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Abstract: Built-up area extraction from polarimetric SAR (PolSAR) imagery has a close relationship
with urban planning, disaster management, etc. Since the buildings have complex geometries
and may be misclassified as forests due to the significant cross-polarized scattering, built-up area
extraction from PolSAR data is still a challenging problem. This paper proposes a new urban
extraction method for PolSAR data. First, a multiple-component model-based decomposition method,
which was previously proposed by us, is applied to detect the urban areas using the scattering powers.
Second, with the sub-aperture decomposition, a new average polarimetric coherence coefficient ratio
is proposed to discriminate the urban and natural areas. Finally, these two preliminary detection
results are fused on the decision level to improve the overall detection accuracy. We validate our
method using one dataset acquired with the Phased Array type L-band Synthetic Aperture Radar
(PALSAR) system. Experimental results demonstrate that the decomposed scattering powers and the
proposed polarimetric coherence coefficient ratio are both capable of distinguishing urban areas from
natural areas with accuracy about 83.1% and 80.1%, respectively. The overall detection accuracy can
further increase to 86.9% with the fusion of two detection results.

Keywords: polarimetric SAR; built-up area extraction; model-based decomposition; polarimetric
coherence; decision fusion

1. Introduction

Built-up area extraction from remote sensing imagery has attracted more and more attention
in recent years since it has a close relationship with various applications, such as city expansion,
earthquake or tsunami damage assessment, population estimation, etc. [1–10]. Synthetic aperture
radar (SAR) can image the rapid change of urban areas in almost all-weather and solar illumination
conditions, making it become an effective tool for urban remote sensing [7]. Compared with single
polarization SAR, fully polarimetric SAR (PolSAR) can provide more information about the urban
areas with four polarizations. Therefore, PolSAR data have been increasingly studied for urban area
identification and interpretation. For instance, Zhai et al. [1] combined the polarimetric decomposition
and the Wishart supervised classification to extract and identify the collapsed buildings after Yushu
earthquake in China. To achieve accurate urban extraction and damage assessment, Zhao et al. [2]
considered the polarimetric decomposition to discriminate the intact buildings with large orientation
angles from the collapsed buildings. Yamaguchi et al. [4] utilized model-based scattering power
decomposition images of PolSAR data for city disaster monitoring.

Polarimetric target decomposition, originated from Huynen’s work [11], plays a key role in
PolSAR data understanding since it can provide interpretation of the target scattering mechanisms.
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Buildings in PolSAR imagery are usually distributed targets, making incoherent decompositions
using the coherency/covariance matrix suitable for built-up areas. Incoherent decompositions are
divided into two categories: eigenvalue–eigenvector-based decomposition [12–14] and model-based
decomposition [15–17]. Polarimetric entropy, mean alpha angle, and polarimetric anisotropy are
popular parameters derived from Cloude decomposition and have been used for urban analysis.
Pellizzeri et al. [18] utilized Cloude decomposition and multivariate annealed segmentation for
PolSAR urban classification, where the anisotropy parameter allows a better discrimination of built-up
areas from other classes. Deng et al. [19,20] analyzed polarimetric entropy and mean alpha angle
from different sub-aperture images and then proposed robust features for urban identification
and classification. Compared with eigenvalue–eigenvector-based decomposition, model-based
decomposition using physical scattering matrices can provide a color-coded image of the scattering
powers, which is more straightforward to interpret the PolSAR data. In addition, the decomposed
scattering powers have the ability of discriminating urban areas from natural areas. However, the
scattering mechanisms of buildings are significantly influenced by the relative azimuth angle to radar
look directions [21]. Buildings parallel to the flight pass usually have strong double-bounce scattering
and weak cross-polarized (HV) scattering. These buildings can be easily discriminated from the
natural areas because the latter usually have strong volume scattering or surface scattering. For
oriented buildings that are not parallel to the flight pass, the double-bounce scattering is weak and
the cross-polarized scattering becomes strong, leading to a scattering ambiguity between the forest
and oriented buildings [21–24]. Kajimoto et al. [3] proposed an urban area extraction method for
PolSAR images using volume scattering power, total scattering power, and polarimetric orientation
angle. Azmedroub et al. [25] utilized the four-component decomposition and the Wishart maximum
likelihood classifier to extract urban areas from PolSAR images. Zou et al. [26] introduced an effective
urban area extraction scheme for PolSAR images using the randomness of orientation angle and the
scattering powers from the four-component model-based decomposition. It should be noted that these
methods are all designed based on the Yamaguchi four-component decomposition with or without
deorientation processing. However, the scattering mechanism ambiguity still exists in urban areas
with large orientation angles [27], which can diminish the urban extraction accuracy. Recently, many
new model-based decomposition schemes [28–32] have been reported to overcome this scattering
ambiguity. Among them, a multiple-component decomposition technique with cross scattering model
has proven to be effective for urban area analysis [30], where the HV scatterings of oriented buildings
and forests are modeled respectively. The scattering powers are capable of discriminating different
urban land covers [33], therefore, they have the potential ability for urban extraction in this study.

Fully polarimetric SAR data are presented in four channels and the coherences between two
co-polarized channels or co-polarized and cross-polarized channels are important descriptors for
scattering mechanism interpretation [34]. These coherences, also called correlation coefficients, have
been used for man-made targets characterization and land cover classification. Ainsworth et al. [21]
proposed a normalized circular polarization correlation coefficient to detect the scattering from
non-reflection symmetric structures. Lee et al. [22] utilized the co-polarized phase-difference to
extract buildings parallel to the flight pass and cross-polarized phase-difference to extract oriented
buildings. These two phase-difference parameters are also derived from the correlation coefficients.
Li et al. [5] analyzed the spatial distribution of collapsed buildings using the circular polarization
correlation coefficient and then extract urban areas from RADARSAT-2 PolSAR data. To discriminate
the urban areas from non-urban areas, Xiao et al. [35] proposed an optimization scheme to optimize
the coherence between two polarimetric channels. The coherence magnitude of oriented buildings
is enhanced while that of forests remains relatively low. The results of these methods demonstrate
that polarimetric coherence is effective for urban extraction. However, target orientation to the radar
line of sight has a significant effect on the polarimetric coherence, making the discrimination between
oriented buildings with large orientation angles and natural areas still a challenge.
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To achieve a better built-up area extraction result than other state-of-the-art methods, in this
paper we propose a new average polarimetric coherence coefficient ratio based on the sub-aperture
decomposition to discriminate the urban and non-urban areas. This coherence parameter considers
the reflection asymmetry of buildings and the scattering divergence between co-polarized and
cross-polarized channels. Sub-aperture decomposition is beneficial to urban characterization since it
can provide several sub-aperture images with different radar look angles. Moreover, the scattering
powers obtained by multiple-component decomposition are also used for urban extraction. To improve
the overall detection accuracy, these two preliminary results are finally fused using a correlated
probabilities decision fusion method.

2. Methodology

2.1. Multiple-Component Decomposition with Cross Scattering Model

On the basis of the four-component polarimetric decomposition [15], a multiple-component
decomposition with cross scattering model was previous proposed by us to analyze the scattering
mechanisms in urban areas [30]. The cross scattering model considers the building orientation angles,
making it flexible and adaptive in the decomposition. Therefore, it can well describe the HV scattering
components from orientated and complex buildings. Polarimetric SAR system measures the complex
scattering matrix S, which is formed as

S =

[
SHH SHV

SVH SVV

]
(1)

where the subscripts H and V represent horizontal and vertical polarizations, respectively. In each
scattering element, the first index represents the polarization of received signal and the second denotes
that of the transmitted signal. According to the reciprocity theorem, we can get SHV = SVH. The target
vector kp can be formed from this scattering matrix using the Pauli bases as

kp =
1√
2
[SHH + SVV, SHH − SVV, 2SHV ]T (2)

where the superscript T denotes the matrix transpose.
Then the coherency matrix 〈[T]〉 can be formed as

〈[T]〉 = 〈kpk†
p〉 =

 T11 T12 T13

T∗12 T22 T23

T∗13 T∗23 T33

 (3)

where the operator 〈〉 represents the ensemble average and the symbol † denotes the complex
conjugation and transposition. Then we can calculate the polarization orientation angle as [34]

θ =
1
4

tan−1
(

2Re {T23}
T22 − T33

)
(4)

where Re {T23} is the real part of T23. The buildings usually have different orientation angles, which can
significantly influence the building scattering mechanisms. As mentioned in [30], the cross scattering
matrix is derived as

〈[T]〉cross =

 0 0 0
0 1

2 −
1

30 cos (4θ) 0
0 0 1

2 + 1
30 cos (4θ)

 (5)
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The cross scattering is regarded as an independent component and added to the Yamaguchi
four-component decomposition. Therefore, there are five scattering components, i.e., surface,
double-bounce, volume, helix, and cross scattering are presented in the decomposition, which can be
described as follows:

〈[T]〉 = fs 〈[T]〉surface + fd 〈[T]〉double + fv 〈[T]〉volume + fh 〈[T]〉helix + fcro 〈[T]〉cross (6)

where fs, fd, fv, fh and fcro are the expansion coefficients to be determined while 〈[T]〉surface,
〈[T]〉double , 〈[T]〉volume , and 〈[T]〉helix are the models of surface, double-bounce, volume, and helix
scatterings in the four-component decomposition, respectively. The expression of each scattering
model and the decomposition approach are described in detail in [30].

If Re {SHHS∗VV} > 0, five scattering coefficients are solved as follows: fs =
|T12|2

T22−T33
, fv = 2

(
T11 − |T12|2

T22−T33

)
, fd = 0

fc = 2 |Im {T23}| , fcro =
(

T33 − fc
2 −

fv
4

)
/
(

1
2 + 1

30 cos (4θ)
) (7)

while if Re {SHHS∗VV} < 0, the results are: fs = 0, fv = 2
(

T11 − |T12|2
T22−T33

)
, fd = T22 − T33

fc = 2 |Im {T23}| , fcro =
(

T33 − fc
2 −

fv
4

)
/
(

1
2 + 1

30 cos (4θ)
) (8)

where Im {T23} is the imaginary part of T23. It should be noted that if the result is fcro < 0, we set
fcro = 0 and follow the same decomposition procedure of original four-component decomposition.

Then the surface scattering power Ps, double-bounce scattering power Pd, volume scattering
power Pv, helix scattering power Pc and cross scattering power Pcro can be obtained as

Ps = fs(1 + |β|2), Pd = fd(1 + |α|2)
Pv = fv, Pc = fc, Pcro = fcro

(9)

where α and β are unknowns in 〈[T]〉double and 〈[T]〉surface, respectively, and are expressed as

α = 0, β = T22−T33
T12

if Re {SHHS∗VV} > 0
α = T12

T22−T33
, β = 0 if Re {SHHS∗VV} < 0

(10)

Helix scattering in the four-component decomposition is obtained from T23, which focuses on
the reflection asymmetry. In contrast, the cross scattering model concentrates on separating the cross
scattering power caused by orientated buildings from the overall HV scattering component. Therefore,
this decomposition algorithm has a potential ability to discriminate the urban areas from natural areas,
which will be further demonstrated in Section 4.

2.2. Sub-Aperture Decomposition

The sub-aperture or time-frequency decomposition, which uses a two-dimensional Fourier
transform, or Gabor transform to decompose a full resolution image into several sub-aperture images,
has been widely used on SAR image application [36–40]. A 2D signal s (l) can be transformed
into several different components located around particular spectral coordinates

(
lp;ωp

)
using a

convolution with an analyzing function g () as follows:

s
(
lp;ωp

)
=
∫

s (l) g
(
l − lp

)
exp

[
jωp

(
l − lp

)]
dl (11)
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where lp andωp denote spatial and frequency locations of the pth component, respectively. We perform
2D Fourier transform on Equation (11) and give the spectrum of s

(
lp;ωp

)
by the following formula:

S (ω;ω0) = S (ω) G (ω−ω0) (12)

where S and G denote the signals in the spectral domain. Equations (11) and (12) indicate that using
the analyzing function g (), time-frequency method can characterize the behaviors of a signal in the
spatial domain corresponding to particular spectral components. Therefore, the spectral properties of
a signal can be analyzed around the specific spatial locations or vice versa.

Sub-aperture decomposition has already been used for PolSAR image analysis.
Ferro-Famil et al. [36], Reigber et al. [24], and Wu et al. [41,42] analyzed the non-stationarity
of a pixel in different sub-aperture images and then investigate the urban extraction from PolSAR
data. Deng et al. [20] integrated the sub-aperture decomposition and the entropy/alpha-Wishart
classifier to improve the building extraction accuracy of PolSAR images. Wu et al. [43] analyzed
the texture features of sub-aperture images and achieved an effective urban detection result for
high resolution PolSAR images. With sub-aperture decomposition, Xiang et al. [44] combined the
nonstationarity detection and reflection asymmetry analysis to extract the man-made targets from
PolSAR data. Single-Look Complex (SLC) PolSAR images are generally selected for sub-aperture
decomposition in order to benefit from error corrections and specific signal compensation operated
during the focusing of SAR data. A set of coarser-resolution sub-aperture images containing different
parts of the SAR Doppler spectrum can be obtained in the azimuth direction decomposition and
another set of sub-aperture images with different observation frequencies are get in the range direction.
As building scattering is more significantly affected by the radar look directions than the frequency
effects [36], sub-aperture decomposition in the azimuth direction is generally enough for urban
analysis in PolSAR data.

The procedure sub-aperture decomposition for PolSAR data is as follows:

• Fourier transformation in azimuth direction.2D Fourier transform is utilized to transform a
PolSAR image into the spectral domain.

• Frequency spectrum segmentation using a window function.The total frequency spectrum is
divided into several regions centered on the specific spectral locations using a window function
such as Hamming window.

• Each part of the spectrum is transformed back into the spatial domain using 2D inverse
Fourier transform.Using a 2D inverse Fourier transform, every sub-spectrum is transformed
back into the spatial domain, and thus we can get a sub-aperture image representing the focused
PolSAR response around a specific spectral location.

It is worth pointing out that the resolutions of the decomposition components in spatial (∆l)
and frequency (∆ω) are fixed by the analysis function g (·) and verify the Heisenberg’s inequality
of ∆l∆ω ≥ 1/4π [36]. In general, the analyzing function with an excessively narrow bandwidth
would involve a high resolution in frequency, but might lead to bad localization accuracy in the
space domain. Therefore, having too many sub-aperture images will lead to a serious reduction of
the spatial resolution while two few may not be effective to characterize the anisotropic scattering
properties of targets in sub-aperture images. Existing studies [41–43] stated that four sub-apertures are
usually suitable to analyze the urban scattering mechanisms in PolSAR data. Therefore, the number of
sub-apertures is set to four in this study.
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2.3. Polarimetric Coherence Coefficient Ratio Based on Sub-Aperture Images

Polarimetric coherence is defined as the complex correlation coefficient between two polarization
channels, which can be used to characterize the target scattering mechanisms. The correlation
coefficient in arbitrary ab polarization basis can be expressed as [21]

ρaabb =

〈
SaaS∗bb

〉√
〈SaaS∗aa〉

√〈
SbbS∗bb

〉 (13)

Then the correlation coefficient between two co-polarized channels in the linear polarization
basis is

ρHHVV =
〈SHHS∗VV〉√〈

SHHS∗HH
〉√〈

SVVS∗VV
〉 (14)

and the correlation coefficient between co-polarized and cross-polarized channels is

ρHHHV =
〈SHHS∗HV〉√〈

SHHS∗HH
〉√〈

SHVS∗HV
〉 (15)

It is already known that both ρHHVV and ρHHHV are complex and their magnitudes |ρHHVV| and
|ρHHHV| vary by the types of scattering mechanisms [34]. However, since the building scattering
significantly depends on the polarization orientation angle, |ρHHVV| and |ρHHHV| are not always
effective for oriented built-up areas [35]. Basically, the oriented buildings usually produce poor
coherence compared with the buildings which are parallel to the radar. Some natural areas such as
the forests also exhibit poor coherence, leading to a discrimination difficulty. It has been found that
the correlation coefficient parameters derived from the circular polarization basis are suitable for
oriented buildings detection [21], however, there still exists confusion between the buildings with large
orientation angles and forests. Xiao et al. [35] rotated polarimetric coherency matrix around the radar
line of sight to enhance the polarimetric coherence of oriented buildings, which can achieve similar
performance to that of the circular-pol correlation coefficient.

It has been demonstrated that the natural areas usually have the characteristic of reflection
symmetry, i.e., SHHS∗HV ≈ SVVS∗HV ≈ 0, whereas the reflection scattering of buildings with complex
geometry is often asymmetry with SHHS∗HV 6= SVVS∗HV 6= 0 [21]. Unlike the correlation coefficients as
shown in Equations (14) and (15), which are directly derived from the Sinclair scattering matrix S, this
paper utilizes the polarimetric coherency matrix to derive a polarimetric correlation coefficient. This
correlation coefficient measures the polarimetric coherence between T22 and T33, which considers the
reflection asymmetry of buildings.

ρ(HH−VV)HV =
T23√

T22
√

T33
=

〈(SHH − SVV) S∗HV〉√
〈|SHH − SVV|2〉

√
〈|SHV|2〉

(16)

It can be seen that the denominator of ρ(HH−VV)HV is the product of double-bounce scattering
and volume scattering in the Pauli basis and the numerator measures the reflection asymmetry. The
magnitude

∣∣∣ρ(HH−VV)HV

∣∣∣ can characterize the target scattering mechanism. For natural areas with

SHHS∗HV ≈ SVVS∗HV ≈ 0,
∣∣∣ρ(HH−VV)HV

∣∣∣ is almost 0 while for built-up areas,
∣∣∣ρ(HH−VV)HV

∣∣∣ 6= 0 since
SHHS∗HV 6= SVVS∗HV 6= 0. The main difference between ρHHHV and ρ(HH−VV)HV is that the latter
considers more scattering information. For instance, double-bounce scattering is considered in the
denominator of ρ(HH−VV)HV, making it more sensitive to buildings than ρHHHV. It should be noted
that for buildings which are not parallel to the radar flight pass, although SHHS∗HV 6= SVVS∗HV 6= 0, the
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volume scattering is strong. Therefore,
∣∣∣ρ(HH−VV)HV

∣∣∣ is comparatively low. To further improve the

discrimination ability, we form a ratio using
∣∣∣ρ(HH−VV)HV

∣∣∣ and |ρHHVV| as

ρratio =

∣∣∣ρ(HH−VV)HV

∣∣∣
|ρHHVV|

(17)

From Equation (17) we can see that since the value trends of
∣∣∣ρ(HH−VV)HV

∣∣∣ and |ρHHVV | in
urban areas are opposite, combining these two correlation coefficients can significantly improve the
probability of discriminating urban and non-urban areas. As we discussed before, sub-aperture images
can measure the target scattering mechanisms with different radar look angles. Therefore, ρratio is
calculated for each sub-aperture image in this study and we can get the average as

ρ =
1
R

R

∑
i=1

ρratio (i) (18)

where R is the number of sub-aperture images and ρratio (i) is the coherence coefficient ratio of ith
sub-aperture image. The average ratio ρ will be used to extract urban areas.

2.4. Built-up Area Extraction Method

As discussed in the above subsections, the buildings which are parallel to the radar flight pass
usually have strong double-bounce scattering power Pd, making them different from the natural
areas. Regards the buildings not parallel to the radar flight pass, our decomposition algorithm can
separate the cross scattering caused by oriented buildings from the overall HV scattering. Therefore,
the decomposed cross scattering power Pcro can be utilized to identify the oriented buildings. Based
on these two scattering powers, we have the following discrimination condition as

Condition 1 :

{
if Pcro > 0 or Pd > Thd, Buildings

else Natural areas
(19)

where Thd is the threshold of double-bounce scattering power. Condition 1 is used to extract the urban
areas on the basis of decomposed scattering powers. The reason why we set the threshold of Pcro as 0
is that the cross scattering power measures the HV scattering from oriented dihedral structures, which
mainly exist in the oriented urban areas.

Based on the average coherence ratio ρ, we have Condition 2 as

Condition 2 :

{
if ρ > Thρ, Buildings
else Natural areas

(20)

where Thρ is the threshold of average coherence coefficient ratio.
According to Condition 1 and Condition 2, we have two binary detection results B1 and B2. It is

worth pointing out that these two information sources are correlated since they both contain the urban
detection information of the same image. In this study, the fusion of correlated probabilities (FCP) [45]
algorithm is used to fuse B1 and B2 since the FCP algorithm can reduce fused error rate and also
combine correlated information sources at the same time. The effectiveness of the FCP algorithm
has already been proven in [46]. Suppose that the detections using scattering powers and average
coherency coefficient ratio provide results B1 and B2 and the class-wise conditional probabilities
P (Ci|B1) and P (Ci|B2) for a specific class Ci (i = 1, 2), i.e., urban and non-urban areas. The aim of the
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FCP algorithm is to fuse P (Ci|B1) and P (Ci|B2) to produce a joint posterior probability P (Ci|B1, B2)

for class Ci. According to [46], the joint posterior probability P (Ci|B1, B2) for class Ci is expressed by

P (Ci|B1, B2) =
P (Ci|B1)

α P (Ci|B2)
β

P (Ci)
× P (B1) P (B2)

P (B1, B2)
, i = 1, 2 (21)

where P (Ci) is the prior probability of class Ci. The parameters α and β are weights given to the
conditional probabilities, which reflect the conditional dependence of two detections. P (B1) and
P (B2) are the individual prior probabilities of detections B1 and B2, respectively. P (B1, B2) is the
probability of redundant detections, that is P (B1, B2) = P (B1∩ B2) = P (B1)× P (B2|B1). Note that
P (B1) P (B2) /P (B1, B2) is a constant in Equation (21) and can be omitted in the subsequent fusion.
The conditional probabilities P (Ci|B1) and P (Ci|B2) of each pixel x can be calculated from above two
detection conditions as

P (C1|B1) =

{
max

[
Pcro(x)

max(Pcro)
, Pd(x)−Thd

max(Pd)−Thd

]
x ∈ C1

0 x ∈ C2
(22)

P (C2|B1) = 1− P (C1|B1) (23)

P (C1|B2) =

{
ρ(x)−Thρ

max(ρ)−Thρ
x ∈ C1

0 x ∈ C2
(24)

P (C2|B2) = 1− P (C1|B2) (25)

where Pcro (x), Pd (x), and ρ (x) are the cross scattering power, double-bounce scattering power, and
average coherence coefficient ratio of pixel x. max () denotes the maximum operator. The prior
probability P (Ci) of each pixel can be estimated as the average of P (Ci|B1) and P (Ci|B2). The weights
α and β have the following estimations [46]

α =

(
∑ B1B2

∑ B1
− ∑ B1B2

∑ B1

)
(26)

β =

(
∑ B1B2

∑ B2
− ∑ B1B2

∑ B2

)
(27)

where Bi and Bi (i = 1, 2) represent the presence and absence of a specific class Ci in the two detection
maps, respectively. ∑ B1 stands for the total number of pixels detected as class Ci in B1. ∑ B1B2 denotes
the number of pixels which are both detected in B1 and B2 as class Ci. The similar meaning is for ∑ B1,
∑ B2, ∑ B2, ∑ B1B2 and ∑ B1B2. The range ofα andβ is from 0 to 1. Further detailed explanations can be
found in [46]. Finally, a maximum posterior probability rule is utilized to get the optimal class label for
each pixel from two joint posterior probabilities as Coptimal = argmax [P (C1|B1, B2) , P (C2|B1, B2)].

To sum up, the proposed detection procedures are shown in Figure 1, which consist of four
stages as

(1) Sub-aperture decomposition on the SLC PolSAR data to obtain R sub-aperture images.
(2) Multilooking and despecking on the original SLC PolSAR data and sub-aperture images to

estimate accurate sample coherency matrix.
(3) Polarimetric target decomposition on original PolSAR data using our method to get the

double-bounce scattering power and cross scattering power. Coherence coefficient ratio
calculation using the sub-aperture images.

(4) Built-up area detection using Condition 1 and Condition 2. Fusion of two detection results using
the FCP algorithm.
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3. Experimental Data Description

In this study, a SLC polarimetric dataset acquired with the Phased Array type L-band Synthetic
Aperture Radar (PALSAR) system on 11 November 2009 was used for the experiments. The study area
is located in San Francisco, CA, USA, where has coverage of built-up areas with different orientation
angles, forests, and oceans. The azimuth resolution is about 3.54 m, and the range resolution is about
9.36 m. The size of the image is 18,432 × 1248. Some specific parameters about the PolSAR data are
listed in Table 1. The Pauli RGB image without despeckling is shown in Figure 2b, where the red
channel is |HH−VV|, the green channel is |HV|, and the blue channel is |HH+VV|. Since the image
height is much larger than the width, the azimuth direction is multilooked with factor 6 in order to
display the PolSAR image properly. Figure 2a gives the map of San Francisco, where the red rectangle
indicates the imaging area of PolSAR data.

Table 1. Acquisition information about the Phased Array type L-band Synthetic Aperture Radar
(PALSAR) data.

Date Flight Direction Incidence Angle Band Looks Number Data Type

11 November 2009 Ascending 22◦ L
Azimuth: 1 Complex

Range: 1
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Figure 2. Study area and the PolSAR image acquired with the Phased Array type L-band Synthetic
Aperture Radar (PALSAR) system: (a) San Francisco map, where the red rectangle indicates the imaging
area; and (b) PolSAR image with Pauli color-coding (Red: |HH−VV|, Green: |HV|, Blue: |HH+VV|).

To quantitatively evaluate the performance of built-up area detection results, National Land
Cover Database 2006 (NLCD 2006) [47] will be used as the ground reference data, as shown in
Figure 3. NLCD 2006 is a land cover classification scheme that has been applied consistently across
the conterminous United States at a spatial resolution of 30 m. The result is based primarily on a
decision-tree classification of circa 2006 Landsat satellite data. For detection accuracy assessment in
this study, all of the natural areas such as water, forest, wetland, barren land, etc. are regarded as
non-urban classes. Therefore, in the quantitatively assessment, we have only two classes, i.e., urban
and non-urban.Remote Sens. 2016, 8, x FOR PEER  10 of 20 
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4. Results and Discussions

This section gives the analyses of built-up area detection possibility using the decomposed
scattering powers and the average coherence coefficient ratio, respectively. The thresholding
parameters involved in these two methods are also analyzed and discussed. Moreover, these two
individual results and the final fused result are also compared. In this experiment, for model-based
decomposition, the original SLC PALSAR data are multilooked with factor 6 in the azimuth direction
and then despeckled using the refined Lee filter [48]. The coherency matrix is adopted in the
decomposition. For the calculation of average coherence coefficient ratio, the original SLC data are
firstly decomposed into four sub-aperture images, followed by the same multilooking and despeckling
processing steps.

4.1. Analysis of the Decomposed Scattering Powers on Built-up Area Detection

Figure 4 gives the decomposition results of our multiple-component decomposition method,
where Figure 4a–d are the double-bounce scattering power, helix scatterng power, cross scattering
power, and the final color-coded image. All the scattering powers are recalculated in decibels by
10× log10 (power). Note that the three scattering powers are all related to the building scattering.
From Figure 4a, it can be seen that buildings which are parallel to the radar flight pass have strong
double-bounce scattering power (5–10 dB), whereas natural areas and oriented buildings do not
(−20–−10 dB). In addition, some small man-made targets such as the bridge and ships also exhibit
strong double-bounce scattering. Therefore, buildings which are parallel to the radar flight pass and
some other man-made structures can be discriminated from the natural areas using the double-bounce
scattering power. However, oriented buildings cannot be effectively discriminted, such as the areas
marked with red rectangles. What we can see from Figure 4b is that the scattering power difference
between built-up areas and forests is very small even though buildings have a little bit larger helix
scattering power than forests. Therefore, it is not easy to discriminate buildings from natural areas
using the helix scattering power. It is worth mentioning that the helix scattering power of our
decomposition method is the same as that of Yamaguchi four-component decomposition method [15]
since the calculations are exactly the same. The cross scattering result in Figure 4c is promissing,
which has the potential to detect oriented buildings. Since the buildings which are parallel to the
radar flight pass and water do not produce HV scattering, the corresponding cross scattering power is
quite low. Although oriented buildings and forests both generate HV scattering, our decomposition
method can seperate the HV scattering of oriented buildings, i.e., the cross scattering power from
the overall cross-polarized scattering component. It can be seen from Figure 4c that the difference
of cross scattering power between oriented building and natural areas is appraent. The reason why
some forests also exhibit weak cross scattering is that there are some ground-trunk double-bounce
and triple-bounce reflections due to the L-band microwave penetration, which is similar to orientated
buildings. From the color-coded image shown in Figure 4d, it can be observed that there is a significant
difference between orientated urban areas and forests. This is due to the cross scattering, which
can contribute to the urban scattering analysis. After polarimetric decomposition, the scattering
mechanisms of different land covers are clear, which is beneficial for the identification of built-up areas.



Remote Sens. 2016, 8, 685 12 of 21

Remote Sens. 2016, 8, x FOR PEER  11 of 20 

 

is quite low. Although oriented buildings and forests both generate HV scattering, our decomposition 
method can seperate the HV scattering of oriented buildings, i.e., the cross scattering power from the 
overall cross-polarized scattering component. It can be seen from Figure 4c that the difference of cross 
scattering power between oriented building and natural areas is appraent. The reason why some 
forests also exhibit weak cross scattering is that there are some ground-trunk double-bounce and 
triple-bounce reflections due to the L-band microwave penetration, which is similar to orientated 
buildings. From the color-coded image shown in Figure 4d, it can be observed that there is a 
significant difference between orientated urban areas and forests. This is due to the cross scattering, 
which can contribute to the urban scattering analysis. After polarimetric decomposition, the 
scattering mechanisms of different land covers are clear, which is beneficial for the identification of 
built-up areas. 

 
Figure 4. Results of our multiple-component decomposition method: (a) double-bounce scattering 
power; (b) helix scattering power; (c) cross scattering power; and (d) color-coded decomposition 
result. All of the scattering powers are recalculated in decibels by 10 × logଵ଴(power). Figure 4. Results of our multiple-component decomposition method: (a) double-bounce scattering
power; (b) helix scattering power; (c) cross scattering power; and (d) color-coded decomposition result.
All of the scattering powers are recalculated in decibels by 10× log10 (power).

To further quantitatively evaluate the abilities of above three scattering powers on built-up area
detection, four test patches in Figure 4d, i.e., buildings parallel to the radar flight pass (area A), oriented
buildings (area B), forest (area C), and water (area D) are selected to show the three scattering powers
respectively in Figure 5. Note that the scattering powers are displayed using the original values. It can
be seen that the buildings in Area A exhibit much stronger double-bounce scattering power compared
to other land covers, making them be easily discriminated from natural areas using a threshold. From
Figure 5, we believe that Thd = 1 is appropriate for this study. Regards oriented buildings and forests,
the values of double-bounce scattering power and helix scattering power are both similar. Therefore,
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it is quite difficult to use a threshold for the detection of oriented buildings. In contrast, the cross
scattering can well distinguish oriented buildings and other land covers, where the average cross
scattering power of Area B is about 0.3, whereas the values in other areas are almost 0. Thus, Pcro > 0
in Condition 1 can be used to extract the oriented buildings. It is worth mentioning that some forests
with weak cross scattering power are probably detected as oriented buildings. These false alarms can
be removed in the following stages.
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Figure 5. Quantitative comparison among the double-bounce, helix and cross scattering powers from
our decomposition for four selected areas in Figure 4d.

4.2. Analysis of the Average Coherence Coefficient Ratio on Built-up Area Detection

Firstly, in order to compare the performance of different correlation coefficients, we give the
magnitudes of ρHHHV, ρHHVV, and ρ(HH−VV)HV, as shown in the left column of Figure 6. The window
size for the calculations is set to 7× 7. Four test areas corresponding to buildings parallel to the
radar flight pass, oriented buildings, forests, and water are selected from the magnitude images for
quantitative evaluation. It is worth noting that the test area of forests is not the same one in Figure 4.
As stated in the previous subsection, some forests may exhibit weak cross scattering due to the L band
penetration, which results in false alarms. Therefore, the polarimetric coherence of these areas should
be analyzed in this subsection for the sake of false alarms removal. The histograms of these areas
are shown in the right column of Figure 6. It can be seen from Figure 6a–d that |ρHHHV| and |ρHHVV|
cannot effectively discriminate the four land covers, where oriented buildings are seriously mixed up
with forests. In addition, it is not easy to accurately extract buildings which are parallel to the radar
flight pass because there are some magnitude values mixed up with other land covers, as shown in
Figure 6b,d.

∣∣∣ρ(HH−VV)HV

∣∣∣ in Figure 6e seems better than |ρHHHV| and |ρHHVV|, where the magnitude
difference between built-up areas and natural areas is apparent. However, from Figure 6f, we can see
that some oriented buildings are still mixed up with natural areas due to the similar magnitude values.
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Figure 6. Magnitudes of correlation coefficients and histograms of selected patches: (a–c) the
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Figure 7 shows the results of our proposed coherence coefficient ratio, where Figure 7a is ρratio
and Figure 7b is ρ. To further evaluate the performance of sub-aperture decomposition, we select the
same four test areas and give the corresponding histograms in Figure 7c,d, as well as the average
ρratio and ρ within each area in Table 2. What we can see from Figure 7 is that ρratio and ρ perform
much better than other coherence coefficients. Buildings that are parallel to the radar flight pass have
quite high ratio values, making them very easy to be discriminated from other land covers. Compared
to the results in Figure 6, the difference between oriented buildings and forests in Figure 7 becomes
much larger, indicating that our method is capable of distinguishing these two kinds of targets. The
reason is that our proposed coherence coefficient ratio considers not only the reflection asymmetry
of buildings but also the scattering divergence between co-polarized and cross-polarized channels,
which can improve the ability of built-up area extraction. The results in Figure 7a,b are similar except
for the forest areas. From Figure 7c,d and Table 2, it can be found that after considering sub-aperture
decomposition, the difference between built-up areas and natural areas becomes larger than before,
especially for the oriented buildings and forests. This improvement benefits from the sub-aperture
images, which can exploit more information than the original image since the former can acquire
target scattering information with several radar look angles. Another issue should be discussed is the
threshold Thρ. From Table 2 we can observe that the values of ρratio and ρ in built-up areas are both
above 1.2 whereas the values in natural areas are below 1.2. It is worth pointing out that since there
are some false alarms in the detection of Section 4.1, we need to remove the forests in this detection
and should set the Thρ as a high value. Therefore, we set Thρ = 1.2 in this study.
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Table 2. Comparison of ρratio and ρ in four areas. Values are averaged within each area.

Area ρratio ρ

A 3.7284 3.9541
B 1.3572 2.1536
C 0.5425 0.3287
D 0.1152 0.0852

4.3. Comparison of the Detection Results with and without Fusion

This subsection gives the individual detection results using Condition 1, Condition 2, and the
final detection result using the FCP fusion method. Moreover, the urban extraction method in [9] is
implemented for comparison, which fuses the polarimetric and texture information of PolSAR data.
To quantitatively evaluate the detection performance, four indices, i.e., overall accuracy (OA), Kappa
Coefficient (KC), user’s accuracy (UA) and producer’s accuracy (PA) are utilized for comparison.
Figure 8a–c gives the built-up area detection results using the scattering powers, the average coherence
ratio, and the FCP fusion method, respectively. Figure 8d is the urban ground truth from NLCD 2006
land cover data. From Figure 8a we can see that using the two decomposed scattering powers, most
of the buildings can be effectively extracted. The oriented building can be identified thanks to the
cross scattering power, as shown in the areas marked with red ellipse and circle. Nevertheless, some
forests are incorrectly detected as buildings due to the weak cross scattering power. What we can see
from Figure 8b is that most of the forests are removed from the detection result. Buildings parallel to
the radar flight pass and oriented buildings are both well extracted although there are few omissions.
The main problem of this result is there are some water areas detected as buildings, as shown in the
area marked with red ellipse. It should be noted that these areas are in the shadows of the mountain.
Since the radar illumination direction is from left to right, the scattering mechanism in these areas is not
surface scattering. Therefore, these water areas exhibit high average coherence coefficient ratio values.
The result in Figure 8c is satisfactory, where we can see that most of the forests in Figure 8a and the
water areas in Figure 8b are removed. Note that this improvement comes from the FCP fusion method,
which considers the fusion of prior probability, conditional probability, and weighting parameters to
generate a reasonable posterior probability for each class. It is worth mentioning that there are some
ships and bridges miss-detected as built-up areas in Figure 8. The reason is that similar to buildings,
these man-made targets also exhibit strong double-bounce scattering and polarimetric coherence.

Table 3 gives the accuracy assessment of three detection results in Figure 8. The whole image is
employed for accuracy assessment. As reflected in Table 3, the OA, KC, UA, and PA are all improved
after fusion. Compared with the detection result using scattering powers and the detection using
average coherence coefficient ratio, after the FCP fusion, the OA is increased by 3.79% and 6.78%,
respectively. This fact demonstrates that our previously proposed polarimetric decomposition and the
newly proposed average coherence coefficient ratio can effectively identify the built-up areas and it is
promising to fuse these two detection results.

The detection result using the method in [9] is shown in Figure 9 and the accuracy assessment
is given in Table 4. It can be seen from Figure 9 that a large number of mountains and forests are
detected as buildings, as shown in the area marked with red ellipse, making the OA become much
lower than that of the proposed method. In addition, some of the oriented buildings are not well
extracted. This extraction method combines the H/α/A-Wishart unsupervised classification and the
grey-level co-occurrence matrix (GLCM) texture features of the span image. Therefore the detection of
oriented buildings can be improved to some extent since the polarimetric and textural information are
both considered. However, it cannot handle the removal of mountains and forests because scattering
ambiguity still exists. This detection method is effective for flat city areas and does not work very well
in the areas with large terrain slopes. Note that the mountains can be removed with the help of digital
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elevation model. Therefore, only GLCM texture information is not enough for building extraction from
PolSAR data.Remote Sens. 2016, 8, x FOR PEER  16 of 20 
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FCP fusion 86.91 0.7381 87.34 86.60
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Figure 9. Built-up area extraction using the method in [9], where the white represents the building
areas and the black areas are the non-buildings: (a) detection results; and (b) urban ground truth from
NLCD 2006 land cover data, where the red rectangle represents the study area.

Table 4. Accuracy assessment of the detection result in Figure 9.

OA (%) KC UA (%) PA (%)

Method in [9] 71.70 0.4341 70.71 72.70

4.4. Discussion on the Detection Thresholds

There are three thresholds utilized in our proposed method, i.e., Thd, Thæ and the threshold of
cross scattering power. As we discussed in Section 2.1, the cross scattering mainly occurs in oriented
buildings and usually disappears in natural areas, the threshold of cross scattering power is set to
0. This can be applicable to other PolSAR data with C band and X band since the cross scattering
power in forests is weaker with shorter wavelength [30]. Regarding Thd and Thæ, it is difficult to find
a general value because the land covers exhibit quite different scattering powers in different PolSAR
images. Therefore, in this paper we utilize the distributions of some training samples to determine the
thresholds. It is worth mentioning that for one specified PolSAR image, these two parameters can be
determined automatically from the whole corresponding histograms via the histogram thresholding
method [49]. Note that the main difficulty is to avoid the local minimum.

5. Conclusions

In this paper, we evaluated the performance of double-bounce scattering power and cross
scattering power generated by our previously proposed decomposition technique on built-up area
detection. Buildings parallel to the radar flight pass exhibit strong double-bounce scattering power
while oriented buildings have significant cross scattering power. In contrast, these two scattering
powers in natural areas are quite weak, which is beneficial to the identification of buildings. Another
building detection methodology was proposed using a new average coherence coefficient ratio, which
considers the reflection asymmetry of buildings and the scattering divergence between co-polarized
and cross-polarized channels. This method can effectively remove the false alarms of forests and
also improve the detection of oriented buildings. These two preliminary results were finally fused
using a correlated probabilities decision fusion method. The overall detection accuracy is increased
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by 3.79% and 6.78% compared to the individual detection results. Our method was also compared
to another building detection method, which fused the H/α/A-Wishart unsupervised classification
and the GLCM texture features. The results demonstrated that our method can effectively extract the
built-up areas even with large terrain slopes. The scattering mechanism ambiguity between buildings
and natural areas can be suppressed.

Although our method can effectively discriminate built-up areas from natural areas, it was only
validated using the PALSAR L-band data. Future research will focus on the validation using C-band
and X-band data. Moreover, our method only considers the polarimetric information, inspired by
the method in [9], textural information from the span image can be incorporated into our method to
further improve the overall detection accuracy.
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