
remote sensing  

Article

Building Change Detection Using Old Aerial Images
and New LiDAR Data
Shouji Du 1, Yunsheng Zhang 1,*, Rongjun Qin 2,3, Zhihua Yang 1, Zhengrong Zou 1, Yuqi Tang 1

and Chong Fan 1

1 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
dsjcug@163.com (S.D.); yzhua2014@gmail.com (Z.Y.); zrzou@csu.edu.cn (Z.Z.); yqtang@csu.edu.cn (Y.T.);
fanchong@126.com (C.F.)

2 Department of Civil, Environmental and Geodetic Engineering, the Ohio State University (OSU),
Columbus, OH 43210, USA; qin.324@osu.edu

3 Department of Electrical and Computer Engineering, the Ohio State University (OSU),
Columbus, OH 43210, USA

* Correspondence: zhangys@csu.edu.cn; Tel.: +86-155-8099-7653

Academic Editors: Jixian Zhang, Xiangguo Lin, Gonzalo Pajares Martinsanz and Prasad S. Thenkabail
Received: 11 September 2016; Accepted: 14 December 2016; Published: 17 December 2016

Abstract: Building change detection is important for urban area monitoring, disaster assessment
and updating geo-database. 3D information derived from image dense matching or airborne
light detection and ranging (LiDAR) is very effective for building change detection. However,
combining 3D data from different sources is challenging, and so far few studies have focused
on building change detection using both images and LiDAR data. This study proposes an automatic
method to detect building changes in urban areas using aerial images and LiDAR data. First,
dense image matching is carried out to obtain dense point clouds and then co-registered LiDAR
point clouds using the iterative closest point (ICP) algorithm. The registered point clouds are further
resampled to a raster DSM (Digital Surface Models). In a second step, height difference and grey-scale
similarity are calculated as change indicators and the graph cuts method is employed to determine
changes considering the contexture information. Finally, the detected results are refined by removing
the non-building changes, in which a novel method based on variance of normal direction of LiDAR
points is proposed to remove vegetated areas for positive building changes (newly building or taller)
and nEGI (normalized Excessive Green Index) is used for negative building changes (demolish
building or lower). To evaluate the proposed method, a test area covering approximately 2.1 km2

and consisting of many different types of buildings is used for the experiment. Results indicate
93% completeness with correctness of 90.2% for positive changes, while 94% completeness with
correctness of 94.1% for negative changes, which demonstrate the promising performance of the
proposed method.
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1. Introduction

The rapid process of urbanization has expedited the dynamics of the cities: numerous buildings
are constructed or demolished every year in developing countries such as China. Hence, updating the
existing cadastral maps and three-dimensional (3D) models are becoming important. However,
these tasks often need time-consuming and expensive manual work in the current practices. Therefore,
an automatic or semi-automatic change detection that locates changed buildings can greatly facilitate
the updating process, thus being a great interest in the field of photogrammetry and remote sensing.
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Conventional change detection methods were mainly based on radiometric information analysis
of multi-temporal remote sensed spectral or optical images. Applications include monitoring land
use/land cover classes, disaster assessment [1–5]. Image co-registration is an important procedure
which can easily be influenced by perspective distortion and imaging conditions [6]. However,
change detection results using only 2D image information are often impacted by a significant amount
of false alarms mainly caused by seasonal variations, different weather conditions, shadows and
occlusions. Moreover, due to the similar spectral characteristics, it is difficult to distinguish buildings
from other artificial constructions as bridges and roads [7]. These issues can be particularly problematic
for pixel-based methods. Moreover, pixel-based strategies also lead to noisy outputs like isolated pixels,
holes in the changed objects or jagged boundaries, since they mainly focus on the spectral values and
mostly ignore the spatial context [8,9]. To alleviate these problems, Hopfield neural network [10,11]
and deterministic simulated annealing approach [12] have been used to consider the spatial context
information to determine image changes. Except from these methods, object-based methods were
proposed to compare spectral values with pixel groups [13–16]. However, this kind of method largely
relies on the performance of segmentation or classification, which however varies with image quality
and scene complexity [9]. Moreover, 2D image information based methods cannot be easily used
to determine the changes at an individual building level and explore the volumetric information
changes [17]. Therefore, research on change detection remains an active topic and new techniques are
demanded to effectively use available data from satellite, airborne, even low-altitude platforms.

With the increasing available Digital Surface Model (DSM) generated from images using advanced
stereo image dense matching algorithm [18,19] and airborne laser scanning technology, 3D information
was introduced to determine the change patterns. This is because the height information can be
effectively used as an indicator of building changes. During the past decade, various methods using
3D information for change detection have been developed, they can be generally classified into
two categories according to the used data: 3D change detection using a single source of multi-temporal
data or multiple source of multi-temporal data.

In the first category, the same source of multi-temporal data including multi-temporal stereo
images, multi-temporal LiDAR data or a hybrid use of both is employed to detect building changes.
Jung [20] compared Digital Elevation Model (DEM) and Tian et al. [21] compared DSM at two different
dates to obtain initial change candidate area, and then they used decision trees and box-fitting shape
information to determine true building changes respectively. Nevertheless, since the height information
comes from dense image matching, it can lead to noisy results if only the height information was used
to determine the change area. Because there may be some matching failures caused by occlusions and
poor image quality. To perform more robust change detection, Tian et al. [7] employed Dempster–Shafer
fusion theory that combined a DSM height difference and a Kullback–Leibler divergence similarity
measure of the images to improve the change detection accuracy using IKONOS and WorldView-2
stereo pairs. Nebiker et al. [22] extracted buildings via a rule based method integrating DSM and
images from multi-temporal historical aerial photographs, then refine the building extraction result
with a cadastral database to support subsequent object-based change detection. Guerin et al. [23]
formed the change detection procedure as a labeling problem and solved it by a generalized dynamic
programming algorithm with a spatial regularization constraint. However, this method could not
handle changed buildings surrounded by vegetation.

Nowadays, LiDAR systems are widely used to acquire dense and accurate 3D information
of urban areas [24], and change detection using LiDAR data has increasingly become a research
hotspot. In the early days, multi-temporal LiDAR data were used to detect building changes by simply
comparing interpolated DSMs [25]. To investigate how to determine the change-type information
from multi-temporal LiDAR data, a histogram thresholding was applied in Vu et al. [26]. In another
approach, Choi et al. [27] used the classification result to determine real changes after DSM substraction.
Different from DSM-based methods, point-based change detection methods were proposed for LiDAR
data [28–31]. Due to the huge data volume and irregular distribution of LiDAR point clouds, an octree
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was usually used to organize LiDAR data in these methods [31]. To obtain the semantic change
information, some object-based methods were proposed to calculate the change map [32–35], in which
LiDAR point clouds were segmented as planes to obtain finally building change map.

In the second category, different sources of multi-temporal data are employed to detect building
changes. This category used the existing geographic database as the first-phase data and the aerial
images, LiDAR data or a hybrid of these two as the second-phase data [36]. Vosselman et al. [37]
and Awrangjeb et al. [38,39] used the geographic database as the first-phase data to compare with
building extraction from the newly-available LiDAR data to detect building changes. In addition,
Malpica and Alonso [40,41] used the building extraction results from combining images and LiDAR
data. However, the detection accuracy of these researches depends on the building extraction results in
the second phase data. Liu et al. [42] used the existing CAD data and the aerial images as the first and
second phase data to detect building changes. In this method, displacements and occlusion between
buildings from CAD data and edge extraction results from images had a significantly influence on
the height-change detection. 3D models can also be used as the early date data. Chen and Lin [43]
developed a double-threshold strategy to detect building changes to update the 3D building models
by using old 3D building models and new LiDAR data. Qin [44] used LOD (Level of Detail) 2 building
models with very high resolution space borne stereo imagery to detect building changes and update the
3D database. Inherent geometric consistency, height difference and texture similarity were employed
to reduce false alarms of final change result.

In addition to existing of topographic and 3D model database, there are a large number of old aerial
images archived that can be used for change detection. Aerial photographs have been systematically
collected over decades for civilian map production purposes. Along with the development of airborne
laser scanning technology, the frequency of LiDAR data acquisition is also increasing. Thus, it is
meaningful to investigate using old aerial images and new LiDAR data to detect changes for
applications such as urban growth monitoring or discovering illegal buildings. However, there is
limited research focused on building change detection using old aerial images and new LiDAR data.
Relevant research can be found in Stal et al. [45], who employed airborne photogrammetry and LiDAR
to extract DSMs for detecting the 3D changes over an urban area. Their major focus was to compare
the performance and feasibility of using airborne photogrammetry and LiDAR techniques for 3D
surface modeling, and extracting 3D building changes information were only performed using DSM
differencing. Therefore, a new method using old aerial images and new LiDAR data to detect building
changes can enrich the methods for building change detection.

In this paper, we propose an automatic method using aerial images and LiDAR data to detect
building changes in urban areas. Robust height difference which takes the minimum height difference
over a window [7] and grey-scale information are combined as change indicators, meanwhile,
the change detection is modeled as a multi-label Markov Random Field (MRF) and the graph
cuts method is employed to determine the change map. A novel method based on variance of
normal direction of LiDAR points and nEGI (normalized Excessive Green Index) [46] based on
color information are used to alleviate false alarms of vegetation. The rest of the paper is organized
as follows: Section 2 describes the case study material and the proposed methodology including
three steps of detail. Section 3 presents the experimental results. The proposed methodology is further
discussed in Section 4. Section 5 draws the conclusion.

2. Data and Methodology

2.1. Data

The studied area is around Wuhan University in central of Wuhan City in China covering
approximately 2.1 km2. Wuhan is an old and rapidly developing city, there are many shantytowns
among skyscrapers, which are in the process of demolition, and a large amount of urban
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constructions are happening. Therefore, automatic building change detection in such area is important
and challenging.

The test area and the data source are shown in Figure 1. The aerial images shown in Figure 1a
were captured by Microsoft UltraCamXp camera in the year of 2010, with a resolution of 0.1m.
The used LiDAR data shown in Figure 1b was obtained by Leica ALS 5.0 system in the year of 2014,
with an average point density of 10 points/m2. The aerial images cover about 4.1 km2 while LiDAR
data cover about 2.1 km2. The LiDAR data is fully overlapped with images (approximately 2.1 km2).
This region is mostly flat with the top right of this area including part of a hill. As shown from the
mosaicked image from the four UltraCamXp images in Figure 1a, the test area contains dense buildings
with complex shapes, and highly disparate building heights (from 3 meters to 130 meters) and sizes
(from a few square meters to a few thousands). In addition, several buildings are surrounded by
a large number of trees. These characteristics make the building change detection task difficult in this
area. Details that represent four different types of buildings are shown in Figure 2.
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Figure 1. The test area and data source: (a) mosaicked image from the four UltraCamXp images where
the cyan solid rectangle corresponding to the test area; and (b) new LiDAR point clouds.
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Figure 2. Four different types of buildings: (a) high-rise buildings as rectangle 1 in Figure 1a; (b) dense
residential area as rectangle 2 in Figure 1a; (c) shantytowns as rectangle 3 in Figure 1a; and (d) buildings
surrounded by dense trees as rectangle 4 in Figure 1a.

2.2. Overview of the Proposed Method

Given multiple aerial images and new LiDAR data, the proposed method begins with
a co-registration process, which includes three steps. The first step is to orient all available aerial images
and obtain dense photogrammetric point clouds using Pix4D. The second step is to remove possible
noise in LiDAR data to improve the quality of LiDAR point clouds based on statistical analysis filtering.
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The third step is to align the photogrammetric point clouds to LiDAR point clouds using a modified
ICP (Iterative Closest Point) algorithm [47–49]. After that, robust height difference based on a vicinity
window [7] will be calculated from the interpolated DSMs. Meanwhile, grey-scale similarity will be
computed as another change indicator. Based on these two change indicators, the graph cuts algorithm
will be adopted to determine the raw change map. Finally, two different post-processing methods
are applied to refine the raw change map. For the positive changes, a novel method based on the
variance of normal direction of LiDAR points is proposed to remove the vegetated areas. Meanwhile,
nEGI based on color information is used for refining the negative changes. The framework of the
method is illustrated in Figure 3.

Remote 2016, 9, 1030 5 of 22 

 

difference based on a vicinity window [7] will be calculated from the interpolated DSMs. 
Meanwhile, grey-scale similarity will be computed as another change indicator. Based on these two 
change indicators, the graph cuts algorithm will be adopted to determine the raw change map. 
Finally, two different post-processing methods are applied to refine the raw change map. For the 
positive changes, a novel method based on the variance of normal direction of LiDAR points is 
proposed to remove the vegetated areas. Meanwhile, nEGI based on color information is used for 
refining the negative changes. The framework of the method is illustrated in Figure 3. 

 
Figure 3. Framework of the building change detection method. 

2.3. Data Preprocessing 

In this study, Pix4D is used to perform aerial triangulation for orienting all aerial images and 
producing dense point clouds (termed photogrammetric point clouds hereafter). The derived point 
clouds from Pix4D are produced with arbitrary coordinate system due to the lack of ground control 
points. Since LiDAR point clouds are in a world coordinate, measured with a high-precision 
on-board GNSS (global navigation satellite system), 3-D similarity transformation is used to these 
two kinds of point clouds for following co-registration. 

During the LiDAR point clouds acquiring, some sparse outliers can be caused by flying birds 
or the measurement errors. These sparse outliers may lead to some errors in the interpolated DSM 
influencing the building change detection results. To alleviate these noisy effects in the LiDAR data, 
a statistical analysis based filtering method is applied [50]. Firstly, for each point ip , the mean 
distance iμ  from it to all its k  nearest neighbor points is calculated. Afterward, global mean 
distance μ  and standard distance deviation σ  are calculated and then the points whose mean 

distance iμ  is outside [ ],t tμ σ μ σ− +  can be considered as outliers. In our implementation, the 
neighborhood size k  is set to 30 and t  is empirically set to 5. 

After that, a two-step method based on the ICP algorithm is used to complete co-registration. 
Firstly, three corresponding points are manually selected from both of the point clouds to estimate 
initial transformation parameters, and then a modified ICP algorithm is used to achieve a fine 
registration of multi-temporal point clouds. For detailed description of the ICP algorithm, the 
readers may refer to [47–49]. 

Due to the different quality and density of the photogrammetric and LiDAR point clouds, 
point-based comparison may lead to unfavorable results. Therefore, a DSM-based comparing 

Figure 3. Framework of the building change detection method.

2.3. Data Preprocessing

In this study, Pix4D is used to perform aerial triangulation for orienting all aerial images and
producing dense point clouds (termed photogrammetric point clouds hereafter). The derived point
clouds from Pix4D are produced with arbitrary coordinate system due to the lack of ground control
points. Since LiDAR point clouds are in a world coordinate, measured with a high-precision on-board
GNSS (global navigation satellite system), 3-D similarity transformation is used to these two kinds of
point clouds for following co-registration.

During the LiDAR point clouds acquiring, some sparse outliers can be caused by flying birds
or the measurement errors. These sparse outliers may lead to some errors in the interpolated DSM
influencing the building change detection results. To alleviate these noisy effects in the LiDAR data,
a statistical analysis based filtering method is applied [50]. Firstly, for each point pi, the mean distance
µi from it to all its k nearest neighbor points is calculated. Afterward, global mean distance µ and
standard distance deviation σ are calculated and then the points whose mean distance µi is outside
[µ− tσ, µ + tσ] can be considered as outliers. In our implementation, the neighborhood size k is set to
30 and t is empirically set to 5.

After that, a two-step method based on the ICP algorithm is used to complete co-registration.
Firstly, three corresponding points are manually selected from both of the point clouds to estimate
initial transformation parameters, and then a modified ICP algorithm is used to achieve a fine
registration of multi-temporal point clouds. For detailed description of the ICP algorithm, the readers
may refer to [47–49].
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Due to the different quality and density of the photogrammetric and LiDAR point clouds,
point-based comparison may lead to unfavorable results. Therefore, a DSM-based comparing method
is adopted in our research. After co-registration of the two point clouds data, the Inverse Distance
Weighted (IDW) interpolation method is used to generate DSM [51,52]. To facilitate comparison,
both DSMs from both the photogrammetric (denoted as DSMold hereafter) and LiDAR point clouds
(denoted as DSMnew hereafter) are resampled to 0.5 m.

2.4. Change Detection

2.4.1. Change Indicator

(1) Height Difference
If DSMold and DSMnew both have a good quality, a direct pixel-wise subtraction of DSMs can

obtain a good change indicator. However, the quality of these two DSMs is quite different. Moreover,
there may be a residual shift in three dimensions after the co-registration procedure. Therefore,
such a direct pixel-wise subtraction of DSMs is generally not appropriate [7,53]. To alleviate such
effects, a robust height difference method based on a vicinity window is employed [7]. For a pixel
(i, j) in DSM, the robust difference refers to the minimum difference between X2(i, j) in the DSMnew,
and a certain vicinity of the pixel X1(i, j) in the DSMold. The robust positive difference ∆ZP(i, j) and
negative difference ∆ZN(i, j) corresponding to the pixel (i, j) are defined as Equation (1): ∆ZP(i, j) = min

{
Z2(i, j)− Z1(p, q), Z2(i, j)− Z1(p, q) > 0

}
∆ZN(i, j) = max

{
Z2(i, j)− Z1(p, q), Z2(i, j)− Z1(p, q) < 0

} (1)

where Z1(p, q) and Z2(i, j) refer to the elevation value of pixel X1(p, q) and X2(i, j), p ∈ {i− w, i + w},
q ∈ {j− w, j + w}, and w is the vicinity window size (empirically set to 3). Based on Equation (1),
a height difference map can be calculated.

(2) Grey-scale Similarity
As the used photogrammetric point clouds are derived from image pairs, if we back-project a 3D

photogrammetric point to the stereo image pair, it will appear as a correspondence in image space.
After co-registering photogrammetric and LiDAR point clouds, the back-projected LiDAR points to
the stereo image pair will also appear as a correspondence, if there is none height change. However,
if there is a height change, it will no longer be a correct correspondence. As shown in Figure 4a,
projecting the point Aold(Xi, Yj, Zo) in DSMold to corresponding images will get a match (x1, x2) in
image space. If we calculate the Normalized Cross-Correlation (NCC) in a neighborhood taking the
match as center, this NCC value will tend to 1. If there is no height change for Anew(Xi, Yi, Zn) in
DSMnew, i.e., Zn equal to Zo, we project Anew(Xi, Yi, Zn) to both images will get the same match
(x1, x2). As shown in Figure 4a, if there is height change for Anew(Xi, Yi, Zn), the back-projection image
points (x′1, x′2) could no longer be a correct corresponding point because height change occurs in this
position. In such case, as X and Y coordinate is same, difference in Z value will lead to a smaller NCC
values calculated from the pixels around (x′1, x′2). However, if Zn close to Zo, NCC values will also
be higher. As illustrated in Figure 4b, object P1 has no height change so it gets correspondence in
image space. On the contrary, object P2 does not get correct correspondence due to height change.
Thus, this observation is used as another indicator to infer changes [44]. We project each grid center of
the DSMnew into all the old images to obtain NCC map. The NCC value is computed among each
other images and the maximum value is adopted for each grid. Window size for computing NCC is
set to 13 × 13. The calculated NCC map is shown in Figure 4c, where it can be seen that the changed
building marked in the ellipse in Figure 4b has low NCC value.
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2.4.2. Change Optimization Using Graph Cuts

As the height difference is sometimes unreliable especially on small buildings and areas lack of
texture. When calculating the grey-scale similarity indicator, occlusions can lead to a lower similarity,
which makes the grey-scale similarity unreliable too. Therefore, the height difference and grey-scale
similarity should be combined suitably. In addition, the adjacent DSM cells which have similar height
difference and grey-scale similarity are likely to have the same change status. Thus, we model the
change detection task as a multi-label Markov Random Field considering the contexture constraints,
and used the graph cuts algorithm to solve it [54,55].

The graph cuts algorithm has been widely used in the field of computer vision for labeling
optimization [54,55]. The basic idea is to construct a weighted graph based on the pixels and their
neighborhoods. Each edge is weighted according to the similarities between its connected two nodes,
and this forms part of the cost in an energy function. The objective of graph cuts algorithm is to find
a label lp for each node of the graph by minimizing the energy function as defined as Equation (2).

E(l) = ∑
p∈P

Dp(lp) + β ∑
p,q∈N

Vp,q(lp, lq) (2)
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The first term ∑
p∈P

Dp(lp) relates to the data cost. The second term ∑
p,q∈N

Vp,q(lp, lq) relates to the

smooth cost imposing a spatial smoothness.
In this research, three types of change detection are defined: no change, positive change

(corresponding to newly built buildings or stories), and negative change (corresponding to demolished
buildings or stories). The purpose of the change detection is to assign a label from the three labels to
each pixel in the DSM. This task as a multi-labeling problem can be solved by graph cuts. The data
term for each pixel p is comprised of two terms as Equation (3): height difference term (HD) and
grey-scale similarity (GS).

Dp(lp) = (1− λ) · HD + λ · GS (3)

where

HD =



1
1 + e−K(|∆Z|−T)

, lp = 0 (no change)

1− 1
1 + e−K(∆Z−T)

, lp = 1 (positive change)

1− 1
1 + e−K(−∆Z−T)

, lp = 2 (negative change)

(4)

GS =


1− NCC, lp = 0 (no change)

NCC, lp = 1 (positive change)

NCC, lp = 2 (negative change)
(5)

NCC =

{
NCC, i f (NCC ≥ 0)

0, i f (NCC < 0)
(6)

where ∆Z is obtained from height difference map, and NCC is obtained from NCC map. The parameter
λ defines the balance between height difference and grey-scale similarity in the data term. As the
value of GS ranges from 0 to 1, while HD is out of this range, it should be normalized to the same
range. In Equation (4), HD is normalized by a logistic function into a “S” shaped curve which controls
the sensitivity of height difference. The parameter T is the minimal height of building object and is
empirically set to 3.0 m (about the height of a floor). K controls the steepness of the curve. In our
research, K is set to 3.0 which gets the best balance between the detected results and false alarms.

The smooth term of the labels lp and lq on the adjacent pixels p and q is defined in Equation (7):

δpq =

{
1 (i f lp − lq = 0)
0 (i f lp − lq 6= 0)

(7)

As mentioned in Equation (2), β controls the weight of smooth term and has certain impacts on
the results. Higher β will lead to the smoother results.

After defining the energy function, standard α-expansion [55] is used to solve the multi-label
optimization problem and the output gives a label for each DSM pixel.

2.5. Post-Processing

The results processed by graph cuts still contain noise, which mainly comes from vegetated
areas, small clusters and linear-shaped outliers caused by uncertainty of the building boundary.
Hence, post-processing is carried out to refine the raw detection results. Positive changes refer to new
buildings appearing in new LiDAR data. Thus this type of change can be refined on new LiDAR data.
Negative changes refer to buildings demolished and no longer present in the later LiDAR data set,
so the refinement needs to be performed on the first time of data. Therefore, different procedures are
proposed to refine the change detection results and distinguish the changed buildings from vegetated
areas. The biggest difference between these two post-processing methods is the use of LiDAR geometric
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features and image color to exclude vegetated areas respectively. Moreover, an extra occlusion filter is
applied to alleviate false alarms of negative change due to the dense image matching failure.

2.5.1. Positive Building Change Results Refinement

The workflow of positive building change refinement is shown in Figure 5, and the detailed
procedure is described in the following paragraphs.
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(a) Blunder filter
As some linear-shaped outliers near the building boundary due to the different resolution of the

aerial image and LiDAR data and small clusters remaining in the raw detection results, a morphological
opening operation is applied to filter these blunders [56]. The kernel is set to 8 × 8 pixels.

(b) Area threshold
Because the quality of the DSM from the stereo dense matching technique is not accurate enough,

there will be several small fragments of false alarm in the detection result. As the areas of most buildings
are usually larger than a certain value, the change map is segmented by connected component analysis,
and then small segment regions smaller than 50 m2 are removed.

(c) Vegetation filter
After performing the above filtering, there will be some false alarms in the positive changes caused

by vegetation growth or new vegetation. Usually, the building roofs contain planar surfaces while
the surface of the trees are irregular. Thus, the roughness index can be applied to differentiate false
alarms caused by trees. In the work of Pang et al. [35] and Stal et al. [45], a plane filter and roughness
index were employed to remove the vegetated areas, respectively. However, since building roofs
may be more complex, especially for a skyscraper, it is almost impossible to fit planes or calculate the
roughness as the index. Therefore, a flexible method based on normal statistics is proposed to remove
the vegetated areas. This method assumes that the normals of the points within vegetated areas have
many different directions while the normals of building contain only a few. Thus, a histogram based on
the angle αV of the normal to vertical direction is calculated for each changing object, and then squared
coefficient of variation (abbreviated as scv hereafter) of the histogram is used as an index to indicate
the dispersion of normal direction frequency count around the mean frequency count. An example
of a building and a vegetation area is shown in Figure 6. For each point, αV is calculated, then these
αV are color-coded to display their distribution. From the result, we can see that much point display
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one principal color as shown in Figure 6a, while Figure 6b illustrates more uniform color distribution,
which means the normal direction of the building aggregated to a principle direction.
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To calculate the index for each object, the normal of each corresponding LiDAR point of the
processed change object is calculated via its neighboring points. The histogram of αV in each object is
then calculated. After that, scv is computed by Equation (8):
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scv =
δ2

u2

δ2 =

noi
∑

i=1
(ni− u)2

noi

u =
N

noi

(8)

where noi is the number of bins, ni(i = 1, 2, . . . , noi) is the point number of each bin, and N is number of
all points of an object. A small scv indicates the object has no principal direction and can be determined
as vegetation. From Figure 6c,d, we can see that the building area has a principal direction, thus scv is
higher, while the scv for vegetation object is lower. In our research, the objects whose absolute height
calculated by subtracting the height of the lowest point to height of the highest point is taller than 50 m
are considered as buildings, and other objects will be filtered by the proposed method. In this method,
the number of bins for histogram is set to 9 and the threshold Tscv of scv is set to 1.1.

2.5.2. Negative Building Change Results Refinement

To refine the negative building change map, the processes of blunder filtering, and area threshold
filtering are used in a similar way as mentioned Section 2.5.1. In addition, a different vegetation filter
and an extra occlusion filter are proposed to alleviate false alarms. The workflow of negative building
change refinement is shown in Figure 7, and the detailed procedures of occlusion filter and vegetation
filter are described in the following paragraphs.
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(a) Occlusion filter
Occlusions caused by buildings can easily result in matching failure or holes in the derived

photogrammetric point clouds from dense matching. These holes in the subsequent DSMold will be
filled with interpolated height values, and then DSMold in such area will get higher elevation values
than its true value. Since this occlusion problem may not exist in LiDAR data, false negative changes
will exist in these areas. Thus, to alleviate the disturbances caused by occlusion, the standard deviation
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δH of the neighborhood for each pixel of the DSMold which lacks original photogrammetric 3D points
is calculated by Equation (9):

δH =

√√√√ 1
N

N

∑
i=1

(Hi − µH)
2 (9)

where Hi is the height of neighborhood DSMold grid, and µH is the average height value. Pixel with
δH > TH (TH is empirically set to 0.5 m to get a balance between the occlusion areas and weak texture
areas) is marked as an occlusion area. The window size for δH calculation is set to 11 × 11 pixels.
After getting the occlusion-mask, the changed detection results within the occlusion-mask will be
removed to eliminate the false alarms.

Figure 8 provides an example to illustrate the occlusion filtering processing. Figure 8a,b is
a corresponding region in DSMold and DSMnew. It can be seen that the building area in DSMold
is larger than the corresponding building in DSMnew. This is because that there are interpolated
errors in the occlusion area below the sides of these buildings. This phenomenon does not exist in
DSMnew. This situation will lead to the false detection, as shown in Figure 8c. After occlusion filtering,
the occlusion areas can be mostly be removed as shown in Figure 8d, the linear-shape bundlers as
shown in the red polygon area will be removed by a morphological opening operation.

(b) Vegetation filter
Building roofs can falsely appear uneven and discontinuous, as a result of inaccuracies in stereo

matching. Accordingly, scv can be unreliable for the negative changes. However, the negative building
change refinement can take full advantage of the color information from images. Thus, nEGI [46] is
adopted in this paper to remove possible vegetated areas. nEGI is calculated for each change cluster as
Equation (10):

nEGI =
2× G− R− B
2× G + R + B

(10)

where R, G and B are the color value extracted from the back-projecting point on the nearest images
of DSM pixel. Clusters whose average nEGI with all of the pixels is larger than a given threshold
(set to 0.05) are removed.
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Figure 8. Example of occlusion filtering: (a) one region area of DSMold; (b) the corresponding
region area of DSMnew; (c) initial building change detection result of this area; and (d) result after
occlusion filtering.

3. Experimental Results

3.1. Data Preprocessing Results

The photogrammetric point clouds generated from the aerial images are shown in Figure 9a and
there are several obvious holes in the point clouds especially around the tall buildings. After obtaining
the photogrammetric point clouds, a pre-processing step is performed to co-register these two sets
of point clouds. The RMSE (Root Mean Square Error) between two point clouds is about 0.2 m.
After co-registration, a profile of point clouds in the cyan solid line of Figure 9b from these two sets of
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point clouds is selected to demonstrate registration accuracy. The profile is shown in Figure 9c and
it indicates these two sets of point clouds are well aligned after the registration. To further evaluate
the registration result, a part of the selected profile about a building roof is amplified and shown in
Figure 9d. The maximal distance between these two profiles is about 0.28 m.

After data co-registration, DSMold and DSMnew are interpolated from photogrammetric points
and LiDAR data, respectively, using IDW interpolation method. The interpolated DSM results are in
shown as Figure 10.
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3.2. Building Change Detection Results

There are several parameters in the proposed method. Some of them have a minimal impact
on the results and can be empirically set while others have a relatively significant impact. Three key
parameters are set as in Table 1 and the influence of the parameter will be analyzed subsequently.

Table 1. The key parameters of the proposed method.

Parameters Description Value Set Mode

Tscv Threshold for squared coefficient of variation of the histogram 1.1 Experimentally
λ the weight of grey-scale similarity in the data term 0.6 Experimentally
β the weight of smooth term in the energy function 0.75 Experimentally

To quantitatively evaluate the proposed method, reference data are manually drawn with
the assistance of point clouds and aerial images. Building changes are classified into two types:
positive change (corresponding to newly buildings or taller buildings) and negative change
(corresponding to demolished buildings or lower buildings). There are in total 89 positively changed
buildings and 85 negatively changed buildings in the reference data. The details of the building change
detection results and reference data are shown in Figure 11, where there are a large number of changed
buildings in this area with different and complex shapes.

Since only changed buildings larger than 50 m2 are kept in our results, we only compare it to
the corresponding ground-truth changes. From Figure 11, it can be seen that most of the building
changes are detected, and these contain even some small buildings. The results indicates that the
proposed method can effectively detect building changes in an urban area using images and LiDAR
data. Moreover, most vegetation changes are excluded by nEGI and the proposed variance of normal
distribution. In order to make a quantitative analysis of the results, completeness and correctness
defined as follows is used to evaluate the result:

Completness =
TDN
RN

× 100%

Correctness =
TDN
DN

× 100%
(11)

where TDN (true detected number) is the number of real changed buildings correctly detected as
changed, RN (Reference Number) is the number of changed buildings in the reference data and DN
(Detected Number) is the number of changed buildings in the detected results. For the object-based
evaluation, as long as the detected object has an overlap with the reference data, the object is accepted
as being detected correctly [35]. Building change detection results of the proposed method are listed
in Table 2.

Table 2. The building change detection results of the proposed method.

Type Reference
Number

Detected
Number

True Detected
Number

False Detected
Number Completeness Correctness

Positive 89 92 83 9 93.3% 90.2%
Negative 85 85 80 5 94.1% 94.1%
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Figure 11. The reference data and the building change detection results: (a) reference data and one
region detail; and (b) change detection results and the corresponding region detail.

As shown in Table 2, the completeness of positive and negative building change is 93.3% and
94.1%, respectively, while the correctness is 90.2% and 94.1%. Generally, most negative changes are
low-rise buildings which can be easily influenced by the surrounding objects and difficult to detect,
but in our results, the completeness of negative building change is more than 94%, which is a promising
result. The six omissions for positive changes are mainly caused by two circumstances:

(1) The buildings with complex structures of roofs or covered by vegetation are removed by the
proposed method, which is the main cause of omissions (Figure 12).

(2) The newly built low-rise buildings with a lower height.
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Figure 12. Examples of omissions for positive change: (a) buildings with complex structures of roof;
(b) buildings covered by clutter objects; and (c) buildings covered by vegetation.

The nine false alarms for positive change are mainly caused by the matching failure in the dense
image matching step which leads to significant errors on the height of interpolated DSM.

The five omissions of negative changes mainly refer to change of low-rise buildings, especially
in cases where a low-rise building changed into smooth vegetated area that leads to nearly none
height change.

The five false alarms for negative changes are mainly caused by two circumstances:

(1) Some vegetated areas have insignificant green color which is hard to be removed using the nEGI.
(2) A newly built underground passage results in the subsidence of ground. As shown in Figure 13,

there are almost 5 m changes in ground height.
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Figure 13. A newly built underground passage results in the subsidence of ground: (a) aerial images of
this area; (b) LiDAR data of this area; and (c) the subsidence of ground.

4. Discussion

4.1. Prameter Selection and Sensitivity Analysis

A sensitivity analysis of the three key parameters listed in Table 1 is performed and the results are
shown in Figure 14.

It should be noted that the parameter Tscv only influences the result of positive building changes,
therefore only the positive changes are counted in Figure 14a while for the parameter λ and β,
the positive and negative changes are both included.

In Figure 14a, when Tscv increases, completeness decreases gradually, and correctness increases.
This can be explained by part of the changed building object being mistakenly identified as vegetation
and removed. According to the comprehensive comparison, Tscv = 1.1 obtained the best balance
between completeness and correctness. In this research, the number of bins is set to 9, and through our
experiment, the bins number can be set 6 to 10 which are all appropriate.
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From Figure 14b, it can be seen that the combined grey-scale similarity and height difference
effectively increases completeness, since both indicators are compensating to each other. If only the
height difference were employed as the change indicator, a number of changed building may be
missed due to the uncertainties of the height difference, and these omissions may be detected when the
grey-scale similarity are considered. However, it can also be seen that when the weight of grey-scale
similarity is larger than 0.6 (i.e., the weight of height difference is less than 0.4), the completeness and
correctness will both decrease significantly. This can be explained that there are several uncertainties
among grey-scale similarity, and when the weight of grey-scale similarity is too large, there will be
significant false alarms that lead to the decrease of correctness. In addition, height difference can
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determine the changes are positive or negative while the grey-scale similarity can indicates binary
changes. Therefore, when the weight of height difference is too small, positively or negatively changed
buildings are not determinable, which leads to the decrease of completeness. Thus, good leverage
between height difference and grey-scale similarity in the data term of the energy function is important.
According to our comprehensive test and evaluation, λ = 0.6 leads to the best result in our experiment.

As shown in Figure 14c, the weight of smooth term may impact the results, especially on the
completeness. When β is between 0 to 0.75, completeness increases significantly, contributed by the
consideration of neighborhood relationship by using graph cuts, but when the weight β is too large,
some buildings especially small buildings will be absorbed by the background. In our experiment,
we obtained the best results with β = 0.75.

It is worth mentioning that some of the parameters might be adjusted to adapt the different
urban environment and the used data source for better change detection results. From Figure 14,
it can be observed that λ is relatively sensitive, thus, the balance between two change indicators,
height difference and grey-scale similarity, is important, and should be tuned carefully.

4.2. Comparison

The main objective of the proposed method is to detect building changes using old aerial
images and new LiDAR data. The relevant methods in the literatures used the same source of
multi-temporal data [7,31,35] or using post remote sensing data to detect changes in the existing
map or 3D model [38,43,44]. Thus, a direct and thoroughly comparison to these methods is difficult
for different data source was employed. Therefore only the object-based calculated completeness and
correctness reported in some typical studies are presented in Table 3. Some of them are calculated
via Equation (11) using the experimental results from the selected literature, such as [7,43,44]. For the
results of [7], one of the better results is listed. For the result of [38] and the proposed method,
average result is compared. From Table 3, we can see that our results compare well with these
methods. The comparison results reveal that the proposed method can provide a good balance between
Completeness and Correctness.

Table 3. Comparison results of Completeness and Correctness to relevant studies (×means no relevant
result).

Methods
Data Source Completeness

(%)
Correctness

(%)First Time Second Time

Xu et al. [31] LiDAR data LiDAR data 94.81 ×
Pang et al. [35] LiDAR data LiDAR data 97.8 91.2
Chen and Lin [43] polyhedral building model LiDAR data and aerial imagery 91.67 82.6
Qin [44] 3D model stereo satellite imagery 82.6 ×
Awrangjeb [38] building database LiDAR data 99.6 63.2
Tian et al. [7] stereo satellite image stereo satellite imagery 93.33 87.5
The proposed method aerial imagery LiDAR data 93.5 92.15

4.3. Limitations of the Proposed Building Change Detection

Due to the noise and uncertainties of dense photogrammetric point clouds, the boundary of
changed buildings cannot be accurately determined by the proposed method. A further extension
of our method to object-based analysis and post-processing without building outline detection may
potentially solve this issue to a certain extent.

The vegetation filtering of the positive and negative detected object is based on the surface normal
and nEGI, which demonstrated good performance in our experiment. However, since some vegetation
appears to be in green, not to mention if the images are taken in the fall or winter, so false alarms may
occur in these cases. For the variance of surface normal, buildings with complex roof or covered by
vegetation may be removed, leading to omission errors. Therefore, the vegetation filtering method
needs to be further investigated.
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5. Conclusions

During recent decades, aerial imagery has frequently been acquired and archived. LiDAR nowadays
is more widely employed to acquire accurate 3D information of urban areas. Thus, this paper
investigated the use of aerial images and LiDAR data to determine the building changes. In our
proposed method, graph cuts labeling is employed to determine changes, and the height difference
is combined with the grey-scale similarity to form the data term of the energy function, and the
efficiency of the combined methodology is validated in the experiment. To remove the vegetated areas,
nEGI and a novel method based on the variance of the surface normal are employed. A test area
covering approximately 2.1 km2 and consisting of many different types of buildings is used in the
experiment. The results show that the completeness of more than 93% for positive changes, 94% for
negative changes, and correctness of 90.2% and 94.1%, respectively, which are promising results in
a building change detection task. It can be compared to the building detection result with the same
source of multi-temporal data. The proposed method can enrich the current change detection methods,
especially when the same source multi-temporal data are not available for change analysis or the old
cadastral database is not available for locating areas of buildings.

The key contributions of this study are as follows: First, it is a valuable attempt to detect building
changes using images and LiDAR data from two dates, which have rarely been researched before.
Second, height difference and grey-scale similarity are extracted as two change indicators and the
graph cuts method is employed to determine the changes considering neighborhood relationships,
and this approach can also be used for change detection with other data source. Third, a novel method
based on the squared coefficient of variation of a histogram generated from surface normal directions
is proposed to distinguish the vegetation from buildings of the LiDAR point clouds.

In future work, a robust dense image matching is planned to acquire accurate height information
for aerial images. Object-based methods will be used to determine the more precise shape of changed
buildings. For complex urban areas, more information should be taken into account to improve the
change detection results, such as building shapes and texture features.
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