOB training data from the RF model indicated that the mid-season “greenness” index (KT2)
was the most important predictor variable for classification of land cover in our study region while,
on average, topographic indices did not improve agreement between AASG2 and the NLCD (Figure 7).
However, predictor variable importance varied substantially among classes. For classifying surface
water, the accuracy of AASG2 declined by more than 20% when the KT1 “brightness” index from any
of the three seasons was excluded. For the developed and forest classes, mid-season KT2 contributed
most to AASG2 accuracy, though early- and late-season KT2 were also important predictors for the high
intensity developed class. Multi-season imagery—including early- and mid-season KT1, mid-season
KT3, and late-season KT2—was particularly important for mapping hay/pasture. The annual cycles of
planting and harvesting likely imposed a phenological signal in this class that distinguished it from
spectrally similar classes like grassland/herbaceous and low intensity developed, and the multi-season
imagery was therefore able to separate these classes in AASG2.

While topography played a relatively minor role in mapping most classes, it was among the
most important variables for mapping woody wetlands. This class tends to be spectrally similar to
the other forest classes but occurs in distinctly different, lower elevation landscape positions where
water is likely to accumulate and allow periodic saturation. Since high mUAA and TWI indicate
regions where water is likely to accumulate, these two variables, along with elevation, improved the
agreement between the NLCD and AASG2 (UA ≥ 60.2%; PA ≥ 50.7%). While this class was still
frequently confused with other forest classes (particularly deciduous forest), the topographic indices
included in AASG2 offered substantial gains in agreement over AASG1, which exhibited very little
skill in mapping woody wetlands (UA ≤ 48.3%; PA ≤ 41.4%).

Remote Sens. 2016, 8, x FOR PEER REVIEW 11 of 16 

 

showed high agreement with NLCD classifications (UA ≥ 87.4% and PA ≥ 81.7%). AASG2 offered 
considerable improvement over AASG1 in the ability to map woody wetlands, which were 
frequently confused with deciduous forest by AASG1. Both AASG1 and AASG2 frequently disagreed 
with NLCD on mapping the least prevalent classes: barren land, shrub/scrub, grassland/herbaceous, 
cultivated crops, and emergent herbaceous wetland. For a given land cover class, the magnitudes of 
UA and PA from AASG2 classifications were typically quite similar. Asymmetries between UA and 
PA most often occurred for classes with low prevalence in the landscape (e.g., cultivated crops and 
emergent herbaceous wetland), with the exceptions of evergreen forest and pasture/hay, each of 
which had higher total areal extents in the AASG2 classifications than in NLCD and which had higher 
PA than UA.  

The OOB training data from the RF model indicated that the mid-season “greenness” index 
(KT2) was the most important predictor variable for classification of land cover in our study region 
while, on average, topographic indices did not improve agreement between AASG2 and the NLCD 
(Figure 7). However, predictor variable importance varied substantially among classes. For 
classifying surface water, the accuracy of AASG2 declined by more than 20% when the KT1 
“brightness” index from any of the three seasons was excluded. For the developed and forest classes, 
mid-season KT2 contributed most to AASG2 accuracy, though early- and late-season KT2 were also 
important predictors for the high intensity developed class. Multi-season imagery—including  
early- and mid-season KT1, mid-season KT3, and late-season KT2—was particularly important for 
mapping hay/pasture. The annual cycles of planting and harvesting likely imposed a phenological 
signal in this class that distinguished it from spectrally similar classes like grassland/herbaceous and 
low intensity developed, and the multi-season imagery was therefore able to separate these classes 
in AASG2. 

While topography played a relatively minor role in mapping most classes, it was among the 
most important variables for mapping woody wetlands. This class tends to be spectrally similar to 
the other forest classes but occurs in distinctly different, lower elevation landscape positions where 
water is likely to accumulate and allow periodic saturation. Since high mUAA and TWI indicate 
regions where water is likely to accumulate, these two variables, along with elevation, improved the 
agreement between the NLCD and AASG2 (UA ≥ 60.2%; PA ≥ 50.7%). While this class was still 
frequently confused with other forest classes (particularly deciduous forest), the topographic indices 
included in AASG2 offered substantial gains in agreement over AASG1, which exhibited very little 
skill in mapping woody wetlands (UA ≤ 48.3%; PA ≤ 41.4%). 

 
Figure 7. Mean decrease in agreement between NLCD and AASG2 when a given variable is excluded. Figure 7. Mean decrease in agreement between NLCD and AASG2 when a given variable is excluded.

4. Discussion

Fully realizing the potential of the global remotely sensed archive for land cover classification
depends on the development of efficient, accurate algorithms that can overcome challenges associated
with radiometric differences among scenes, phenological differences in non-anniversary date imagery,
and semantic differences among class definitions that occur when classifiers are trained independently.
AASG overcomes many of the challenges inherent in classification of multi-temporal remotely sensed
imagery by mitigating the needs for atmospheric correction and anniversary date imagery through the
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adjustment of spectral signatures to each individual image, by maintaining consistent class definitions
throughout the image time series, and by providing an automated workflow.

The viability of AASG for multi-temporal image classification has been demonstrated in previous
research [17]. Compared to a photo-interpreted reference dataset, the initial version of AASG
(AASG1) achieved an overall accuracy of at least 66%, which matched or exceeded the accuracy
achieved with traditional signature extension approaches [17]. In this study, we demonstrated that
our updated AASG2 workflow produced maps with higher overall agreement with the withheld
NLCD classifications in both 2006 and 2011 compared to AASG1. Additional experiments confirm that
both the updated input data (i.e., multi-season imagery and additional topographic metrics) and the
updated methodology (i.e., class-specific stable site identification parameters and the RF classifier)
contributed to the overall improvement of AASG2 (Tables S5–S6). Most of the improved performance
in 2006 was attributable to updated input data (Table S5), while the improvement in 2011 was mostly
attributable to the updated stable site identification and classification methodologies (Table S6).

The improvements made to the AASG workflow further enhance the potential for developing
consistent, temporally dense time series of land cover classifications from high-quality reference maps,
such as the NLCD. Applications that require frequent land cover maps could therefore use AASG to
extend the NLCD, which has a large spatial extent but low temporal frequency, over the entire Landsat
archive in an automated manner that maintains consistent class definitions among different image
dates. This research also highlights the flexibility of the AASG method for application with a variety of
potential classifiers, including traditional parametric methods (e.g., maximum likelihood classification)
and nonparametric machine-learning methods like random forests, neural networks, or support vector
machines. AASG also handles as many or as few input variables as are available to the user, so long as
those inputs are spatially compatible with one another (i.e., same resolution, extent, and projection).

While we explored a simple approach for generating class-specific stable site thresholding
parameters, future refinements of AASG could implement approaches that optimize the selection of
stable sites to maximize agreement with withheld reference data or to minimize overlap of spectral
signatures among classes. Additionally, to date, AASG has been applied as a “hard” classifier
(i.e., where each pixel is mapped as a single class). Previous research has demonstrated that
sub-pixel land cover fractions can be derived from fuzzy membership functions [55,56] or the posterior
probabilities of class membership from hard classifiers [57–59]. The AASG algorithm developed in this
research could therefore be adapted for prediction of sub-pixel land cover fractions using the posterior
“vote” distributions from the individual classification trees in ensemble classifiers like the RF.

5. Conclusions

In this study, we improved the automatic adaptive signature generalization (AASG) algorithm
through incorporation of a simple procedure for adapting stable site identification parameters to each
land cover class (in place of globally defined thresholding parameters). We also incorporated improved
input data (multi-season imagery and an expanded suite of topographic data) and a nonparametric
random forest machine-learning classifier. We tested the updated algorithm in the Research Triangle
region of North Carolina, where our refinements to AASG resulted in substantial increases in agreement
with the National Land Cover Database (NLCD) maps from 2006 and 2011 compared to the original
formulation. The areal extent of each class in the withheld NLCD classifications was better replicated
by AASG2 than by AASG1, and these areal extents tended to remain more consistent and stable
from year to year in the AASG2 classifications. Compared to AASG1, overall agreement between
the withheld NLCD classifications and AASG2 was 10.0% higher in 2006 and 7.8% higher in 2011.
The increase in agreement was concentrated within several classes (including woody wetlands, low
intensity developed, and mixed forests) that AASG1 struggled to classify but that AASG2 skillfully
reproduced. The inclusion of additional topographic indices improved the ability to distinguish woody
wetlands from other forest classes, and the use of multi-season imagery improved the ability of AASG
to classify water, developed classes, forest classes, and hay/pasture. These results demonstrate both
the flexibility of the AASG approach for multi-temporal classification as well as the potential for
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extending high-quality land cover classifications forward and backward in time with a simple and
automated method.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/8/691/s1,
Table S1: Comparison of 2006 NLCD to 2006 AASG1, Table S2: Comparison of 2006 NLCD to AASG2, Table S3:
Comparison of 2011 NLCD to 2011 AASG1, Table S4: Comparison of 2011 NLCD to 2011 AASG2, Table S5: Overall
agreement for different combinations of AASG data and methodology in 2006, Table S6: Overall agreement for
different combinations of AASG data and methodology in 2011.
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