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Abstract: The past decades have seen an increasing demand for operational monitoring  

of crop conditions and food production at local to global scales. To properly use satellite 

Earth observation for such agricultural monitoring, high temporal revisit frequency over 

vast geographic areas is necessary. However, this often limits the spatial resolution that can 

be used. The challenge of discriminating pixels that correspond to a particular crop type,  

a prerequisite for crop specific agricultural monitoring, remains daunting when the signal 

encoded in pixels stems from several land uses (mixed pixels), e.g., over heterogeneous 

landscapes where individual fields are often smaller than individual pixels. The question of 

determining the optimal pixel sizes for an application such as crop identification is therefore 

naturally inclined towards finding the coarsest acceptable pixel sizes, so as to potentially 

benefit from what instruments with coarser pixels can offer. To answer this question, this 

study builds upon and extends a conceptual framework to quantitatively define pixel size 

requirements for crop identification via image classification. This tool can be modulated 

using different parameterizations to explore trade-offs between pixel size and pixel purity 

when addressing the question of crop identification. Results over contrasting landscapes in 

Central Asia demonstrate that the task of finding the optimum pixel size does not have a 

“one-size-fits-all” solution. The resulting values for pixel size and purity that are suitable 

for crop identification proved to be specific to a given landscape, and for each crop they 

differed across different landscapes. Over the same time series, different crops were not 

identifiable simultaneously in the season and these requirements further changed over the 
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years, reflecting the different agro-ecological conditions the crops are growing in. Results 

indicate that sensors like MODIS (250 m) could be suitable for identifying major crop 

classes in the study sites, whilst sensors like Landsat (30 m) should be considered for 

object-based classification. The proposed framework is generic and can be applied to any 

agricultural landscape, thereby potentially serving to guide recommendations for designing 

dedicated EO missions that can satisfy the requirements in terms of pixel size to identify 

and discriminate crop types. 

Keywords: crop identification; crop monitoring; pixel purity; pixel size; time series; RapidEye 

 

1. Introduction 

Agriculture is mankind’s primary source of food production and plays the key role for cereal supply 

to humanity. One of the future challenges will be to feed a constantly growing population, which is 

expected to reach more than nine billion by 2050 [1]. This will lead to an increasing demand for food, 

which only can be met by boosting agricultural production [2]. Critically the potential to expand cropland 

is limited and changes in the climate system can further exaggerate the future pressure on freshwater 

resources, e.g., through reshaping the pattern of water availability [3]. These trends suggest an increasing 

demand for dependable, accurate and comprehensive agricultural intelligence on crop production. 

Agricultural production monitoring can support decision-making and prioritization efforts towards 

ameliorating vulnerable parts of agricultural systems. The value of satellite Earth observation (EO) 

data in agricultural monitoring is well recognized [4] and a variety of methods have been developed in 

the last decades to provide agricultural production related statistics [5,6]. However, spatially explicit 

monitoring of agricultural production requires routinely updated information on the total surface under 

cultivation, and sometimes the spatial distribution of crops as input [4,7]. This underlines the need for 

developing accurate and effective methods to map and monitor the distribution of agricultural lands 

and crop types (crop mapping). 

Monitoring crop conditions and food production from local to global scales is at the heart of many 

modern economic, geostrategic and humanitarian concerns. Remote sensing is a valuable resource  

in monitoring agricultural production because it provides variables that are strongly linked with the  

two main components of crop production, namely crop acreage and yield [8]. Mapping the spatial 

distribution of crops in an accurate and timely manner is a fundamental input for agricultural production 

monitoring (and for derived application such as producing early warnings of harvest shortfalls), 

especially for systems relying on satellite EO to monitor agricultural resources [4,7]. The traditional 

way to retrieve such crop maps is by classifying an image, or a series of images, using one of the widely 

known classifier concepts and algorithms that are currently available [9]. Examples include statistical 

(parametric) methods like maximum likelihood classifier (MLC) [10,11] or non-parametric “machine 

learners” like random forest (RF) and support vector machines (SVM) [12–14]. 

The concept of crop mapping can have different interpretations depending on the application.  

Some require delineating accurately where all crops are located over the entire area of interest. This is 

necessary for producing accurate crop specific masks [15], or it can be a prerequisite for acreage 
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estimations [16]. Object-based image analysis based on high-resolution images has shown great 

potential for this task [17]. Other applications, like crop monitoring, do not require a spatially exhaustive 

classification that includes the delineation of other (non-crop) land uses or natural land cover. Past 

studies have shown how only an adequate cropland mask is needed to considerably improve either 

classification accuracy and acreage estimations [18] or yield estimations [19,20]. Research has further 

shown how focusing on a population of crop specific time series by choosing only those pixels falling 

adequately into the agricultural fields allows the correct characterization of the crop behavior even  

in highly heterogeneous landscapes [21,22]. Since this paper targets crop-monitoring applications, the 

interest is geared towards this notion of crop identification for subsequent crop-specific monitoring 

rather than exhaustive crop mapping. 

Image masking is a crucial step to restrict the analysis to a subset of a region’s pixels or time series 

rather than using all of the pixels in the scene. Several techniques for creating cropland masks were 

proposed where all sufficiently “cropped” pixels were included in the mask regardless of crop type, so 

the signal remained non-crop specific [18]. Yet, the challenge of discriminating pixels that correspond 

to a particular crop type within such cropland masks remains daunting when the signal encoded in 

pixels stem from several land uses (mixed pixels), e.g., over heterogeneous landscapes were individual 

fields are often smaller than individual pixels. Depending on the degree of mixing (or purity) this can 

result in large differences in classification accuracy [23], which means that pixels characterized by 

different purities might not be equally reliable for discriminating the classes under investigation [24]. 

But what type of remote sensing data, with respect to spatial resolution, should be used as classification 

input? Monitoring agriculture at regional to global scales with remote sensing requires the use of sensors 

that can provide information over large geographic extends with a sufficiently large swath. The data 

also requires the capacity to provide crop specific information with an adequate spatial resolution for 

proper crop classification. Up to now, a good candidate that can satisfy these requirements has been 

AWiFS, which has been used to generate some of the Cropland Data Layer products in the United 

States [25]. Undoubtedly, the new and upcoming satellite EO systems, such as RapidEye, Landsat-8 

and Sentinel-2, provide new opportunities for agricultural applications. Although they may not entirely 

satisfy by themselves the requirements for crop growth monitoring, which typically needs higher 

temporal resolution than what they can provide individually [26], they should be capable of handling 

crop identification over a wide scale if used in a synchronized way. Despite the rise of such systems 

with relatively high revisit, coarser sensors such as MODIS, PROBA-V and Sentinel-3/OLCI (and 

MERIS for the past) should not be discarded. Not only do they provide added information with the higher 

repetitivity, but also those such as MODIS and MERIS will retain much importance as a source of 

long-term historical record, e.g., as archives of crop specific time series for the past years that can be 

very valuable for agricultural monitoring, and which the new systems will not achieve for decades to 

come [22,27]. 

The necessity for a continued exploitation of coarser spatial resolution data, plus the growing 

interest in exploiting multi-scale data synergistically, drive the reasoning for the subject of this paper: 

to explore the spatial resolution requirements for the specific task of crop identification and proper 

crop discrimination via image classification. Although defining suitable pixel sizes for remote sensing 

applications has a long tradition of research [28–33], numerous authors have pointed out how spatial 

resolution is a complex concept that depends on the instrument’s spatial response [31,34–37]. 
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Although smaller pixels are preferred to assure a good delineation and to reduce the amount of mixed 

pixels, increasing the spatial resolution may lead to oversampling, resulting in increased within-feature 

or class variability. Such variation can lead to error in feature identification [23,38,39], and better 

classification accuracies may sometimes be attained using coarser pixel sizes [28]. On the other side, 

classification quality can deteriorate when selecting pixel sizes that are too coarse since this can result 

in excessively mixed pixels when the heterogeneity of the land cover class in one pixel increases [23,40]. 

However, it has been questioned if selecting one single spatial resolution is appropriate for a single 

remotely sensed image [38,41,42]. Furthermore, [43] and [31] illustrated how, for a given application 

like crop area estimation, the spatial resolution and purity requirement differs considerably over different 

landscapes. 

To analyze the spatial resolution requirements for crop identification and proper crop discrimination, 

this study builds upon and extents a conceptual framework established in a previous work of [31]. That 

framework is based on simulating how agricultural landscapes, and more specifically the fields covered 

by one crop of interest, are seen by instruments with increasingly coarser resolving power. The concept 

of crop specific pixel purity, defined as the degree of homogeneity of the signal encoded in a pixel 

with respect to the target crop type, is used to analyze how mixed the pixels can be (as they become 

coarser) without undermining their capacity to describe the desired surface properties. In [31], the 

authors used this approach to restrict the analysis to a subset of a region’s pixels and to identify the 

maximum tolerable pixel size for both crop growth monitoring and crop area estimation, respectively. 

In the present paper, we propose to revisit this framework and steer it towards answering the 

question: “What is the spatial resolution requirement for crop identification within a given landscape?” 

The proposed tool provides a comprehensive understanding of how crop identification via classification 

of satellite image time series depends on both pixel size and pixel purity. These properties are analyzed 

both for (i) a specific crop found across different landscapes and (ii) different crops within the same 

landscape. Minimum and maximum tolerable pixel sizes and corresponding pixel purities were analyzed 

with respect to whether a supervised or an unsupervised classification approach is used. Some further 

analyses, which are critical for operational monitoring, include an exploration of how the suitable pixel 

size changes along the crop growing-period of a given year, and whether results are stable by repeating 

the approach on the same site for different years. 

2. Study Site and Data Description 

Although the methodology developed in this study is generic, and thus applicable to any agricultural 

landscape, the demonstration is focused on four contrasting agricultural landscapes in Central Asia. 

They are located between the Amu-Darya and Syr-Darya rivers and are characterized by vast agricultural 

systems, which were extensively developed under the aegis of the former Soviet Union during the 

second half of the 20th century [44]. The climate is arid, continental and dry, with 100–250 mm 

precipitation per year falling mainly in winter. Thus agriculture is limited to irrigated lands [45]. Each 

test site is 30 km × 30 km. Figure 1 shows subsets of the imagery and the corresponding crop specific 

masks, respectively of the four sites. 
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Figure 1. Exemplary subsets (6.5 × 6.5 km) of the imagery and crop masks from the  

four test sites: Khorezm (KHO), Karakalpakstan (KKP), Kyzyl-Orda (KYZ), and Fergana 

Valley (FER). The imagery is displayed using a 5-2-1 band combination of RapidEye from 

June–July, contrast of the images is adjusted separately. The location of the sites in Middle 

Asia is shown below. 

 

 

The first site is located in the Khorezm region (KHO) in the north-western part of Uzbekistan. The 

agricultural landscape appears fragmented due to a comparatively high diversity of crops (e.g., cotton, 
rice, sorghum, maize, winter wheat and fruit trees). Cover fraction (ܥ௙) of agricultural fields (e.g., the 

fraction of the sites covered by agricultural fields) is the highest among the four test sites (Table 1 [46]). 

The second site is situated in the autonomous region of Karakalpakstan (KKP), in the north-western 
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part of Uzbekistan. Crop diversity is high, including: cotton, winter wheat, rice, maize, sorghum, 

watermelons, and alfalfa. Crop pattern in KKP is very heterogeneous, with more regularly shaped 

fields in the south-western part, whilst in the north-eastern direction the landscapes becomes increasingly 

more fragmented with smaller and more irregularly shaped fields. The third site is located in the Kyzl-Orda 

district (KYZ) in southern Kazakhstan, and was chosen to have an example with more regularly 

shaped field structures. Only two crops are dominating the agricultural landscape: rice and alfalfa. 

Large and regular shaped agricultural fields of approx. 2–3 ha each characterize this landscape, where 

the same crop is grown on adjacent fields, that are aggregated to blocks which together exceed the area 

of between 500 × 500 m and 1000 × 1000 m (25–100 ha). Fergana Valley (FER), in the eastern part of 

Uzbekistan, has comparatively large and regular shaped fields, and a variety of crops including rice, 

cotton, winter wheat, and fruit trees are cultivated. In all sites excepting KYZ, multiple cropping is 

sometimes practiced, e.g., a double cropping sequences with a second major NDVI peak in summer due 

to the growth of a summer crop, after harvest of winter wheat. In this study, such land use type will be 

labelled: “wheat-other”. 

Table 1. Characteristics of the four study sites. The cover fraction indicates the fraction of 

the 30 × 30 km sites covered by agricultural fields. Max ܦ௖ is the maximum of the mean 

length scale of the normalized difference vegetation index (NDVI) along the season in 

(km), as defined by [46] Moran’s I quantifies spatial clustering of fields, with values near 

+1.0 indicating spatial clustering of fields with the same crop while values near −1.0 

indicate dispersion. 

Study Site 
Scene Center 

(Lat, Lon) 

Total 
Number of 

Fields 

Mean, Median and 
Standard Deviation 

of Field Size (ha) 

Cover 
Fraction 

Max ࢉࡰ Moran’s 
I Index 

Khorezm (KHO) 
60°35′19E, 
41°31′12N 

22,247 4.31, 3.21, 2.07  0.59 2.3 0.149 

Karakalpakstan 
(KKP) 

59°33′48E, 
42°42′37N 

21,205 2.19, 1.71, 1.86  0.32 2.8 0.143 

Kyzl-Orda (KYZ) 
64°55′55E, 
44°58′71N 

14,561 2.45, 2.14, 1.62 0.25 1.7 0.348 

Fergana (FER) 
71°45′00E, 
40°32′33N 

12,670 6.74, 5.47, 2.25  0.57 2.4 0.042 

2.1. Satellite Imagery 

Images from the RapidEye mission [47] with a ground sampling distance (GSD) of 6.5 m, were 

available for each site. These images have five spectral bands: blue (440–510 nm), green (520–590 nm), 

red (630–685 nm), red edge (690–730 nm), and near infrared (NIR, 760–850 nm). Images were 

atmospherically corrected using the ATCOR-2 module [48], and geometrically corrected and co-registered 

with ground control points, resulting in RMSEs of <6.5 m. For the analysis, eight top-of-canopy  

(TOC) reflectance images are available. They are well distributed along the season, approx. between 

day-of-year (DoY) 80 and DoY 280, in order to provide the necessary phenological information for 

crop discrimination. RapidEye images were available for KHO in 2009 and 2010, for FER in 2011 and 
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2012, and for KKP and KYZ in 2011. Thus, at least in KHO and FER, the analysis could be repeated 

in two consecutive years (Figure 2). 

Figure 2. Acquisition dates of the data sets from the RapidEye instrument utilized in this 

study. Nine images are available in KKP, eight images in the other landscapes. 

 

An experimental variogram of the NDVI was calculated for every site and acquisition date. Then, 

modelled variograms were derived by fitting exponential models over each variogram curve, and the 

mean length scales ܦ௖ (e.g., the square root of the variogram integral range) of [49] were extracted for 

each site (Table 1). ܦ௖ was shown to be suitable to assess if an image is large enough to characterize 

the spatial structures within the landscape: [49] propose that an image is large enough if the integral 

range of the variogram is smaller than 5% of the image surface, e.g., the corresponding ܦ௖ for a 30 × 

30 km image is below 6.7 km. To test if this hypothesis is fulfilled the maximum of all ܦ௖ values for 

the NDVI along the season was calculated, confirming that the subsets could be considered as  

large enough. 

2.2. Crop Masks 

Crop specific masks are necessary to identify the target objects (agricultural fields cultivated with a 

certain crop) in the scene, and later for calculating the purity of coarser pixels with regard to specific 

crops. For the study sites access to vector databases of the agricultural fields including information on 

crops was either non-existent or restricted. However, crop masks were available from previous studies 

for the years 2009, 2011 and 2012 [50], and for 2010 [51]. These masks were created using supervised 

object-based image classification applied to a set of high-resolution time series of RapidEye images 

acquired over the growing seasons. The overall accuracies of the crop masks were more than reasonable 

(>93% in most cases) and assumed to have negligible error for the purpose of this study. Sorghum and 

maize were merged into the class “sorghum/maize” because they could not be distinguished from each 

other. The resulting proportions of crops in the sites, and the median field sizes cultivated by certain 

crops, are summarized in Table 2. 
  

1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov

FER 2012

FER 2011

KYZ 2011

KKP 2011

KHO 2010

KHO 2009
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Table 2. Area cover fractions ܥ௙ of agricultural crops in the study sites, calculated as the 

share of area of crops in the total cultivated area per site. MFS is the mean field size of the 

corresponding crops in hectares. The crop classes include cotton (C), fallow (FA), rice (R), 

sorghum/maize (S), alfalfa (A1), 2–3 year old alfalfa (A2), melons (M), fruit trees (F), 

winter wheat (W), and wheat-other (WO). Below the overall classification accuracy (OA) [%] 

of the crop masks is given that resulted from the classification of the RapidEye time series. 

KHO 2009 KHO 2010 KKP 2011 KYZ 2011 FER 2011 FER 2012 

Crop ࢌ࡯ MFS (ha) Crop ࢌ࡯ MFS (ha) Crop ܥ௙ MFS (ha) Crop ࢌ࡯ MFS (ha) Crop ࢌ࡯ MFS (ha) Crop ࢌ࡯ MFS (ha)

C 0.34 5.05 ± 1.83 C 0.35 5.03 ± 1.93 C 0.12 2.50 ± 1.68 F 0.28 2.56 ± 1.62 WO 0.32 7.83 ± 2.81 WO 0.27 7.54 ± 2.75

WO 0.27 4.49 ± 1.95 WO 0.30 4.60 ± 2.17 F 0.48 2.15 ± 1.86 R 0.52 2.36 ± 1.36 F 0.04 4.68 ± 2.45 F 0.01 4.27 ± 2.53

T 0.23 4.22 ± 2.11 T 0.19 4.45 ± 2.15 R 0.07 2.11 ± 1.68 A1 0.10 2.36 ± 1.80 W 0.05 6.49 ± 2.84 W 0.09 8.45 ± 2.66

W 0.01 5.14 ± 1.78 W 0.01 4.14 ± 2.10 S 0.02 1.60 ± 1.53 A3 0.10 2.67 ± 1.48 C 0.42 7.72 ± 2.71 C 0.44 7.40 ± 2.70

R 0.07 4.15 ± 2.25 R 0.13 4.10 ± 1.75 W 0.22 2.39 ± 1.83    T 0.19 4.70 ± 2.42 T 0.19 4.70 ± 2.78

S 0.01 5.88 ± 2.86 S 0.01 3.60 ± 2.18 A1 0.07 2.29 ± 1.67      

FA 0.07 2.70 ± 1.82 FA 0.01 3.20 ± 1.9 M 0.03 1.40 ± 1.16      

    WO 0.01 1.62 ± 1.45      

OA: 94.4 OA: 87.4 OA: 94.60 OA: 93.90 OA: 96.10 OA: 95.6 

3. Methodology 

The methodology is based on the same conceptual framework designed by [31]. It relies on using 

high spatial resolution images and corresponding crop masks to generate various sets of pixel populations 

over which a classification algorithm can be applied. The pixel populations are characterized by 

increasingly coarser pixel sizes and with a range of different crop specific purity thresholds. The 

difference here is that for each pixel population several crop classes are considered for classification, 

whilst [31] used pixel purity with regard to only a single crop. The necessary processing steps to simulate 

coarser imagery and to define suitable pixel sizes for crop identification are henceforth described. The 

general flowchart in Figure 3 may guide the reader throughout the following descriptions. 

3.1. Selecting Target Pixel Population by Aggregation and Thresholding 

To simulate coarser pixel sizes, a spatial response model is convolved over the original RapidEye 

images. The spatial response model [36] of an imaging instrument with coarser GSD consists of a 
point spread function that characterizes both optical (ܲܵܨ௢௣௧) and detector (ܲܵܨௗ௘௧) components of a 

generic sensor: ܲܵܨ௡௘௧ = ௢௣௧ܨܵܲ ∗ ,ݔ)௢௣௧ܨܵܲௗ௘௧ (1)ܨܵܲ (ݕ = ݌ݔ݁ ቆ− ଶݔ + ଶ2ݕ ∗ ݒ) ∗ ,ݔ)ௗ௘௧ܨܵܲଶቇ (2)(ߪ (ݕ = (ߥ/ݔ)ݐܿ݁ݎ ∗ (3) (ߥ/ݕ)ݐܿ݁ݎ

where ݔ and ݕ are the cross-track and in-track coordinates, respectively, in the image space with their 

origin at the centroid of the ground instantaneous field of view (GIFOV) and σ the standard deviation 

of the Gaussian curve. Note that the width of the detector in both in-track and cross-track directions, 
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respectively, is assumed to be equal. ݐܿ݁ݎ is the rectangular function, a uniform square pulse function 

with amplitude one and width ν. 

The ܲܵܨ௡௘௧ is scaled to a range of sizes between 6.5 m and 748.5 m, in increments of 6.5 m, in 

order to simulate a continuum of coarser images. A bi-dimensional convolution of the spatial response 

model, ܲܵܨ௡௘௧ at each scale over the RapidEye time series, followed by a sub-sampling operation, 

results in simulated images at a given coarser pixel size. It has to be noted that the ܲܵܨ௡௘௧ used in this 

study is not intended to mimic the exact response of a particular sensor, but has intentionally been 

defined to be generic. 

Figure 3. Flowchart to produce the convolved time series and pixel purity maps, 

respectively at different scales, and to identify pixel size requirements for crop identification. 

 

The convolution of the same ܲܵܨ௡௘௧	over the high resolution crop masks result in crop specific 

purity maps at each scale, which map the pixel purity with respect to the spatial structures represented 

in the high resolution crop masks [31]. This allows controlling the degree at which the footprints of 

coarser pixels coincide with the target structures (e.g., fields belonging to certain crops). At each spatial 

resolution pixel populations can be selected based on thresholds on the pixel purity, here denoted π 

(for the sake of consistency the terms used by [31] were applied, and purity is symbolized with π, and 
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pixels size is equal to the GSD, symbolized with ν). A threshold can be chosen to separate the aggregated 

binary crop masks into two sets: target pixels and non-target pixels. The threshold can vary from 0, 

where all pixels in the images are selected as target, to 1, where only completely pure pixels are 

selected. The sets of selected target pixels, or pixel populations, vary with respect to their GSD (ν) and 

to the minimum acceptable purity threshold that defines them (π). This method goes beyond former 

approaches for image masking by allowing for a detailed assessment of the effect of pixel size and 

purity on crop classification. 

3.2. Image Classification 

The second step consists of applying classification procedures to the selected pixel populations. 

Two classification algorithms were tested: one supervised machine-learning techniques (RF), and one 

unsupervised algorithm (K-means). Each classifier was applied to classify the five RapidEye bands 

and the normalized difference vegetation index (NDVI), which was calculated for the entire time series 

data at each spatial scale, and all crop classes present in the corresponding study sites were included in 

the legend. 

For the supervised classifier, independent training and testing data sets were generated from each 

selected pixel populations following an equalized random sampling design to obtain approximately the 

same number of pixels for each class. The target size of both the training and testing sets was initially 

set to 400 randomly selected pixels per class. A smaller number of pixels could be selected (e.g., with 

coarser pixel sizes), but the analysis was ultimately halted when the number of pixels in any class 

dropped below 20. The implementation of Breiman’s RF [12] within the randomForest package [52] in 

the R programming environment was used. The number of trees T at which an optimal accuracy level 

is achieved varies with the number of samples and features, and with the variability of feature values. 

The number of trees commonly recommended is 500 [53]. The second free parameter relevant for 
accurate classifications is the number of features ݉௧௥௬ to split the nodes [53]. The number of features 

at each node was set to	ඥ݂, where f is the total number of predictor variables within the corresponding 

input dataset. 

The purpose of using the unsupervised K-means [9] here is to evaluate to what extent crop specific 

signals can be detected in NDVI signatures at different spatial scales (and for different purities) in the 

absence of training data. In this regard, the unsupervised technique extracts temporal classes defined 

by their characteristics in the time series data to identify natural groupings of pixels with similar NDVI 

properties, corresponding to key phenological stages (green-up, peak, senescence) in the NDVI time 

series [54]. The K-means clustering [9] was chosen to evaluate the suitability of unsupervised crop 

identification. The version used is implemented in the stats package [55] in R. A range of cluster numbers 

was tested {10,15,20,25}, and the number that achieved highest values for the evaluation criteria was 

selected. The K-means algorithm was repeated 20 times, thereby creating different random seeds for 

the initial clustering. From the 20 model runs, the model with the lowest resulting sum of squared 

distances between the samples and their corresponding cluster centers was taken for the suitability 

evaluation of the unsupervised clustering. Each cluster containing at least 50% of the samples of a class ݅ 
were assigned to this class. 
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To obtain robust performance estimates and to reduce possible bias in the results because of 

different distributional properties of the test and training sets the draws of training and validation data 

were repeated 10 times, and the parameters defined above were averaged over the 10 independent runs 

of models from both algorithms, RF and K-means. 

3.3. Characterizing Classification Performance 

Pixel size and pixel purity can be considered as two dimensions of a ν − π	space. For each selected 

pixel population in this ν − π	space, information regarding the classification performance (e.g., overall 

accuracy) can be summarized as a surface mapped along the pixel ν −  .dimensions (e.g., Figure 4)	ߨ

The standard protocol in remote sensing for evaluating the accuracy stems from quantitative metrics 

derived from the confusion matrix [56]. Yet, different metrics evaluate different components of accuracy 

because they are based on different statistical assumptions on the input data [57] and such measures 

should be selected based on the requirements of the study [58]. Consequently, seeking to optimize or 

compare classifier algorithm performance (or defining suitable pixel sizes with only one metric) may 

lead to a non-optimal result when viewed from another point of view or quantified with a different 

metric that is sensitive to different features concerning accuracy [59,60]. Regarding this, the user might 

be interested in restricting the application of coarser pixel sizes on the basis of the most restrictive 

metric, among several metrics tested. Hence, to evaluate crop identification performance, the following 

parameters were calculated for each combination of π and ν (their 3-D representation is shown in 

Figure 4). 

3.3.1. Number of Available Reference Pixels per Class (Ni) 

The number of available reference pixels Ni of a given class ݅ gives the total available size of pixel 

populations in the ν − π	dimensions that can be used for training and testing the classifier. In general 

Ni decreases with both π and ν	(Figure 4a). The rate of decrease differs for different crops depending 

on the total area of the crop in the test site, mean field sizes, and the aggregation pattern of field with 

the same crop. In supervised crop classification a minimum number of pixels per crop class can be 

desirable to assure the generalizability of the classifier model to the unseen dataset, and to reduce the 

influence of (random) variability in the training data on the classification result. 

3.3.2. α-Quadratic Entropy (AQE) 

Measures of classification uncertainty like entropy assess the spatial variation of the classification 

quality on a per-case (e.g., per-pixel) basis, and can be used to supplement the global summary provided 

by standard accuracy statements like overall accuracy [59]. It can be characterized as a quantitative 

measure of doubt when a classification decision is made in a hard way. Beneath the final (“hard”) class 

label, non-parametric algorithms such as RF can generate for each classified case ई (agricultural field 

or pixel) a “soft” output in form of a vector ݌(ई) = ,ଵ݌) … , ,௜݌ … ,  ௡) that contains the probabilities݌

that a pixel is classified into a class ݅, ݊ being the total number of classes. Entropy measures were 

shown to be indicative of the spatial distribution of error and to be a useful complement to traditional 

accuracy measures like overall accuracy [61]. Each of the elements in ݌(ई) can be interpreted as a 
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degree of belief or posterior probability that a pixel actually belongs to	݅. From this vector, the 	α-quadratic entropy [62] for a given pixel (ई)	can be calculated as a measure of uncertainty, which is 

defined as: ܧܳܣതതതതതത(ई) = 	 1݊ ∗ (2ିଶ∝) ∗ ෍݌௜∝௡
௜ୀଵ ൫1 − ௜݌ ൯∝ (4)

where ݌௜ is one element in ݌(ई), ݊ the number of classes, and α an exponent that determines the 

behaviour of ܧܳܣ(ई). With α close to “0”, ܧܳܣതതതതതത(ई)	becomes insensitive to changes in the elements in ݌(ई), whereas for α close to “1”, ܧܳܣതതതതതത(ई)	is highly selective if the components in ݌(ई)	tend toward 

equalization. As a consequence, in this paper α = 0.5 was chosen as a good trade-off. ܧܳܣതതതതതത(ई) was scaled 

to a common scale [0,1]. The entropy of the total classified pixel population can be quantified with  

the median of all classified pixels’ ܧܳܣതതതതതത(ई), denoted AQE (Figure 4b). This can also be done at the  

per-class basis, by calculating the median entropy of all pixels classified into a class ݅, denoted AQEi. 

Figure 4. Examples of parameters chosen for crop identification for the pixel populations 

along the pixel size—pixel purity dimensions: (a) the number of pixels available for training 

the classifier (Ni), (b) median alpha quadratic entropy of the classified pixel populations 

(AQEi), and (c) class-wise classification accuracy (CAi). The values shown in the surfaces 

(b) and (c) are averaged over ten model runs. Note that the pixel purity axis is inverted in 

(a) and (b) for the sake of better visibility. 

(a) (b) 

(c) 
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3.3.3. Classification Accuracy (ACC and CAi) 

A set of confusion matrices [56] was computed on the hard result of the test sets defined along the ν − π	dimensions. The overall accuracy (ACC) is defined as the total proportion of correctly classified 

pixels per total number of test pixels. It is one of the most common measures of classification 

performance in remote sensing [59], and is defined as: ܥܥܣ = ݊௖݊ (5)

where ACC is the proportion of correctly allocated test samples, ݊ is the number of test samples, and ݊௖ the number of correctly allocated test samples. ACC increases with increasing purities and 

decreasing pixel size, respectively (Figure 4c). 
For each class ݅ under investigation the general ܨஒ-measure of [63] was adopted as class-wise 

measure of accuracy. This measure combines precision ݎ݌௜ (which gives the proportion of samples 

which truly have class ݅ among all samples which were classified as class ݅) and recall ݌ݐ௜ (the true 

positive rate (TPR) which gives the proportion of samples classified into class ݅ among all samples 

which truly have class ݅). The former determined the error of omission (false exclusion), the latter the 
error of commission (false inclusion). Here a special case of the ܨஒ-measure, ܨ଴.ହ	was chosen that is 

defined as: ܣܥ௜ = ଴.ହܨ = (1 + βଶ) ௜ݎ݌ ∗ ௜݌ݐ
β

ଶ ∗ ௜ݎ݌ + ௜ (6)݌ݐ

where	β was set to 0.5. This was done in order to put more emphasis on precision than recall, because 

the interest in this study lies in having highest possible precision in those pixels that were identified as 
target (belonging to a class ݅), rather than identifying all pixels. The traditional ܨஒ-measure equally 

weights precision and recall (β = 1), and is sometimes referred to as ܨଵ measure. 

3.4. Definition of Constraints for Crop Identification 

The final step to determine the suitable spatial resolution for crop identification is to isolate the  

(ν, π) combinations for which the classification performance is good enough. This is accomplished by 

defining acceptable thresholds for the parameters defined above. Such thresholds will be used to slice 

the surfaces with a plane parallel to the ν − π space, thereby defining a frontier in this ν − π space 

dividing pixel populations that are above or below the acceptable threshold for a given surface. As an 

example, if an application requires a minimum overall accuracy of 75%, the surface CAi is sliced by a 

plane passing by the value CAi = 0.75. When the intersection of CAi and the plane is projected onto the 

2-D space ν − π, it separates this domain into the region where selected pixel populations have 

classification accuracy higher than 75% and the region where the accuracy of the remaining population 

will be lower than 75%. The coordinates (ν, π) along the division boundary satisfy the imposed condition 

CAi = 0.75. By drawing limits on the different parameters, according to the thresholds defined in Table 3, 

the parameter surfaces were sliced and the intersection points of these slices in ν − π space were used 

to identify the position of the coarsest acceptable pixel sizes (ν௠௔௫) and the corresponding minimum 

required pixel purities π, respectively. 
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Table 3. Overview on the parameterization and input data used for the calculation of  

the maximum tolerable ground sampling distance (GSD) for crop identification at the 

class-basis. Several increasingly constraining thresholds (as represented by the levels) were 

tested. Note that for the unsupervised method classification entropy was not calculated. 

Criterion Symbol Level I Level II Level III 

Number of available reference pixels per class Ni >50  >75  >100  
Classification accuracy ACC/CAi >0.75 >0.80 >0.85 

α-Quadratic classification entropy  AQE/AQEi <0.55 <0.50 <0.45 

Figure 5 shows an example of the experimental boundaries used to define suitable pixel populations 

for crop identification. In this example the intersection of the pixel number constraint (Ni) and CAi 

determine the position of ν௠௔௫	in the ν − π space. As can be seen from this figure, a theoretical minimum 

pixel size (ν௠௜௡) can also be defined when the application of finer pixels is restricted, e.g., due to 

excessive entropy (AQEi) or insufficient accuracy (CAi). 

Figure 5. Theoretical boundaries in ν − π space used to define the requirements for  

pixel populations to be used for supervised classification. Triangle indicates the position  

of maximum tolerable pixel size ν௠௔௫, black filled square the minimum required pixel  

size ߥ௠௜௡. 

 

Users will have different requirements for selecting their pixel population of interest, e.g., it might 

be acceptable to have crop classes identified at different levels of accuracy as long as the classes of 

interest are sufficiently accurately identified. Hence, a range of thresholds was applied to the parameters. 

Increasing the severity of the thresholds for the parameters (e.g., 0.75, 0.80, and 0.85 for CAi) to define 

these experimental boundaries results in having less and less suitable pixel populations left for crop 

identification that can fulfill the stricter thresholds. Figure 6 demonstrates this effect: first, higher thresholds 

are successively selected for each parameter at the same time, according to the parameterization defined  

in Table 3. Green colors indicate that all parameters (CAi, AQEi, and Ni) are fulfilled and the pixel 

population can be considers adequate (“suitable”) for crop identification. Then, combining these three maps 

yields a “suitability” map (bottom map in Figure 6), which shows the degree of suitability of pixel 



Remote Sens. 2014, 6 9048 

 

 

populations for crop identification considering several thresholds at the same time. In these maps, shades 

of a given color means that a specific number of parameters is fulfilled, that is, they satisfy at least  

the minimum threshold set for them in Table 3. However, they do so at different levels: for instance, 

shades of green means that all three parameters are fulfilled, but not necessarily under the strictest 

thresholds defined in Table 3. Only dark green color indicates that all parameters are fulfilled under the 

strictest values. 

Figure 6. Schematic example for the evolution of the amount of suitable pixel populations 

in KKP when increasing the thresholds. The first three images (from left to right) illustrate 

the effect of setting thresholds to 0.75, 0.80, and 0.85, respectively for CAi. Ni was increased 

from 50 to 100, and entropy values were set to 0.55, 0.50, and 0.45. The bottom image 

shows the pixel suitability map and the corresponding legend, which combines the three 

single suitability maps. Dark red was also assigned to pixel populations that did not fulfill 

any parameter. 

 

4. Results 

4.1. How Do Pixel Size and Purity Requirements Differ per Crop for Each Site? 

The performance of crop identification as a function of pixel size and pixel purity has been found to 

vary within a landscape and across landscapes. From the suitability map in KKP (Figure 7) class-specific 

differences regarding the spatial resolution requirement for the identification become apparent. For 

example, ν௠௔௫ for rice was 429.0 m, whilst ν௠௔௫ for wheat-other was 91.0 m. Also the minimum 

required pixel sizes (ν௠௜௡) varied. For instance, cotton could be identified using very small pixels 

(ν௠௜௡ =	6.5 m), whilst other crop classes like alfalfa-1y and fallow fields required relatively coarse 
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values for ν௠௜௡ (65.0 m and 78.0 m, respectively). Sorghum/maize could not effectively be identified 

because more than two thresholds were generally exceeded (CAi and AQEi). 

Further, there are differences in the minimum required pixel purity for ν௠௔௫ and ν௠௜௡. For the 

identification of rice fields comparatively low pixel purity for ν௠௔௫ was needed (π =	0.35 in KKP), 

compared with the corresponding purities of other crops (e.g., π = 0.75 for alfalfa-1y). The position in 

the ν − π space maximising classification performance according to the class-wise accuracy CAi was 

assessed for each case. Inspecting Figure 7 it can be seen that this position did not necessarily coincide 

with the highest degree of the corresponding pixel populations’ suitability (e.g., dark green colors in 

the suitability maps), which means that the “best” position in ν − π of different accuracy metrics are 

not necessarily identical. Another characteristic is the need for relatively coarse pixels to achieve 

maximum classification accuracy (e.g., 182.0 m were required to achieve highest CAi for rice fields 

while finer pixel sizes were equally suitable). 

Figure 7. Suitable pixel populations for crop identification in KKP 2011. Green colors 

indicate suitable populations in the pixel size-pixel purity space, where all criteria defined 

above are met, yellow colors indicate that one criterion is not met, orange means two 

criteria are not met, and finally red colors indicate that three (or more) criteria are not met. 

Circle indicates the actual position of the best values achieved for CAi, the corresponding 

pixel size ݒ and purity ߨ are given for each crop. 
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When looking at a specific type of crop, the requirements for its identification differed among the 

four landscapes (Figure 8). For instance, the identification of cotton in KHO required a minimum pixel 

size of ν௠௜௡ = 117.0 m, whilst in FER ν௠௜௡ could be 6.5 m. Wheat-other could be identified over a 

large range of pixel sizes in FER (ν௠௜௡ = 6.5 m, ν௠௔௫ = 611.0 m), whilst its identification in KKP was 

restricted to a rather narrow range of pixel sizes (32.5–91.0 m). 

Figure 8. Suitable pixel populations for selected crops in the four study sites. Green colors 

indicate suitable populations in the pixel size-pixel purity space, where all criteria defined 

above are met, yellow colors indicate that one criterion is not met, orange means two 

criteria are not met, and finally red colors indicate that three (or more) criteria are not met. 

Circle indicates the actual position of the best values achieved for CAi, the corresponding pixel 

size v and purity π are given for each crop. Rice was not present in FER, and cotton, 

wheat, and wheat-other was absent in KYZ. 
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4.2. How Does Changing from Supervised to Unsupervised Classification Influence the Pixel 

Population Suitability? 

The application of the unsupervised classification achieved results that are comparable to the 

supervised approach only for some crop classes. Figure 9 reveals that the most notable difference to 

the supervised approach is that in general coarser pixels were required to effectively identify crops 

(e.g., ν௠௜௡ = 91.5 m for rice, compared to 6.5 m using RF). Using coarser pixels is supposed to reduce 

within class variance [23], which could facilitate the unsupervised crop identification as long as  

the effect of pixel mixing does not become dominating. In KYZ only rice fields could be identified  

(ν௠௔௫ = 604.5 m, compared to 745.5 m using RF). 

Figure 9. (a) Ranges of suitable pixel sizes for different crop types using unsupervised  

K-means clustering (right columns) compared to the RF algorithm (left columns) in the 

KKP landscape. (b) Ranges of suitable pixel sizes for selected crops in the four landscapes. 

The length of the bars correspond to the range of suitable pixel sizes, shades of green 

indicate different levels of suitability, e.g., dark green means that all level-III criteria defined 

in Table 3 are fulfilled, light green that all level-I criteria are fulfilled. 

(a) 

 

(b) 
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This is most probably because of the indistinct NDVI profiles of alfalfa and fallow fields, which are 

characterized by heterogeneous patterns due to several irregularly scheduled cuttings throughout the 

season. In contrast, all crops except for winter wheat fields could be identified in the FER landscape 

and with highest degree of suitability (not shown in Figure 9), e.g., all criteria defined in Table 3 could 

be fulfilled with accuracies of more than 0.85 (CAi), albeit the range of suitable pixel sizes differed 

from crop to crop. Similar to KYZ, ν௠௔௫ of the crop classes was smaller for the unsupervised approach 

(e.g., ν௠௔௫ = 422.5 m for wheat-other, compared to 611.0 m using RF). 

4.3. How Does Pixel Population Suitability Evolve along the Season? 

In order to test if the suitability of pixel populations changes along the season and to what extent, 

the observation length (e.g., the number of images in the time series) was increased by incrementally 

adding images along the season, one-by-one. Then, for each incremental step, the pixel suitability for 

individual crops was calculated. The focus here is on two classes that can be found in KKP and FER, 

namely cotton and winter wheat. These two sites were selected for this experiment, because RapidEye 

images are available earliest in the season (beginning of April, see Figure 2), which allows for a finer 

assessment of early estimation in the early phase of the growing season. In KKP one additional image 

from 7 June was available for this analysis. 

Figure 10 demonstrates for these two classes how adding images enhances the suitability of the 

pixel populations in	ν − π space for crop identification. In KKP the identification of cotton was not 

possible based only on the first two acquisitions. As of 7 June cotton could be identified but this was 

restricted to a rather small range of pixel sizes (ν௠௜௡ =	162.5, ν௠௔௫ =	266.5 m). Adding images till  

14 July enabled the use of pixels with a wider range of resolutions (ν௠௜௡ =	45.5, ν௠௔௫ =	383.5 m) and 

purities, respectively. Adding an image after 27 July had no significant effect on the suitability of the 

pixel populations. Winter wheat fields in KKP could be identified as of 9 May, starting with pixel sizes 

ranging from ν௠௜௡ = 117.0 m to ν௠௔௫ = 247.0 m, and adding more and more images improved the 

values for ν௠௜௡, which were shifted towards 13.0 m, whilst ν௠௔௫ was further shifted towards 429.0 m. 

Compared to KKP, crops in FER could be identified using a larger range of pixel sizes (e.g., winter 

wheat) or earlier in the season, e.g., cotton identification in FER was possible two months earlier than 

in KKP. 
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Figure 10. Evolution of suitable pixel sizes for winter wheat and cotton in KKP in 2011 and FER in 2011, respectively. Images were 

incrementally added, one by one, along the season. For better readability the suitability maps show the results for pixel sizes between 6.5 m 

and 409.5 m. 
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4.4. Can the Defined Pixel Size Requirements be Transferred to Another Year? 

To answer this question, the experiments were repeated on RapidEye data sets from another year  

in two sites, KHO (2010) and FER (2012), because no RapidEye data was available for another year  

in KKP or KYZ. Figure 11 shows the ranges of suitable pixel sizes for each crop in KHO and FER, 

respectively in two consecutive years. 

Figure 11. Ranges of suitable pixel sizes for different crop types in (a) KHO (left side 

bars: 2009, right side bars: 2010) and (b) FER (left side bars: 2011, right side bars: 2012). 

The length of the bars correspond to the range of suitable pixel sizes, shades of green 

indicate different levels of suitability, e.g., dark green means that all level-III criteria 

defined in Table 3 are fulfilled, light green that all level-I criteria are fulfilled. 

(a) FER (b) KHO 

 

In general, the requirements for crop identification in FER did not significantly change. However, ν௠௔௫ tended to be coarser in 2011 than in 2012 for most classes. The identification of fallow fields in 

2012 was limited to a comparatively small range of pixel sizes (ν୫୧୬	 =	6.5 m, ν௠௔௫ 	= 202.0 m), 
compared to 2011 (ν௠௜௡	 =	6.5 m, ν௠௔௫ 	= 260.5 m). The cover fraction (ܥ௙) of fallow fields was 

almost four times higher in 2011 (Table 2) and found on larger fields (on average). This means that it 

was easier to have coarser pixels fall within target fields and thus conferring higher acceptable pixel 

sizes for the crop identification. The same could be found for winter wheat (ν௠௔௫	in 2011 was 331.5 m, ν௠௔௫		in 2012 was 364.0 m), which covered a larger fraction of the landscape in 2012 (ܥ௙ =	0.09) than 

in 2011 (ܥ௙ =	0.05). The cover fractions of wheat-other fields decreased in 2012 (ܥ௙ =	0.27) compared 

to 2011 (ܥ௙ =	0.32), which was reflected in a change of ν௠௔௫ for that crop type from 656.5 m to 539.5 m. 

In general higher classification performances could be achieved over a wider range of pixel sizes in 

2011, indicated by the length of the dark green bars in Figure 11. Compared to ν௠௔௫, differences of ν௠௜௡	between the two years were marginal. 

In KHO the situation was different. Overall, there was a tendency that ν௠௜௡	 of most crops was 

coarser in 2009. For instance, the values of ν௠௜௡	 for cotton decreased from 104.0 m (in 2009) to 
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26.0 m (in 2010), and ν௠௜௡	 of wheat–other was 39.0 m in 2010 (compared to 117.0 m in 2009). The 
cover fraction of wheat-other in 2009 (ܥ௙ =	0.27) was lower compared to 2010 (ܥ௙ =	0.30), but there 

was no such obvious difference in the values for ν௠௔௫	of this class. Likewise, the purity requirements 

for ν௠௔௫ tended to be higher in 2009. 

5. Discussion 

As demonstrated by the results in Central Asia, the conceptual framework developed in this paper 

allows a quantification of the potential trade-offs between pixel size and pixel purity when addressing 

the question of crop identification. The result is an improvement of the framework proposed by [31] 

with a more dedicated objective and that has been tested robustly with more realistic conditions,  

i.e., time series of images instead of individual images. 

The various experiments over Central Asia demonstrate that the task of finding the optimum pixel 

size for crop identification does not have a “one-size-fits-all” solution. Landscape heterogeneity, including 

the size of surface features and the properties of their neighborhood, are known to be important factors 

determining classification accuracy [40,64]. The proposed framework reacted to the specific landscape 

pattern situations in the four study sites, e.g., as characterized by the mean fields sizes and cover 

fractions of the individual crops. When the crops were grown on larger and more regular fields (such 

as FER and KHO), or when the cover fraction was high coarser pixel sizes could be tolerated for crop 

identification. Crops covering small parts of the landscape like sorghum/maize or melons in KKP 

could only be detected using small pixel sizes, if they could be detected at all. However, landscape 

heterogeneity with respect to the spatial pattern also seemed to influence the choice of pixel sizes. For 

instance, while the mean field sizes in KYZ and KKP are comparable, the former’s fields are more 

regular in shape, less variable in size, and the same crops are found on blocks of fields that together 

can aggregate to more than 100 ha in size. Due to this spatial aggregation pattern, it is easier to have 

coarser pixels fall within target fields and thus conferring higher acceptable pixel sizes for crop 

identification, resulting in notably higher values in KYZ (747.5 m) than in KKP (429.0 m). 

Satellites with coarser spatial resolutions tend to have finer temporal, spectral or radiometric resolutions. 

The question of determining the optimal pixel size for an application such as crop identification is 

therefore naturally inclined towards finding the coarsest acceptable pixel sizes (ν௠௔௫) so as to potentially 

benefit from what instruments with coarser pixels can offer (including a tendency to have a longer 

archive). However, the experiments proposed in this paper also highlight the importance of defining 

the finest acceptable pixel size (ν௠௜௡). In some cases (depending on crop, landscape and timing),  

the finest pixel sizes used (ν௠௜௡ = 6.5	m) was not deemed suitable while coarser pixel sizes were. This  

has previously been observed in other studies [28]. The reason why coarser pixels achieved higher 

accuracies than smaller pixels could be the interplay of increasing error-rates of smaller but purer 

pixels (which become more abundant when pixels become smaller), caused by increasing within-class 

variability [23] and decreasing error of mixed pixels (which become less abundant when pixels 

become smaller). In such a situation it might be better to have coarser pixels, thereby reducing this 

variance and counterbalancing the effect of pure-pixel heterogeneity within smaller pixels. An even 

better solution would be to consider image segmentation [17] of high spatial resolution time series to 

obtain image-objects that minimize the variance but that are not constrained by the rectangular nature 
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of the pixels. Analyzing the optimal size of (multi-date) image objects for crop identification could be 

an interesting extension of the proposed conceptual framework, but such questions are beyond the scope 

of this current paper. 

The discussion of pixel size must not eclipse that of pixel purity. The optimal pixel purity (i.e., the 

one yielding the most accurate classifications) is not necessarily equal to 1 in various cases. This 

emphasizes how tolerating some signal contamination may be beneficial in the case of crop identification. 

Although this may seem counter-intuitive, since mixed pixels will certainly be more difficult to 

classify, perhaps such effect is counter-balanced to a certain extent by the larger number of sample 

pixels that are available for classification training when some degree of impurity is tolerated. A larger 

sample size for classification training may better represent the diversity of the spectral response of the 

target class within the landscape [24]. This point raises another issue regarding the representativity of 

the selected pixel population: does selecting a population of purer time series engender a bias caused 

by focusing on the larger features in a given landscape? In some cases, agro-management of the larger 

fields may be considerably different from that of the smaller fields. Controlling for such bias could be 

done by adding a dedicated constraint in the analysis of the pixel size-pixel purity trade-off in a future 

version of the framework. Regarding minimum purity, it must be acknowledged that under the 

parameterization chosen in these experiments, they can reach quite low values (of the order of 0.3) and 

still remain “suitable” in some cases. This somewhat illustrates the capacity to detect sub-pixel features 

using coarse spatial resolution time series. In case of rice, this could be explained by the distinct NDVI 

signature of rice fields, which are flooded in spring (resulting in negative NDVI values). In the four 

studied landscapes, the surroundings of the fields are characterized by bare soils or sparse vegetation, 

hence lower purities might not necessarily lead to mixing with other vegetation signals. However, 

these purity values may still be excessively low, perhaps suggesting the thresholds on the classification 

performance metrics AQEi and CAi defined in level I (see Table 3) were too relaxed to portray realistic 

conditions in the lower part of the purity spectrum. From the suitability maps it can be seen that 

selecting level-III thresholds resulted in higher purity values (of the order of 0.4) and for some  

users selecting higher thresholds (e.g., ACC > 0.9) might better meet the requirements imposed by 

specific applications. 

An originality of this research includes the suitability maps in the ν − π space that combine the 

information from the different classification performance metrics. In this case, the balance between  

the metrics was evenly weighted and defined by a predefined set of thresholds. This balance could be  

fine-tuned for different applications that may require either giving more weight to one metric, defining 

more threshold levels for a given metric, or incorporating a different combination of metrics. The 

proportion of orange and yellow hues in the suitability maps provide insight on how the combined use 

of several metrics changes results with respect to using single metrics separately. In general, it must 

also be stressed that the estimations provided in this study are only valid within the framework defined 

by the chosen parameterization. The parameters were set with the same values in each landscape in 

order to illustrate how the method responds to different spatial landscape patterns, but a dedicated 

analysis for each landscape should probably be thought with thresholds tailored to the specific 

conditions of that particular landscape. 

The timing of crop identification along the season can be of particular interest for operational 

monitoring activities. The definition of what combination of pixel size and purity is suitable for crop 
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identification was found to change along the season, and differently according to the studied landscapes. 

In the FER landscape, winter wheat fields could be identified within a wider range of pixel sizes and 

much earlier in the season, as compared to the KKP landscape. The differences between the two crops, 

wheat and cotton, was much smaller than the difference between the landscapes. One reason could be 

the higher contrast between the target crop and its surroundings on the FER landscape in April (when 

summer crops were not yet sown but winter wheat stems were already elongated and fully covered the 

fields) than on the KKP landscape (when winter wheat had not already grown significantly and bare 

soil that covered the latent summer seeds had comparable reflectance to winter wheat fields, resulting 

in a low signal response to vegetation due to the little amount of biomass). This difference can be 

explained by the earlier irrigation water availability and onset of the vegetation period, respectively in 

FER than in the downstream regions of the Amu Darya where the KKP site is located and where the 

start of the vegetation season is estimated to be approximately 30 days later [65]. Another reason could 

be differences in crop development at different phenology stages. 

Changes in spatial requirements over consecutive years could also be explained by differences in 

agricultural practices or seasonal water balance. One possible explanation for this in KHO could be the 

sharply reduced irrigation water supply in 2009, compared to 2010. To illustrate this: the average water 

intake from the Amu Darya into the KHO irrigation system through the Tuyamujun reservoir in the 

period 2000–2011 was 3859 Mm3 [66]. However, in 2009 water intake was reduced to 3660 Mm3. In 

2010 the water intake was above the 11-year average (4902 Mm3). It was illustrated by [61] how in 

water sparse areas crops only had a low biomass and did not produce a large NDVI response, which 

led to increasing classification entropy. Reduced water supply could also cause bare or salty patches 

within agricultural fields, which would enhance class confusion when smaller pixels fall within such 

patches within a field. In this regard using coarser pixel sizes would reduce some of the variance 

within the pixels. In the FER landscape no such pronounced differences were observed between the 

two years. Water intake from the Toktogul reservoir into Fergana Valley was slightly above the  

11-year average (3940 Mm3) in 2011 and 2012, respectively, but the difference between the two years 

was negligible: 4216 and 4476 Mm3. These findings indicate that coarser spatial resolution sensors, 

like MODIS (250 m) or Sentinel-3 (300 m), could be suitable for identification of major crop classes 

under normal weather conditions, while for years suffering from drier than normal conditions, a finer 

resolution (e.g., 100 m) might be required. Another potential explanation could be differences in 

fertilization, but no such data was available for this study. 

A series of additional improvements could still be mentioned. To solidify or dismiss results uncovered 

in this research, the analysis could be extended to additional landscapes or envisage the impact of 

varying class legends on the definition of pixel suitability. Possible candidate sites might be found in 

the USA, with relatively large field sizes [67], or sites in China with field sizes reported <2 ha [31]. 

Other vegetation indices like EVI could be tested instead of NDVI, although these two indices were 

shown to perform equally well in crop classification [67]. 

By design, all crops present in the study site were to be classified, but aggregating crop classes or 

selecting a different class legend could impact the definition of suitable pixel sizes, as was demonstrated 

by [32]. For instance, in the KHO landscape the experiments were halted at 429 m due to an insufficient 

number of training pixels for class sorghum/maize, and merging or dismissing minor classes might 

lead to the definition of coarser values for	ν௠௔௫. The inclusion of more acquisition dates could be 
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considered to better approximate the revisit frequency of sensors that have coarser GSD like MODIS 

or Sentinel-3. Furthermore, a fine diagnostic tailored to a specific instrument could be envisaged if the 

specific sensor spatial response can be reasonably approximated. A final remark is that the analysis 

need not be restricted to optical data and the framework could be extended by further evaluating region 

specific requirements regarding the type of data (optical, radar, or hyper-spectral) to find out which is 

best suited for specific landscapes. 

6. Conclusions 

A framework was proposed to quantitatively define pixel size requirements for crop identification 

via image classification. This tool can be modulated using different parameterizations to explore the 

trade-offs between pixel size and pixel purity. This was demonstrated by applying it to different 

agricultural landscapes in Central Asia. From these specific results, several conclusions could be 

drawn regarding the pixel size and purity requirements for crop identification that are applicable in a 

more general context. First, the EO data requirements for each crop class investigated were specific 

within a given landscape, and for each crop they differed over different landscapes. Second, unsupervised 

crop identification was shown to perform reasonably well, which may be a valuable alternative to 

supervised approaches when collecting training data is not necessarily feasible (e.g., in an operational 

near-real time monitoring context when priority must be given to analysis). However, the unsupervised 

approach tested here could detect fewer crop classes compared with the supervised method, especially 

when crops have comparable NDVI signatures. Finally, the requirements also changed along the season 

and over the years, which indicates that the application of existing satellite sensors might not be 

equally suitable for crop identification in different agricultural landscapes in a multi-year perspective. 

The findings indicate that selecting coarser spatial resolution sensors, like MODIS (250 m) or Sentinel-3 

(300 m), could be suitable for identification of major crop classes with overall accuracies of >0.85. 

The use of Landsat (30 m) should be considered for object-based classification rather than pixel-based 

crop identification. In general, pixel purities of 0.4–0.5 sufficed to identify major crop types. Crops  

in different landscapes were not identified simultaneously in the season, reflecting the different  

agro-ecological conditions the crops are growing in (e.g., timing of irrigation water availability). This 

proposed framework can serve to guide recommendations for designing dedicated EO missions that 

can satisfy the requirements in terms of pixel size to identify and discriminate crop types. In a world 

with increasingly diverse geospatial data sources (in terms of combinations of spatial and temporal 

resolutions), the tool can also help users to choose the different data sources that meet the requirements 

imposed by their applications. 
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