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Abstract: The purpose of this study is to assess the performance of an adaptive model 

(AM) in estimating chlorophyll-a concentration (Chl-a) in optically complex inland waters. 

Chl-a modeling using remote sensing data is usually based on a single model that generally 

follows an exponential function. The estimates produced by such models are relatively 

accurate at high Chl-a concentrations, but accuracy drops at low concentrations. Our objective 

was to develop an approach combining spectral response classification and three  

semi-empirical algorithms. The AM discriminates between three blooming classes (waters 

poorly, moderately, and highly loaded in Chl-a), with discrimination thresholds set using 

the classification and regression tree (CART) technique. The calibration of three specific 

estimators for each class was achieved using a multivariate stepwise regression. Compared 

to published models (Floating Algae Index, Kahru model, and APProach by ELimination) 

using the same data set, the AM provided better Chl-a concentration estimates (R2 of 0.96, 

relative RMSE of 23%, relative Bias of −2%, and a relative NASH criterion of 0.9). 

Moreover, the AM achieved an overall success rate of 67% in the estimation of blooming 

classes (corresponding to low, moderate, and high Chl-a concentration classes). This was 

done using an independent data set collected from 22 inland water bodies for the period 

2007–2010 and for which the only information available was the blooming class. 
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1. Introduction 

Given its synoptic view, consistent recurrence, and capacity to provide information over a wide 

range of wavelengths, remote sensing has good potential to provide the data necessary to monitor 

harmful algal blooms (HAB). Bloom detection is possible through the bio-optical characteristics of the 

principal pigment in algae and cyanobacteria, chlorophyll-a (Chl-a), which is characterized by low 

reflectance in the red wavelengths and high reflectance in the near-infrared (NIR). This contrast makes 

it possible to estimate Chl-a concentration using bio-optical models that link inherent and apparent 

optical properties of water bodies [1]. For example, Landsat TM data have been used to retrieve Chl-a 

and total suspended solid (TSS) concentrations in Lake Kasumigaura using the neural network 

technique [2] and to assess phycocyanin concentrations in Lake Erie to study the temporal and spatial 

dynamics of cyanobacterial blooms [3]. In addition, data from the Advanced Very High Resolution 

Radiometer (AVHRR) have been used to assess the behavior of the main taxonomic groups of Lake 

Baikal phytoplankton as a function of ice conditions [4] and other water quality parameters [5,6]. 

Recently, QuickBird and MEdium Resolution Imaging Spectrometer (MERIS) data were used 

successfully to study cyanobacterial blooms in Lake Champlain [7]. Thus, many semi-analytical 

algorithms [2–4,8–21] and derived indices [22] are now available in the literature to retrieve Chl-a and 

phycocyanin concentrations in inland water bodies. 

Although several models and approaches designed to model Chl-a in inland water bodies are now 

available in the literature, most assume that the concentrations of the whole range of optically active 

components in a water body can be modeled using the same function. However, this calibration 

function may be linear, exponential, or polynomial, depending on the relative concentrations of each 

component. Use of an inappropriate calibration function to estimate a given component may lead to 

over- or underestimates. This was clearly demonstrated by El-Alem et al. [23], who compared four 

exponential models used to estimate Chl-a at low-to-moderate and high concentrations. The accuracy 

of all four models significantly decreased at low concentrations [24]. Conversely, when low Chl-a 

concentrations were estimated using a linear [25,26] or polynomial [27] function, the results were 

more accurate. Moreover, it has recently been demonstrated that prior identification of the spectral 

type of inland waters significantly enhances the accuracy of Chl-a concentration estimates [28,29].  

In addition, Yu et al. [29] have shown that estimation error can be reduced about 15 fold by using the 

appropriate spectral region to model low Chl-a concentrations. 

Due to their one-day revisit time, MODIS images were privileged in this study. A short revisit time 

was considered desirable not only to enable us to collect enough data for model calibration and 

validation, but also to support eventual use of the technique in the context of risk management. The 

first two of the 36 MODIS bands in the red/NIR region are recorded at 250 m spatial resolution. The 

rest of the visible and shortwave infrared (SWIR) bands, which are more appropriate for the detection 

of Chl-a, colored dissolved organic matter (CDOM), and TSS, are recorded either at 500 m or 1 km 
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spatial resolution, making them unsuitable for monitoring algal blooms in small to medium-sized 

inland waters. However, the spatial resolution of MODIS bands 3–7 can be downscaled from 500 to 

250 m using an approach developed at the Canadian Center for Remote Sensing (CCRS) by  

Trishchenko et al. [30]. In this manner, it is possible to acquire data from the first seven MODIS 

bands, originally designed for aerosol, cloud, and land applications, at 250 m spatial resolution, 

covering the visible, NIR, and SWIR parts of the spectrum. 

The objective of the present study was to develop an adaptive model (AM) to estimate Chl-a 

concentration using MODIS data downscaled at 250 m spatial resolution and to evaluate its 

performance on a series of water bodies in southern Quebec, Canada. Performance of the AM was 

evaluated utilizing cross-validation using several statistical evaluation indices and a confusion matrix 

using an independent semi-quantitative database. We also used the same databases (continuous and 

ordinal) to compare performance of the AM to that of three other models originally developed to 

estimate Chl-a in inland waters (the Floating Algae Index (FAI), Kahru model, and APProach by 

ELimination (APPEL)) [13,22,24]. 

2. Materials and Methods 

2.1. Study Area and in Situ Data 

The study area, located in southern Quebec between latitudes 44° and 50° north and longitudes 67° 

and 80° west, contains 22 inland water bodies that are large enough to be investigated at 250 m spatial 

resolution and that have been monitored by the Ministère du Développement Durable, Environnement 

et Lutte contre les Changements Climatiques (MDDELCC) because of cyanobacterial bloom 

occurrence and recurrence as observed by the local volunteer monitoring network. These water bodies 

include the Choinière and Taureau reservoirs and Aylmer, Bouchette, Brome, Champlain, des 

Commissaires, Etchemin, Fréchette, Labrecque, Lovering, Mandeville, Maskinongé, Massawippi, 

Nairne, Ouareau, Perchaude, Pohénégamook, Roxton, Tortue, William, and Adélard lakes. These 

water bodies were used to calibrate and validate performance of the models (Figure 1). 

The calibration database of Chl-a concentrations was collected by the MDDELCC over nine years 

(2000–2008) at several sites located on four lakes (Brome, Champlain, Nairne, and William; Figure 2).  

A total of 363 samples were collected, with a minimum value of 0.52 mg Chl-a·m−3 (Nairne Lake, 

2005), a maximum value of 450,000 mg·m−3 (Missisquoi Bay of Lake Champlain, 2001), an average 

of 3700 mg·m−3, and a median of 14 mg·m−3 (Figure 3). Chl-a concentration was quantified following 

the protocol of the Centre d’expertise en analyse environnementale du Québec (CEAEQ; 2012 [31]). 

Given the presence of clouds over some sampled sites and the poor quality of some images (fuzzy 

images or presence of artifacts), only 46 of these 363 samples could be used to calibrate the models.  

In this final data set, the Chl-a concentration varied from 2.7 (Nairne Lake, 2008) to 91,000 mg·m−3 

(Missisquoi Bay of Lake Champlain, 2003). 
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Figure 1. Geographic location of the water bodies used for model calibration 

and validation. 

 

Figure 2. Water sampling stations on the four studied lakes used for calibration. 
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Figure 3. Histogram of the frequency of chlorophyll-a values observed (complete data set, 

N = 363). 

 

Three blooming classes were defined according to the thresholds used by the World Health 

Organization (WHO [32]) to characterize the quality of water bodies in relation to the hazard 

associated with water usage in the presence of algal blooms: the low Chl-a class corresponds to 

concentrations below 10 mg·m−3, the moderate class to concentrations between 10 and 50 mg·m−3, and 

the high class to concentrations above 50 mg·m−3. A second data set, used to validate the AM, was 

based on three cyanobacterial abundance classes: water bodies with cell densities lower than 

20,000 cyanobacteria cells·mL−1 (assumed to be equivalent to 10 mg Chl-a·m−3 [32]), water bodies 

with densities between 20,000 and 100,000, and water bodies with densities higher than 

100,000 cells·mL−1 (assumed to be equivalent to 50 mg·m−3). This data set was collected in the 

22 water bodies listed above between 2007 and 2010 following the protocol of the CEAEQ (CEAEQ; 

2012 [33]). For the same reasons as stated above, only 103 of the 677 samples collected were used to 

evaluate the performance of the AM. 

2.2. MODIS Data 

The remotely sensed data was obtained from the MODIS Level 1B product, available in HDF 

format on the NASA website (http://ladsweb.nascom.nasa.gov/data/search.html). The MODIS sensor 

is located on the TERRA platform of the NASA earth observation system. It operates across a wide 

spectrum, with 36 bands covering the region from 0.4 to 14.4 µm. Spatial resolution of the images 

varies from 250 m to 1 km. For this study, MODIS images collected on the same dates as the in situ 

samples were downloaded and pre-processed to calibrate the AM classifier and estimators. Given their 

higher spatial resolution, only the first seven MODIS bands were used in this study, enabling use of 

data from small lakes (but >2.25 km2). The first two bands were already at 250 m spatial resolution, 

while bands 3–7 were originally at 500 m (Table 1). The spatial resolution of the latter bands was 

downscaled to 250 m using an approach developed at the CCRS [30]. Two pre-processing steps were 

used in the downscaling process: (1) Translation of the data from 500 to 250 m spatial resolution using 
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adaptive regression and radiometric normalization as described by Trishchenko et al. [34];  

and (2) re-projection of the images from the Sinusoidal to the Lambert Conformal Conic projection. 

Table 1. Characteristics of the MODIS bands used in the present study. NIR = Near 

infrared; SWIR = Shortwave infrared; LCAB = Land/Cloud/Aerosol Boundaries; and 

LCAP = Land/Cloud/Aerosol Properties. 

Primary Use Band Band Width (nm) Spatial Resolution(m) Spectral Regions 

LCAB 
1 620–670 250 Red 

2 841–876 250 NIR 

LCAP 

3 459–479 500 Blue 

4 545–565 500 Green 

5 1230–1250 500 NIR 

6 1628–1652 500 SWIR 

7 2105–2155 500 SWIR 

Level 1B of the MODIS sensor contains a set of geo-located and calibrated data. For many 

applications, especially multi-temporal analyses, raw relative pixel values or digital image numbers 

have to be corrected for atmospheric effects and converted to spectral reflectance at the surface before 

the images are processed [35]. Improper atmospheric correction can lead to significant errors in the 

retrieved reflectance and affect the accuracy of the estimates [36]. Several atmospheric correction 

models have been developed, including the Simplified Model for Atmospheric Correction (SMAC [37]), 

Second Simulation of the Satellite Signal in the Solar Spectrum (6S [38]), Moderate-Resolution 

Atmospheric Transmittance and Radiance Code (MODTRAN [39]), ATmospheric CORrection 

(ATCOR [40]), Dark Object Subtraction (DOS [41]), and COSine Transmission for atmospheric 

correction (COST [42]). The DOS and COST models are widely used, as they rely entirely on image-based 

atmospheric corrections and provide reasonably accurate reflectance estimates, but accuracy is 

improved by the use of more sophisticated models that exploit in situ optical depth measurements and 

radiative transfer codes [42] to correct for both additive and multiplicative effects. A comparison study 

of three absolute atmospheric correction models, DOS, COST, and DOS4, produced similar results [41]. 

Reflectance was slightly improved, but the overall appearance was similar to the original image. 

The COST model was more effective in visible bands but less accurate in the NIR, particularly in 

humid conditions. On the other hand, a comparison analysis made by Norjamäki and Tokola [42] 

demonstrated that the RMSEr values for multi-temporal images decreased by an average of 6% using 

DOS, by 14% using SMAC, and by 15% using 6S, when compared to uncorrected images [43]. 

Figure 4 shows the signal recorded by the first seven MODIS bands during an algal bloom in Lake 

Champlain (19 September 2001) as adjusted using two different atmospheric correction models 

(SMAC and DOS) and the apparent reflectance (AR) model. The AR model performs a simple 

conversion from the digital numbers in the images to spectral reflectance at the surface, while the DOS 

model corrects the additive effects caused by haze, and the SMAC model additionally corrects 

multiplicative effects caused by ozone, water vapor, and aerosols. The comparison clearly shows that 

the reflectance estimated by the AR model is higher than that estimated by the SMAC and DOS 

models, especially for the first four bands (blue to NIR), and that the behavior of the return signal from 

the SMAC and DOS models is almost the same for all bands except the first one (blue). Since the AR 
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model does not correct for atmospheric effects and shorter wavelengths are easily scattered by 

atmospheric particles, the visible bands, particularly the blue one, were the most affected. The higher 

blue reflectance of the DOS model compared to SMAC was due to the huge sensitivity of this band to 

Rayleigh diffusion, which is mainly caused by water vapor and aerosols. The reflectance corrections 

performed by the SMAC model were closest to the spectral response of Chl-a, which is characterized 

by high absorption in the blue and red bands and high reflectance in the green and NIR bands. For 

these reasons, the SMAC model was chosen to correct the MODIS images. All pre-processing of 

images (down-scaling, re-projection, and atmospheric correction) was performed using an automatic 

tool developed by the CCRS [30]. 

Figure 4. Comparison of the MODIS signal from Lake Champlain during an algal bloom 

on 19 September 2001 with different atmospheric correction models. 

 

2.3. Adaptive Model Parameterization 

Parameterization of the AM was performed to exploit as much as possible of the spectral 

information captured by the MODIS sensors for a given water body. Analysis of the return signal for 

the low-to-moderate blooming class in the calibration data set shows reasonable correlation (R2 = 0.48; 

p-value < 0.0001) with the visible bands (triangle shape made by bands 1–3 on Figure 5A), whereas 

the return signal for high Chl-a shows good correlation (R2 = 0.95; p-value < 0.0001) with bands 

ranging from red to SWIR (polygon shapes made by bands 3–7 on Figure 5B). However, while the 

distinction between the spectral signature of high Chl-a and that of moderate-to-low Chl-a is obvious, 

the distinction between low Chl-a and moderate Chl-a is more complex (Figure 5A). 

Created in the 1980s by Breiman [44], the Classification and Regression Tree (CART) method is 

widely used for classification and regression purposes. To build decision trees, CART uses a so-called 

learning sample, composed of a set of historical data with pre-assigned classes for all 

observations [44] and a set of spliting varaibles. These decision trees are then used to classify new 

data. Classification trees are built in accordance with a splitting rule, which splits learning samples into 

smaller groups of maximum homogeneity (Figure 6). The maximum homogeneity of child nodes is 

determined by the impurity function (	݅(ݐ)), which can be calculated by either the Gini or the Towing 

splitting rule, and is equivalent to maximization of the change of impurity function ∆	݅(ݐ): 
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(ݐ)݅	∆ = (௉௔௥௘௡௧ݐ)݅ − ௅ܲ௘௙௧݅൫ݐ௅௘௙௧ି௖௛௜௟ௗ൯ − ோܲ௜௚௛௧݅൫ݐோ௜௚௛௧ି௖௛௜௟ௗ൯ (1)

where ௅ܲ௘௙௧ and ோܲ௜௚௛௧ are respectively the probabilities of right and left nodes. Consequently, at each 

node CART solves the following maximization problem:  argmax௫ೕஸ௫ೕಳ,௝ୀଵ,…,ெൣ݅(ݐ௉௔௥௘௡௧) − ௅ܲ௘௙௧݅൫ݐ௅௘௙௧ି௖௛௜௟ௗ൯ − ோܲ௜௚௛௧݅൫ݐோ௜௚௛௧ି௖௛௜௟ௗ൯൧ (2) 

This enables CART to find the best value (ݔ௝஻) to split the ݐ௉௔௥௘௡௧ (parent node) into ݐ௅௘௙௧ି௖௛௜௟ௗ (left 

node) and ݐோ௜௚௛௧ି௖௛௜௟ௗ (right node) and maximize the change of impurity function	∆	݆(ݐ). 
Figure 5. Spectral signature behaviour for three chlorophyll-a concentration classes: 

(A) low (<10 mg·m−3) and moderate (10–50 mg·m−3) concentrations combined; and (B) high 

concentrations (>50 mg·m−3). Different colors represent the signature of individual samples. 

Figure 6. The splitting algorithm of the Classification and Regression Tree (CART), where ݐ௉௔௥௘௡௧ ௅௘௙௧ି௖௛௜௟ௗݐ , , and ݐோ௜௚௛௧ି௖௛௜௟ௗ  are parent, left, and right nodes, ݔ௝  is the splitting 

variable j, and	ݔ௝஻ is the best splitting value of the ݔ௝. 

 

The CART method was applied to four variables derived from the spectral response of the first 

seven MODIS bands to classify the calibration data set into three blooming classes (water poorly, 
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moderately, and highly loaded in Chl-a). These variables were calculated from the surfaces (S) 

underneath the reflectance curves for (1) the visible bands 	(S୚୧ୱ) ; (2) the green to NIR bands 	(Sୋି୒୍ୖ); (3) the visible to NIR bands (S୚୧ୱି୒୍ୖ); and (4) the red to SWIR bands (Sୖିୗ୛୍ୖ) using 

Equation (1). 

ܵ = 12෍|ܴ(ߣ௜) × ௜ାଵߣ − (௜ାଵߣ)ܴ × ௜|௟ߣ
௜ୀଵ  (3)

where l is the number of MODIS bands and ܴ(ߣ௜)  and ߣ௜  are respectively the reflectance and 

wavelength absorption of the ith band. 

Figure 7. Thresholds values (×106) used to distinguish between the three chlorophyll-a 

blooming classes using the classification and regression tree method (CART). 

 

Before applying CART to the calibration database, we converted the continuous database into an 

ordinal one, i.e., the in situ measurements were classified into the three blooming classes defined 

above. The CART results (Figure 7) showed that (S୚୧ୱି୒୍ୖ) and (Sୖିୗ୛୍ୖ) were the two best splitting 

variables, enabling us to calibrate the AM classifier. This classifier was thereafter used to split the 

calibration database into the three blooming classes. We then calibrated three different estimators, each 

specific to a given blooming class. The AM estimators were calibrated using a multivariate stepwise 

regression in which explanatory variables were chosen through an automatic procedure that usually 

followed a sequence of F-tests. We used the stepwise regression in the forward selection mode, starting 

with none of the variables in the model, testing them one by one, and including only the statistically 

Pixel 

 

SR-SWIR(Pixel) > 1.26 

Estimator for moderate 
concentrations 

Estimator for high  
concentrations 

Estimator for low  
concentrations 

No 

No 

Yes 

Yes  

SVis-NIR(Pixel) > 1.50 



Remote Sens. 2014, 6 6455 

 

 

significant ones [45]. All of the ratios and band subtractions possibly related to the bio-optical activity 

of Chl-a, and a range of algorithms widely used in the literature for inland water (as evaluated in [24]), 

were used as explanatory variables to train the three estimators. The mathematical expressions of the S୚୧ୱି୒୍ୖ and Sୖିୗ୛୍ୖ variables and the three estimators are summarized in Table 2. The AM was thus 

structured in two steps: (1) determination of the blooming class of a given pixel based on the AM 

classifier; and (2) estimation of the Chl-a concentration of this pixel using the corresponding estimator 

for each predefined blooming class (Figure 7). 

Table 2. Equations of the three calibrated models (or estimators) using a multivariate 

regression to estimate Chl-a concentration. 

Blooming Classes Regression Estimators (Issued from Stepwise) 

Low Chl-a [۱ܔܐ − [܉ = ૟. ૝ૢ × ૚૙ି૞ × ܀۷ۼିܛܑ܄܁ − ૙. ૜૛૜) 
Moderate Chl-a [۱ܔܐ − [܉ = ܍ (૙.૙૙૜૚× ା(૚܊ૃ)܀ ૚.૚૜૛×૚૙ష૞×ܛܑ܄܁ష܀۷ۼା૙.૝ૢ) 

High Chl-a [۱ܔܐ − [܉ = ܍ (૛૜.ૢૠ×ࡸࡱࡼࡼ࡭ା૜.૛ૡ) 
where ܀۷ۼିܛܑ܄܁ is the calculated area underneath the reflectance signal curves from visible-to-NIR bands: ܀۷ۼିܛܑ܄܁ = (૝࢈ࣅ)ࡾ૜࢈ࣅ| − |(૜࢈ࣅ)ࡾ૝࢈ࣅ + (૚࢈ࣅ)ࡾ૝࢈ࣅ| − |(૝࢈ࣅ)ࡾ૚࢈ࣅ + (૛࢈ࣅ)ࡾ૚࢈ࣅ| − |(૚࢈ࣅ)ࡾ૛࢈ࣅ + (૜࢈ࣅ)ࡾ૛࢈ࣅ| − ૛|(૛࢈ࣅ)ࡾ૜࢈ࣅ  

For MODIS bands: ૃ܊૚ = 645, ૃ܊૛ = 859, ૃ܊૜=469, ૃ܊૝ = 555, ૃ܊૞ = 1240, ૃ܊૟ = 1640 and ૃ܊ૠ = 2130 (nm) 

and where APPEL is the APProach by Elimination model [1]: ࡸࡱࡼࡼ࡭ = (૛܊ૃ)ࡾൣ − (૚܊ૃ)܀] − [(૛܊ૃ)܀ − (૜܊ૃ)܀] − ൧[(૛܊ૃ)܀ ∗  (૛܊ૃ)ࡾ
2.4. Accuracy Assessment and Validation Data 

The performance of the AM and three other models (FAI [22], Kahru [13], and APPEL [24]) 

originally developed to estimate the Chl-a concentration of inland waters was evaluated using the 

cross-validation technique, in which a sample is temporarily removed from the calibration database 

and the remaining samples are then used as training data to estimate the value of the removed sample 

using the pre-calibrated model. This operation is then repeated for the whole database. Once all Chl-a 

measurements are estimated, the model’s performance can be evaluated using statistical indices such 

as the coefficient of determination (R2), relative root mean square error (RMSEr), relative bias 

(BIASr), and relative NASH criterion (NASHr). The NASHr criterion evaluates the performance by 

comparing the estimated values to the in situ measurement average, producing a result that ranges 

between −∞ and 1.0 (inclusive). A negative NASH result means that it would be better to use the  

in situ measurement average than the model estimates, whereas values between 0.0 and 1.0 are 

generally viewed as acceptable levels of performance, and model performance is satisfactory for 

values higher than 0.8; the model is perfect for a NASHr = 1.0. The mathematical equations of the 

indices are as follows: 

Rଶ = ێێۏ
ۍ ∑ (M୧ − Mഥ)(Es − Esതതത)୬୧ୀଵට∑ (M୧ − Mഥ)୬୧ୀଵ ଶ ට∑ (Es୧ − Esതതത)୬୧ୀଵ ଶۑۑے

ଶې
 (4)
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BIASr = 1n෍൬Es୧ − M୧M୧ ൰୬
୧ୀଵ  (5)

RMSEr = ඩ1n෍൬Es୧ − M୧)M୧ ൰୬
୧ୀଵ

ଶ
 (6)

NASHr = 1 − ∑ ቀM୧ − Es୧M୧ ቁଶ୬୧ୀଵ∑ ൬M୧ − MഥMഥ ൰ଶ୬୧ୀଵ  (7)

where n is the sample size, M and Es are measured and estimated values, and Mഥ  and Esതതത are the 

averages of measured and estimated values. 

A second, independent, semi-qualitative database was also used to validate the performance of all 

models. This database, containing data on 22 water bodies monitored by the MDDELCC between 

2007 and 2010, was composed of ordinal data that indicated only whether cell densities were lower 

than 20,000 cyanobacteria cells·mL−1 (assumed to be equivalent to 10 mg Chl-a·m−3 [32]), between 

20,000 and 100,000 cells·mL−1, or higher than 100,000 cells·mL−1 (assumed to be equivalent to  

50 mg·m−3). A confusion matrix was used to test the accuracy of the AM and the FAI, Kahru, and 

APPEL models. Omission and commission errors, success rates, and Kappa index (K) were calculated. 

The Kappa index was used to quantify concordance between the measured and the estimated Chl-a 

classes. Concordance is weak when the Kappa is negative, good for a Kappa that is positive and higher 

than 0.6, and excellent when the Kappa is above 0.8. Table 3 summarizes the parameters used in the 

confusion matrix as well as the Kappa index computation. 

Table 3. Simplified diagram of the parameters used in the confusion matrix and to 

calculate the Kappa index: a and d are the number of well-classified values, b and c are the 

number of misclassified values, n1, n2 , n3, and n4 are respectively totals of a + b, c + d,  

a + c, and b + d, N is the sample size, ௢ܲ = ௔ାௗே , and ௖ܲ = ௡భ×௡యା௡మ×௡రேమ . 
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3. Results and Discussion 

3.1. Calibration 

Eighteen samples served as the training set to calibrate the estimator for waters classified in the low 

Chl-a concentration class. The same number of samples was used to calibrate the moderate Chl-a 

estimator, and 10 samples were used to calibrate the high Chl-a estimator. The calculated spectral 

indices (existing approaches, subtractions, and band ratios) showed good correlation with in situ 

measurements for all three estimators. Low Chl-a concentrations were linearly correlated, while 

moderate and high Chl-a concentrations followed an exponential function (Figure 8). The determination 

coefficients (R2) were respectively 0.91, 0.92, and 0.98 for the three blooming classes. 

The high correlation between in situ measurements and spectral indices (R2 > 0.91) for all three 

estimators illustrates the value of splitting the modeling workspace and using multivariate regressions. 

For all of the estimators, Chl-a estimation was limited to MODIS bands 1–4 or combinations of 

these bands, which contain the spectral regions most sensitive to the optical activity of the Chl-a 

pigment, i.e., high absorption in the blue (band-3) and red (band-1) and high reflectance in the green 

(band-4) and NIR (band-2). The stepwise regression maximized the information on the presence of 

Chl-a and minimized the mis-modeling of this pigment at the expense of other optically active 

components, such as TSS or dissolved organic matter (DOM), which exhibit different spectral 

absorption and reflectance signatures. 

The explanatory variable selected by the stepwise regression for low blooming conditions, 

characterized by clear, non-turbid water, was S୚୧ୱି୒୍ୖ, which is mostly controlled by the visible part of 

the spectrum, consistent with the assumption that waters with low-to-moderate Chl-a are highly 

influenced by the bio-optical activity of the Chl-a pigment. S୚୧ୱି୒୍ୖ was also the variable selected by 

the CART method to discriminate between waters poorly and moderately loaded in Chl-a (Figure 7). 

High phytoplankton biomass, on the other hand, is known to generate turbid waters, which significantly 

reduce water molecule absorption in the red–NIR part of the spectrum [13]. This explains why the 

APPEL model, which depends entirely on NIR band reflectance to estimate Chl-a concentrations, was 

the best predictor for waters highly loaded in Chl-a. The transition class of waters moderately loaded in 

Chl-a would logically be influenced by both Chl-a bio-optical activity and turbidity. The explanatory 

variables selected by the stepwise regression for these waters supported this supposition. The Chl-a 

variance was explained by two orthogonal variables, S୚୧ୱି୒୍ୖ (sensitive to Chl-a activity) and 	R(λ௕ଵ) 
(sensitive to turbidity), with most of the variance explained by 	S୚୧ୱି୒୍ୖ (p-value < 0.0001). The two 

variables did not show any collinearity (for both variables the variance inflation factor was equal to 

1.5, which is <10, the threshold usually used to report collinearity issues). 
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Figure 8. Results of multivariate regression adjustments between the measured 

chlorophyll-a concentrations and the return signals of MODIS images for the three 

blooming classes: (A) Low; (B) Moderate; (C) High Chl-a concentrations. The scale of the 

y-axis in the insert is logarithmic to better illustrate the correlation. 

 

3.2. Evaluation of Estimators 

The performance of the three estimators was satisfactory and increased with higher Chl-a 

concentrations (Table 4). The results for the NASHr criterion demonstrate that the calibrated 

estimators are robust, in particular for moderate (NASHr = 0.8) and high (NASHr = 0.89) Chl-a 

concentrations. This is not surprising, as the mathematical expressions of the estimators for waters 

moderately and highly loaded in Chl-a are mainly based on the red-to-NIR bands, for which Chl-a 

reflectance is at its maximum, as shown in Figures 3–20 of Mackie (2010; [46]). Chl-a and water 

pixels are easily distinguished since water reaches its maximum absorption in this part of spectrum. 

The RMSEr results support the above findings, with a clear decrease in error for moderate and high 

Chl-a concentrations. The estimator for waters poorly loaded in Chl-a seems to overestimate the 

concentrations by 5%, while the estimators for moderate to high Chl-a concentrations are almost 

unbiased (BIASr = −1%). 
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Table 4. Evaluation of the three models (estimators) using cross-validation technique. 

Evaluation Indices 
Concentration Levels 

Low Moderate High 

R2 0.83 0.86 0.92 

NASHr criterion 0.44 0.8 0.89 

RMSEr (%) 38 9 8 

BIASr (%) −5 −1 −1 

The relatively lower performance of the estimator for low Chl-a can be explained by the fact that its 

explanatory variable is mostly composed of bands located in the visible part of spectrum. Since the 

MODIS bands of higher resolution (at 250 m and at 500 m downscaled to 250 m spatial resolution) 

were designed for land, cloud, and atmosphere applications, they are not centered on Chl-a absorption 

and reflection peaks. Moreover, due to the low reflectance of water with low Chl-a concentrations, the 

return signal is more likely to be disturbed by noise caused by atmospheric particles, the reflectance of 

other optically active components present in the water (e.g., DOM), and the downscaling process, 

which can lead to the loss of up to 23% of the original MODIS signal [24]. 

3.3. Evaluation of the Adaptive Model: Cross-Validation 

The performance of the AM, FAI, Kahru, and APPEL models was evaluated using a cross-validation 

based on the same database. Figure 9 shows the Chl-a estimated by the four models as a function of the 

observed Chl-a (measured in situ by the MDDELCC), along with the model performance indices. The 

figure clearly shows that the AM performed the best (R2 = 0.96, NASHr = 0.9, and RMSEr = 23%), 

followed by the APPEL and FAI models with almost identical performance, while the Kahru model 

performed the least well. However, the overall performance of the three comparison models (FAI, 

Kahru, and APPEL) was quite similar. The figure also demonstrates that the dispersion of values is 

well distributed with respect to the 1:1 line, highlighting the robustness of the models even at 

their extremities. 

However, although the performance of all the models is satisfactory, it is clear that they are 

strongest when addressing high concentration values. In the context of timely intervention to manage 

risk and protect human and animal health, water bodies already affected by HAB are less interesting to 

monitor than relatively healthy waters with the potential to develop algal blooms and be exposed  

to eutrophication. When the performance of the models at moderate-to-low concentrations (<50 mg 

Chl-a mg−3, established by WHO as the threshold for declaring a HAB situation; Figure 10) is examined, 

only the AM provides acceptable estimates (R2 = 0.56 and NASHr = 0.24); the performance of the 

other three models was significantly lower, with negative NASHr values indicating that the measured 

Chl-a average were better predictors than the model estimates. 
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Figure 9. Chlorophyll-a concentration estimated from the four models compared to in situ 

measurements for the complete database, with model performance indices. 

Figure 10. Chlorophyll-a concentration estimated from the four models compared to  

in situ measurements for the database using only values <50 mg Chl-a m−3. 
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Figure 10. Cont. 

The above results indicate that partitioning the solution space into blooming classes increased the 

accuracy of Chl-a estimates, with estimators able to explain from 91% to 98% of the Chl-a variance 

(Figure 8C). Using an adequate calibration function for each blooming class (linear for low Chl-a and 

exponential for moderate-to-high Chl-a) specifically helped to improve the estimation of moderate-to-low 

Chl-a concentrations, which were problematic when applying the FAI, Kahru, and APPEL models. 

The AM error (RMSEr) was 200%–250% lower compared to the other models, and its systematic error 

(BIASr) was 300%–450% lower. 

3.4. Validation by Independent Data 

Tables 5–8 show the confusion matrix results for the AM, APPEL, FAI, and Kahru models. The 

AM performed the best (global success = 67% and Kappa index = 0.51), followed by the APPEL and 

FAI models, while the Kahru model performed the worst. From this analysis, we can see that 

estimating Chl-a at high concentrations was not problematic for any of the models, with commission 

errors of 17%, 18%, 18%, and 12% for the four models, respectively. On the other hand, the 
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all models, misclassification generally occurred with respect to low Chl-a concentrations. In other 

words, models more often underestimated the moderate concentrations (false negatives). For example, 

the AM generated false negatives in 39% of cases (14 of 36 moderate concentrations classified as low 

Chl-a; Table 5) and false positives in 22% of cases (eight of 36 moderate concentrations classified as 

high Chl-a). The AM thus had a 22% chance of declaring a false high blooming condition, an error that 

is acceptable. By comparison, false positives were generated in about 22%, 26%, and 24% of cases by 
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level of classification performance for waters moderately-to-highly loaded in Chl-a, but the AM still 

achieved the best performance for the overall moderate class, with a commission error of 61% versus 

78% for the APPEL and 82% for the FAI and Kahru models. 

Table 5. The adaptive model confusion matrix results. 

E
st

im
at

ed
 

Measured 

[Chl-a] < 10 10 < [Chl-a] < 50 [Chl-a] > 10 Total Commission Error Success Rate 

[Chl-a] < 10 30 3 4 37 19% 81% 

10< [Chl-a] < 50 14 14 8 36 61% 39% 

[Chl-a] > 10 2 3 25 30 17% 83% 

Total 46 20 37 103 ***** ***** 

Omission Error 35% 30% 32% ***** ***** ***** 

Success Rate 65% 70% 68% ***** ***** ***** 

Global Success ***** ***** ***** ***** ***** 67% 

Kappa ***** ***** ***** ***** ***** 0.51 

Table 6. The APPEL confusion matrix results. 

E
st

im
at

ed
 

Measured 

[Chl-a] < 10 10 < [Chl-a] < 50 [Chl-a] > 10 Total Commission Error Success Rate 

[Chl-a] < 10 17 5 8 30 43% 57% 

10 < [Chl-a ]< 50 29 11 11 51 78% 22% 

[Chl-a] > 10 0 4 18 22 18% 82% 

Total 46 20 37 103 ***** ***** 

Omission Error 63% 45% 51% ***** ***** ***** 

Success Rate 37% 55% 49% ***** ***** ***** 

Global Success ***** ***** ***** ***** ***** 45% 

Kappa ***** ***** ***** ***** ***** 0.21 

Table 7. The FAI confusion matrix results. 

E
st

im
at

ed
 

Measured 

[Chl-a] < 10 10 < [Chl-a] < 50 [Chl-a] > 10 Total Commission Error Success Rate 

[Chl-a] < 10 24 10 13 47 49% 51% 

10 < [Chl-a] < 50 22 7 10 39 82% 18% 

[Chl-a] > 10 0 3 14 17 18% 82% 

Total 46 20 37 103 ***** ***** 

Omission Error 48% 65% 62% ***** ***** ***** 

Success Rate 52% 35% 38% ***** ***** ***** 

Global Success ***** ***** ***** ***** ***** 44% 

Kappa ***** ***** ***** ***** ***** 0.15 
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Table 8. The Kahru confusion matrix results. 

E
st

im
at

ed
 

Measured 

[Chl-a] < 10 10 < [Chl-a] < 50 [Chl-a] > 10 Total Commission Error Success Rate 

[Chl-a] < 10 8 6 6 20 60% 40% 

10 < [Chl-a] < 50 38 12 16 66 82% 18% 

[Chl-a] > 10 0 2 15 17 12% 88% 

Total 46 20 37 103 ***** ***** 

Omission Error 83% 40% 59% ***** ***** ***** 

Success Rate 17% 60% 41% ***** ***** ***** 

Global Success ***** ***** ***** ***** ***** 34% 

Kappa ***** ***** ***** ***** ***** 0.10 

It is important to note that most in situ sample points had to be moved from their original sampling 

sites by at least one pixel (equivalent to 250 m) as many samples were taken near the lake shoreline. 

For sensors such as MODIS, with fairly coarse resolution, this represents a significant handicap as 

these regions are transition zones from land to water (mixed pixels). These zones are influenced by the 

reflectance of many different components, which can lead to biased estimates. Moreover, the 

validation data were provided in cyanobacteria density units, which had to be converted to Chl-a units 

using the WHO conversion factor of 1 µg Chl-a to 2 million cells given in Chorus and Bartram [32]. 

Of course, the actual conversion factor can vary extensively with cell size and light history, and 

depends on the dominant species of a bloom [47,48]. This conversion thus introduced varying levels of 

uncertainty into the validation database. Laboratory error, corresponding respectively to 1.4% and 

0.6% for cyanobacteria densities of 20,000 and 100,000 cells per mL according to the CEAEQ [33], 

equivalent to uncertainties of ±0.14 and ±0.30 mg Chl-a m−3 for the two thresholds, could also affect 

the accuracy of models. In addition, the uncertainties associated with sampling methods (depth in 

water column, time of day, location on the lake, preservation conditions) and the presence of 

phytoplankton cells other than cyanobacteria in the water, especially at low Chl-a concentrations when 

cyanobacteria are less likely to dominate, are both likely to affect the accuracy of values in the 

measured database and thus the ability of the models to correctly classify Chl-a estimates. Despite the 

aforementioned limitations, the performance of the AM was acceptable (Kappa index = 0.51 and 

global success = 67%) and higher than the performance of the other three models. 

3.5. Qualitative Validation: Model’s Application 

The four models were applied to a series of MODIS images during a period when an important 

expansion of HAB (composed mainly of Aphanizomenon flos-aquae) was underway, as seen on the 

true color composite images of Missisquoi Bay, Lake Champlain (Figure 11). The three upper panels 

of this figure show the MODIS true color images on three consecutive dates (12, 17, and 30 September 

2001), followed by the same images after application of the AM, APPEL, FAI, and Kahru models.  

A clear correspondence between the bloom shapes on the true color images and the AM outputs can be 

seen for all dates. This concordance is absent for the FAI, Kahru, and APPEL models on 12 and 17 

September, during the early stages of the bloom. On the other hand, all of the models proved equally 

able to detect the well-established bloom on 30 September. Given the high negative BIASr of the FAI, 
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Kahru, and APPEL models with respect to waters poorly-to-moderately loaded in Chl-a (Figure 10), 

these results were expected. False negatives (underestimated Chl-a) were produced by the AM, 

APPEL, FAI, and Kahru models in about 39%, 57%, 56%, and 58%, respectively, of moderate 

blooming class cases. The relative performance of the models is well illustrated by the results 

produced when they are applied to the MODIS images for 12 and 17 September, when bloom 

conditions were moderate (central part of the bay): while the AM estimates Chl-a concentrations to be 

between 12 and 33 mg·m−3 (indicating moderate blooming conditions), the other models all estimate 

Chl-a to be less than 10 mg·m−3. This is a good demonstration of how the FAI, Kahru, and APPEL 

models can fail to detect blooms during their initial phase (higher errors, negatively biased, and high 

false negatives), when Chl-a concentrations are below 50 mg·m−3. In this case study, the AM-modified 

MODIS images show no apparent gaps in Chl-a estimates from one blooming class to the other. This is 

probably due to the fact that the AM estimators were trained using overlapping data. In other words, 

when spectrally splitting the calibration database using the CART method, the calibration sub-database 

of low Chl-a concentrations ranged from 2.7 to 19 mg·m−3, while it ranged from 9 to 84 mg·m−3 in the 

moderate class, enabling a smooth transition and avoiding gaps. 

Figure 11. Application of the four models (AM, APPEL, FAI, and Kahru) to a series of 

MODIS images collected during the establishment of a HAB on Missisquoi Bay, Lake 

Champlain, compared to the true color composite images (RGB for red, green, blue). The 

red polygon indicates the shoreline and southern boundary of the bay. Chlorophyll-a 

concentrations are on a Napierian logarithmic scale. 
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Figure 11. Cont. 
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In order to spatially compare the model results to in situ measured Chl-a concentrations, Figure 12 

shows the position of two stations on Missisquoi Bay (A and B) sampled on 19 September 2001 by the 

MDDELCC during an important algal bloom event (data from these stations were part of the 

calibration data set). In this example, the APPEL and Kahru models underestimate both Chl-a 

concentrations, the AM underestimates the moderate and overestimates the high concentration, and the 

FAI overestimates the moderate and underestimates the high concentration. Computation of the 

relative error (Re) of the two samples using Equation (8) demonstrates that the best performers are the 

AM and FAI. The AM is the most accurate with respect to the moderate concentration and is the 

second best choice for the high concentration, trailing the FAI model by only 3%. ܴ݁ = Es[େ୦୪ିୟ] − M[େ୦୪ିୟ]Es[େ୦୪ିୟ] × 100 (8)
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where Es[େ୦୪ିୟ] is the estimated Chl-a concentration and M[େ୦୪ିୟ] the measured one. 

Figure 12. Comparison between estimated chlorophyll-a concentration calculated by the 

AM, APPEL, FAI, and Kahru models and in situ measurements obtained by the 

MDDELCC at two stations on Missisquoi Bay on Lake Champlain on 19 September 2001. 

Chlorophyll-a concentrations are on a Napierian logarithmic scale. 
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As these results demonstrate, the AM performs as well as or better than the models most commonly 

used to estimate Chl-a concentration in inland water bodies, and it provides the most stable results, 

with errors remaining below 20%. 

4. Conclusions 

This study was designed to test the performance of an adaptive model developed to estimate Chl-a 

concentrations using MODIS images downscaled at 250 m spatial resolution in southern Quebec 

inland water bodies. Several innovative elements were tested with this approach: use of a classification 

method (CART) to spectrally pre-identify the blooming class of a sample (waters poorly, moderately, 

and highly loaded in Chl-a) and to apply the corresponding estimator for a final estimation; 

optimization of satellite information by means of a multivariate stepwise regression; and use of the first 

seven MODIS bands, originally designed for land, atmosphere, and cloud applications, downscaled at 

250 m spatial resolution using an approach developed at the CCRS. 

Several validation techniques were used to assess the performance of the proposed approach:  

cross-validation, validation by independent ordinal data using a confusion matrix, and qualitative 

validation by applying the models to a series of MODIS images. The FAI, Kahru, and APPEL models 

were subjected to similar procedures of calibration and validation using the same databases 

(continuous and ordinal). The determination coefficients of the three AM estimators were high  

(>0.91), and the AM yielded the best overall estimates of Chl-a concentrations, especially for the  

low-to-moderate blooming classes (<50 mg Chl-a·m−3; negative NASHr values for the FAI, Kahru, 

and APPEL models). However, confusion matrix analysis revealed a decrease in performance for all 

four models in the case of waters moderately loaded in Chl-a. Estimates for this blooming class are 

highly sensitive to misclassification of the data at both extremities, but the AM remained the most 

efficient predictor, with the lowest false negatives (39%). In addition, qualitative validation highlighted 

the potential of the proposed method to detect algal blooms at their initialization stage, which is 

problematic for the other models. 

Our goal in developing this approach was not to replace conventional monitoring methods, but to 

provide a tool to improve the management of fieldwork, which is expensive and complex for regions 

with a high density of lakes such as southern Quebec. The well-known limitations of remote sensing, 

including the loss of signal in the presence of clouds and the low performance of most standard models 

at low-to-moderate Chl-a concentrations or when other optically active components are abundant, may 

have discouraged planners from integrating such data into their intervention plans. However, while 

organizations such as the World Health Organization and the Institut national de santé publique du 

Québec do not consider waters with less than 10 mg Chl-a·m−3 to pose a threat to human or animal 

health, monitoring of water at the initialization stage of an algal bloom remains crucial for lakes 

threatened by eutrophication. The adaptive model provides an improved tool to monitor harmful algal 

blooms in medium-sized lakes, with a satisfactory level of performance even at low-to-moderate  

Chl-a concentrations. 
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