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Abstract: In the Sahel region, moderate to coarse spatial resolution remote sensing time 

series are used in early warning monitoring systems with the aim of detecting unfavorable 

crop and pasture conditions and informing stakeholders about impending food security 

risks. Despite growing evidence that vegetation productivity is directly related to 

phenology, most approaches to estimate such risks do not explicitly take into account the 

actual timing of vegetation growth and development. The date of the start of the season 

(SOS) or of the peak canopy density can be assessed by remote sensing techniques in a 

timely manner during the growing season. However, there is limited knowledge about the 

relationship between vegetation biomass production and these variables at the regional scale. 

This study describes the first attempt to increase our understanding of such a relationship 

through the analysis of phenological variables retrieved from SPOT-VEGETATION 

time series of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). 

Two key phenological variables (growing season length (GSL); timing of SOS) and the 
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maximum value of FAPAR attained during the growing season (Peak) are analyzed as 

potentially related to a proxy of biomass production (CFAPAR, the cumulative value of 

FAPAR during the growing season). GSL, SOS and Peak all show different spatial patterns 

of correlation with CFAPAR. In particular, GSL shows a high and positive correlation with 

CFAPAR over the whole Sahel (mean r = 0.78). The negative correlation between delays 

in SOS and CFAPAR is stronger (mean r = −0.71) in the southern agricultural band of the 

Sahel, while the positive correlation between Peak FAPAR and CFAPAR is higher in the 

northern and more arid grassland region (mean r = 0.75). The consistency of the results and 

the actual link between remote sensing-derived phenological parameters and biomass 

production were evaluated using field measurements of aboveground herbaceous biomass of 

rangelands in Senegal. This study demonstrates the potential of phenological variables as 

indicators of biomass production. Nevertheless, the strength of the relation between 

phenological variables and biomass production is not universal and indeed quite variable 

geographically, with large scattered areas not showing a statistically significant relationship. 

Keywords: phenology; SPOT-VEGETATION; FAPAR; time series; biomass 

production; Sahel 

 

1. Introduction 

The Sahel, a semi-arid region on the southern border of the Sahara desert, is characterized by a 

marked inter-annual climatic variability. The region has witnessed a number of food security crises in 

recent decades (e.g., [1,2]) following the more severe droughts during the 1970s and the 1980s [3]. 

Early warning monitoring systems aim at detecting unfavorable crop and pasture conditions as early as 

possible during the growing season to inform governments, regional and international stakeholders about 

impending risks [4,5]. For this purpose, the analysis of optical remote sensing (RS) data relies on high 

temporal frequency observations provided by moderate to coarse spatial resolution satellite instruments 

(e.g., Satellite Pour l’Observation de la Terre, SPOT-VEGETATION; and Moderate-resolution Imaging 

Spectroradiometer, MODIS) to evaluate vegetation biomass production and crop yield (e.g., [6]). 

Vegetation conditions are commonly assessed on the basis of anomalies of the current value of the RS 

indicator (typically the normalized difference vegetation index, NDVI [7]), with respect to a value 

extracted, for the same period of the year, from a reference temporal profile. This reference is often 

represented by what is assumed to be the ―normal‖ condition [8], i.e., the ―long-term‖ average computed 

on the entire RS time series. The main disadvantage of this approach is that the comparison is made at 

predefined dates within the year regardless of the actual plant growth stage. In this way, a precocious 

or delayed start of the predefined growing season is implicitly assumed to have an effect on plant 

condition. For instance, an earlier (or later) than usual development will in any case generate a positive 

(or negative) NDVI anomaly in the initial part of the season, even if the overall production is not 

actually affected. Approaches accounting for vegetation phenology in the analysis of overall growing 

season productivity have recently been proposed to overcome this possible limitation [9–11]. 
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The study of phenology is important, because the timing and the temporal characteristics of 

vegetation growth directly control vegetation productivity (for a review, see Richardson et al. [12]). In 

particular, the length of the growing season was found to be positively correlated with carbon uptake in 

different ecosystems, ranging from deciduous forests, savannahs, grasslands and crops [13–16]. These 

findings mainly reflect the fact that plants manage to make optimal use of energy, water and other 

resources when these are available. 

Phenology information could be used for crop and pasture monitoring, as the start of the growing 

season can be derived early in the season from satellite data [17,18]. Furthermore, the start of the 

growing season can also be forecasted using climatic indices [19]. Despite this attractive feature, 

current knowledge about the relationship between phenology and gross primary production (GPP)  

in the Sahel is limited. Proud and Rasmussen [20] analyzed NDVI data from Meteosat Second 

Generation and rainfall estimates from the Tropical Rainfall Monitoring Mission and showed that a 

delay or false start (i.e., initial green-up followed by a setback) of the rainy season had a significant 

negative effect on the growth of vegetation. Anomalies in the timing of the start of the growing season 

have recently been considered as explanatory variables in designing empirical drought indices using 

data mining techniques [21,22]. However, the link between the timing of the start of the season, as 

derived from remote sensing indicators, and vegetation production at the end of the growing season 

has not been clearly identified. 

Water availability is the main limiting factor for plant growth in warm semi-arid and arid regions. 

Ecosystems are highly sensitive not only to the annual rainfall amount, but also to the rainfall 

distribution (timing, continuity and duration of the wet season), which, in turn, controls the vegetation 

development patterns. The timing of precipitation was found to be as important as changes in the total 

amount of precipitation in controlling vegetation productivity in water-limited ecosystems [23]. 

A delayed onset of rain is thought to exert a detrimental effect on seasonal GPP by delaying plant 

growth and preventing full vegetation development [19]. On the other hand, an early onset may 

enhance initial productivity and water reserve depletion, thus inhibiting later photosynthesis and also 

reducing overall production [12]. Furthermore, the magnitude and type of effect resulting from the 

altered timing and amount of a rainfall event can be quite specific for different plant species, functional 

types and communities [24]. 

In addition, it is unclear whether a delayed onset of vegetation development has the same effect on 

crops and natural vegetation seasonal productivity. For example, nearly all crops are sensitive to 

temperature and some to photoperiod as well. Seeding or planting exactly after the first abundant rains 

to catch maximum water is a typical risk minimization farming strategy in the south of Sahel and in 

other semi-arid areas of the world [25]. Because plants experience different temperature and 

photoperiod conditions as a consequence of variable rain onsets and sowing dates, crop performances 

are expected to be sensitive to anomalies in the start of the season. For example, when photosensitive 

crop varieties are planted too late (for instance, because of replanting after a first crop failure due to the 

late onset of the rainy season), the ―flowering signal‖ is received by a plant when it is still very young. 

As a consequence, it will start flowering when the biomass is not fully developed, with detrimental 

effects on final grain yield. Sowing delays can therefore translate into yield reduction [26]. However, 

farmers may rely on multiple cultivars with different lengths of growing cycle to cope with rainfall 

variability [27], partially compensating for the possible negative effects of late planting [28,29]. 
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More arid areas in the north of the Sahel are less suitable for crops and are typically exploited for 

grazing. Such areas enjoy only a one to two month-long growing season, because of the short duration 

of the West African monsoon. Here, the herbaceous vegetation is also sensitive to the photoperiod, and 

a delayed rainfall onset season may have an effect on seasonal productivity as well. 

Present climate change has already altered both the amount and the seasonal distribution of rainfall 

worldwide and especially in the dry tropics [30], with consequences on vegetation phenology  

(e.g., [19,31,32]). Gaining insights into the possible effect of these changes on crop and pasture 

production in semi-arid regions is important to develop appropriate adaptation strategies, particularly in 

such semi-arid areas, where the impact on terrestrial ecosystems is expected to be more dramatic [33,34]. 

Several studies analyzed the changes or trends in phenological variables as possible indicators of 

climate change (e.g., [35–37]). Others have addressed the long-term Sahel desertification/re-greening 

trends (see Dardel et al. [38] for a comprehensive introduction and a recent contribution to the debate) 

and their possible causes (e.g., [39–42]). 

So far, only Groten and Ocatre [43] have addressed the relationship between remote sensing-derived 

phenology and biomass production. They qualitatively analyzed the start of the season anomaly for a 

single year in Burkina Faso and found it to be related to partial crop failure. However, large-scale and 

multi-annual investigations on the relation between different key phenological variables and vegetation 

biomass production are missing. A better understanding of the role of the timing of the start of season 

on vegetation development is also important to evaluate, and possibly improve, the fixed phenology 

settings often used in crop development simulation models and in many RS-based empirical approaches. 

In this study, we aim to improve the understanding of the relationship between phenology and 

biomass production in the Sahel. For this purpose, we use phenological variables derived from satellite 

observations (for a review of the methods see de Beurs and Henebry [44]), as they can effectively map 

phenological events over large areas for an extended time period. Key phenological variables  

are derived from the analysis of FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) 

data from SPOT-VEGETATION instrument for the period of 1998–2012. The cumulative FAPAR 

value (CFAPAR) over the growing season is used as an indicator of biomass production, as CFAPAR 

appears to be a suitable proxy of GPP, biomass production [38,45–50] and of crop yield (e.g., [51–53]). 

The correlation between CFAPAR and the key phenological variables and an indicator of the 

maximum productivity attained during the growing season is then mapped over the Sahel. Finally, 

ground measurements of herbaceous aboveground biomass collected over rangeland sites in Senegal 

are used to assess the strength of the link between CFAPAR and biomass production and to test the 

consistency of the correlations between CFAPAR and phenological variables. 

2. Materials and Methods 

2.1. Study Area 

The analysis is conducted in the Sahel, a semi-arid transition zone in Africa between the Sahara 

desert to the north and a humid tropical savannah to the south. The Sahel is marked by a steep  

north-south gradient in annual precipitation. Frequent drought conditions [1] expose the often 

vulnerable local communities relying on rain-fed pastures and crops to food security crises, as occurred 
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recently in 2010 and 2012 [2,5,29] and, more dramatically, in the 1970s and 1980s [3]. Climatic 

drivers of rainfall and of agro-pastoral production are not uniform over the Sahel. The western part of 

the Sahel is influenced by the North Atlantic Oscillation, whereas the eastern part is influenced by the 

El Niño Southern Oscillation [54]. The study area is limited to the cropland and herbaceous covers 

according to GLC2000 (Global Land Cover 2000 [55]) and to the five main eco-regions of the  

Sahel [56] located in the latitude band between 8 and 21°N (Figure 1). 

Figure 1. (a) The study area encompassing the main Sahel eco-regions. The herbaceous 

and cropland land covers are the union of GLC2000 (Global Land Cover 2000) herbaceous 

cover dominated classes (Classes 13 to 15) and cropland classes (Classes 16 to 18), 

respectively. Blue points in Senegal refer to the location of field measurements sites  

(zoom in (b)). 

 

2.2. Remote Sensing Data and Field Measurements 

In this study, we used FAPAR as the primary source of information about vegetation status, because 

it directly measures the amount of incident radiation absorbed by the plant canopy, one of the key 

drivers of plant development and GPP [57]. The results described in this paper were generated  

using time series of maximum value composited dekadal (defined as a 10-day period) FAPAR of the 

JRC-MARS archive (Joint Research Centre of the European Commission, Monitoring Agricultural 

Resources Unit). In this product, FAPAR is estimated using the CYCLight algorithm [58] applied to 

calibrated, cloud-screened and atmospherically corrected (SMAC algorithm [59]) SPOT-VEGETATION 

(VGT) imagery at a 1/112° (about 1 km) spatial resolution for the period of April 1998–January 2013 

(nearly 15 years). 

Field measurements of above-ground biomass at the end of the growing season were performed  

by the Centre de Suivi Ecologique (CSE, Dakar, Senegal) over pastoral sites in the Matam region 

(Figure 1a,b), an area of transition between cropland and herbaceous land cover according to 

GLC2000. It is worth noting that a large fraction of the sampling sites is classified as cropland in 

GLC2000 albeit agriculture is negligible at these sites (crops are present only in few sites, with less 

than 1% of total area cropped). Herbaceous dry matter biomass was estimated along 1 km × 1 m 

transects with the stratified sampling method described in Diouf and Lambin [60]. The transect is 
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stratified into four strata according to vegetation type and estimated herbaceous biomass. Then, 

between 35 and 100 plots (depending on the spatial heterogeneity of the site) of 1 m
2
 are randomly 

distributed in each stratum. The aboveground herbaceous biomass of each plot is clipped, and the fresh 

weight is determined in situ. A sub-sample of the clipped biomass is dried in an oven to measure the 

dry weight and to estimate the dry to fresh weight ratio. Mean site dry biomass is finally extrapolated 

as the average of the biomass of each stratum weighted by its relative contribution (proportion of 

transect occupied by the stratum). A total number of 33 sites were available in an area covering 

roughly 100 km × 100 km. Sampling sites were revisited yearly in late October from 2005 to 2011. 

Missing data in the database are due to logistic difficulties and bush fires that occurred before planned 

field missions. Furthermore, the data of five sites were not used in the present analysis, as they 

reported anomalous inter-annual variability of biomass production compared to neighboring sites. As a 

result, a total of 167 data points for 28 sites were available for the validation exercise. A 3 × 3-pixel  

window centered on the coordinates of the transect midpoint was used to extract the average of  

the remote-sensing indicator. Visual inspection of all sites on Google Earth imagery did not reveal  

the presence of a spatial heterogeneity in vegetation cover that was incompatible with the extraction  

window used. 

2.3. Methods 

Phenological variables were retrieved from the FAPAR time series using the model-fit approach 

described in Meroni et al. [9]. Briefly, the seasonality (being uni- or bi-modal) is detected analyzing 

the autocorrelation of the FAPAR time series. Then, the seasonal FAPAR trajectory is fitted with a 

double hyperbolic tangent model. Finally, the start and end of season (SOS and EOS) are deemed to 

occur whenever the value of the modeled time series exceeds the initial base value by 20% of the 

growing amplitude and whenever the modeled value drops below the final base value plus 20% of the 

decay amplitude, respectively. The length of the growing season (GSL), the maximum FAPAR value 

(Peak), as well as the cumulative FAPAR value during the growing season (CFAPAR) are computed 

on the fitted model. When required, SOS is expressed in terms of anomaly (ΔSOS, the actual SOS 

minus its mean value). The retrieval of phenology in the Sahel is challenging because satellite 

observations may be hampered by the presence of scattered clouds, especially during the wet season, and 

this can interfere with the detection of specific events, such as the SOS. Additionally, rain-fed arid 

ecosystem can exhibit ―false starts‖, or complete season failures [44]. All of these factors may affect the 

correct phenology retrieval and introduce bias in the analysis. Relying on a model of the growing period, 

rather than the raw measurements themselves, is expected to deliver reasonable phenology dates, even  

if these occur on cloudy days, as the model functional form is fitted to the available observations. 

CFAPAR is defined as the integral of FAPAR during the growing period. Its magnitude is therefore a 

function of the shape of the FAPAR seasonal trajectory (including the maximum amplitude attained) and 

of the integration limits (start and end of season) defining the growing season. As these phenological 

parameters interact in a complex way in the determination of CFAPAR, their effect cannot be evaluated 

theoretically. For instance, a longer than usual growing season may be characterized by lower vegetation 

growth, resulting in lower CFAPAR. On the contrary, a shorter season may experience more rapid 

growth and result in a higher CFAPAR. In addition, no a priori assumptions based on the functional 
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form of the trajectory can be made when the season is shifted in time (delayed or earlier than usual start 

and end of the season), as frequently happens in terrestrial ecosystems. 

In this study, we aim at visualizing the relative importance of such phenological features in 

determining the seasonal CFAPAR over different geographical settings in the Sahel region. For this 

purpose, we analyze the correlations of the seasonal biomass production, represented here by 

CFAPAR, with the retrieved key phenology parameters (GSL and ΔSOS) and the maximum 

productivity indicator (Peak). This analysis is intended to provide a first assessment of the relative 

importance of GSL, ΔSOS and Peak rather than to define a statistical framework for estimating the 

biomass production, as the various parameters are not statistically independent. 

The plausibility of using CFAPAR as a proxy of biomass production was checked using field 

measurements. In addition, the observed correlation of the phenological parameters with CFAPAR was 

compared to the correlation of phenological parameters with measured biomass. 

3. Results and Discussion 

3.1. Spatial Patterns of Phenology 

The study area experiences one growing season per year, ranging roughly from June/July to 

October/December, depending on the location. Figure 2 shows the spatial variability of average SOS, 

EOS, GSL and the proxy of seasonal biomass production, CFAPAR. A clear latitudinal gradient in all 

phenological variables is present: GSL increases from north to south along with CFAPAR.  

Figure 2. Average start (SOS) (a), end (EOS) (b) and length (c) of the growing season and 

the cumulative Fraction of Absorbed Photosynthetically Active Radiation (CFAPAR)  

value (d) during the growing season. Average values are computed over the set of 

phenological variables extracted from the FAPAR time series (n = 15, years 1998–2012). 

Phenological variables and CFAPAR are shown for the herbaceous and cropland land 

covers (other classes in white) and the five main eco-regions of the Sahel (other regions  

in grey). 

  

(a) SOS (b) EOS 

  

(c) GSL (d) CFAPAR 

The start and end of the season are modulated by the seasonal migration of the Inter-Tropical 

Convergence Zone, which results in a shorter and poorer growing season in the north of the study area. 

The interannual variability of such variables is relevant and reflects the high climatic variability 
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characterizing the region. For instance, the mean value of the coefficient of variation of GSL over the 

whole study area during the period of 1998–2012 is 21% and ranges from 15% in the southern 

agricultural band to 28% in the northern grassland band. Phenological dates and spatial patterns are 

similar to those found in other studies using different satellite instruments (NOAA-AVHRR, MODIS) 

and different phenology retrieval methods (e.g., [32,61]). 

3.2. Correlation of CFAPAR with Phenological Variables 

The analysis of the spatial patterns of mean phenology of Section 3.1 highlights the presence of a 

strong spatial correlation among the phenological variables. In this section, we are interested in testing 

whether the correlation between CFAPAR and the phenological variables holds in time, as well, i.e., where 

and to what extent the seasonal CFAPAR at a given location can be explained by a variation in one or 

more key phenological parameters. 

Figure 3 shows the coefficient of determination of the linear regression of CFAPAR against GSL, 

Peak value and ΔSOS as an RGB color composite. The dominance of red and magenta colors, 

especially in the southern agriculture band, highlights the importance of GSL and SOS. However, in 

large areas in the northern grassland band, Peak, i.e., the maximum biomass development attained 

during the season, is the most important factor (as shown by the dominance of greenish colors). 

Figure 3. Visualization of the correlation between CFAPAR vs. GSL, Peak value and ΔSOS 

in the RGB color space. The composite is based upon the coefficients of determination (R
2
) 

of the linear regression CFAPAR vs. GSL (Red), Peak (Green) and ΔSOS (Blue); 

no stretching is applied. Main land cover types are represented by the thick black lines (two 

simplified polygons, herbaceous cover in the north and crop cover in the south). 

 

Figure 4 shows separately the correlation coefficients of the three variables considered with 

CFAPAR (only pixels with significant regression at the 0.05 p-level are mapped). A positive 

correlation with GSL holds for most of the Sahel (Figure 4a). This finding is in agreement with the 

general expectation that longer growing seasons correspond to higher biomass production levels [12], 

and with previous studies relating crop production [62] and rangeland production [63] to GSL in  

the region. 
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Figure 4. Correlation coefficient between CFAPAR and GSL (a); Peak (b); ΔSOS (c). 

Land cover polygons (thick black lines) are as in Figure 3. Pixels where the linear 

regression is not significant (n.s.) at p = 0.05 are masked in grey. 

 

(a) r CFAPAR vs. GSL 

 

(b) r CFAPAR vs. Peak 

 

(c) r CFAPAR vs. ΔSOS 

The correlation with GSL is weaker in the northern grassland band where Peak also plays a major 

role (Figure 4b) and is positively correlated with CFAPAR. This result is in agreement with Eklundh 

and Olsson [64], Heumann et al. [35] and Dardel et al. [38], who found that the re-greening trend 

observed in northern Sahel (a positive NDVI temporal trend in these studies) could be mainly 

explained by an increase in NDVI seasonal amplitude. The widespread absence of a significant 

correlation between the vegetation production proxy and Peak in the agricultural band raises questions 

about the general reliability of using the seasonal maximum of a remote sensing indicator as a suitable 

proxy of final crop yield, as is done in many studies [8]. 

The anomaly in SOS is negatively correlated with CFAPAR (Figure 4c) over large areas of the 

region, meaning that a delay in SOS is significantly associated with a reduction in CFAPAR. This 

correlation is more widespread and stronger in the southern agricultural band rather than in the 

northern grasslands: the percentage of pixels showing a significant relationship (at the 0.05 p-level) 

between ΔSOS and CFAPAR is 66% in the agricultural band and 50% in the grassland band. In 

addition, taking into account only significant pixels, the mean absolute correlation is significantly 

higher (0.01 p-level) in the agricultural band (r = −0.71) than in the grassland band (r = −0.67). On the 



Remote Sens. 2014, 6 5877 

 

 

contrary, Peak is more important in the grassland band (76% of pixels with significant correlation, 

mean r = 0.75) than in cropland band (42% of pixels with significant correlation, mean r = 0.66). 

These findings show that besides the ubiquitous importance of GSL (grassland: 79% of pixels with 

significant correlation, mean r = 0.75; cropland: 91% of pixels with significant correlation, mean  

r = 0.8), biomass production in the more arid grassland band in the north is sensitive to the maximum 

greenness the vegetation attained given the limited water availability and, to a lesser degree, to the 

timing of vegetation onset (and presumably, to the timing of rainfall). 

On the contrary, in the southern band, where croplands are more widespread and where the growing 

season is generally longer, the timing of SOS appears to be more critical for biomass production and 

promising as an early indicator of seasonal performance. In this area, crops are sown as soon as enough 

precipitation is received for effective crop growth; late sowing delays plant growth and may prevent 

full biomass development before flowering. 

It is worth noting that exceptions to this behavior are not infrequent: no significant correlation is 

found between ΔSOS and CFAPAR in scattered and large areas of the region. In such areas, where the 

timing of season start has no effect on seasonal production, vegetation monitoring and biomass 

production forecast should not be based on SOS. At the same time, this finding questions the reliability 

of the traditional approach using the anomaly of a remote sensing indicator (e.g., NDVI) to assess 

vegetation status, as a delay in SOS leads to a negative anomaly during the green-up period without 

any actual effect on final production in these areas where no significant correlation is found between 

ΔSOS and CFAPAR. 

By limiting the analysis to the pixels showing a significant correlation between ΔSOS and CFAPAR, 

we can highlight the influence of the SOS delay on the final biomass production of each single pixel. 

Figure 5 shows the variation in CFAPAR per unit variation in SOS (i.e., the CFAPAR decrease 

associated with a one-day delay in SOS), expressed in terms of the percentage of the pixel-level mean 

CFAPAR value. Despite the fact that ΔSOS is more strongly correlated with CFAPAR in the southern 

agricultural band, the relative impact of SOS variation is higher in the north, because CFAPAR and GSL 

are reduced from south to north (see Figure 2). In other words, the annual production of the herbaceous 

dominated areas in the north, characterized by a short pulse of vegetation growth, is more susceptible to 

changes in SOS, although not in a spatially-consistent manner. 

Figure 5. Percentage of variation of the mean seasonal biomass production proxy 

(CFAPAR) for a one-day anomaly in the timing of SOS. The metric is computed as the 

slope of the linear regression CFAPAR vs. ΔSOS expressed as a percentage of the  

pixel-level mean CFAPAR. Pixels where the linear regression is not significant (n.s.) at  

p = 0.05 are masked in grey. 
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3.3. Consistency Check with Ground Measurements 

Figure 6a shows the correlation between field measurements of herbaceous dry biomass in Senegal 

and CFAPAR (r = 0.58). The relationship is significant (p < 0.001) and corroborates our assumption 

that the CFAPAR can be used as proxy of biomass production. However, a relevant scatter is present, 

and the total biomass variance (i.e., temporal and spatial variability together) explained by the linear 

regression is limited to 34%. 

Figure 6. (a) Linear regression statistics and scatterplot between measured biomass  

(years 2005–2011) and CFAPAR; (b) average of the site-level correlation coefficients  

and statistical significance: the green bar refers to the correlation between measured 

biomass and CFAPAR; the blue and yellow bars refer to the correlations of GSL, ΔSOS 

and Peak vs. measured biomass (blue) or CFAPAR (yellow), respectively. Error bars refer 

to ±1 standard deviation. 

  

(a) (b) 

The average correlation between measured biomass and CFAPAR at each site (Figure 6b) 

represents the temporal component of the overall correlation shown in Figure 6a, where data points  

of different years and locations are pooled together. This average temporal correlation is increased  

(r = 0.74, Figure 6b) with respect to the overall one, indicating that the relationship between measured 

biomass and CFAPAR holds at the pixel level and it is degraded when different locations are pooled 

together. This fact does not represent a major concern with respect to the correlations presented in 

Section 3.2, as the analysis was performed at the pixel level as well. 

The reduction in sample size available for the regression analyses shown in Figure 6a,b (n = 167 for 

the global regression and n = 3 to 7 for the site-level regressions, respectively) contributes toward 

explaining the increase of the average p-value of the site-level regressions of measured biomass vs. 

CFAPAR, as compared to the global regression. Nevertheless, Figure 6b shows that the correlation 

sign and strength between the variables and CFAPAR agrees with that of the same variables and 

measured biomass. Even if geographically limited to the Matam region in Senegal, this consistency 

check adds some confidence to our phenological analysis at the Sahel level. 

The lower correlation found when comparing the RS-derived variables to measured biomass 

production rather than to the RS-derived CFAPAR may be explained by the fact that CFAPAR is 

computed over the full growing season (i.e., EOS is determined for each season), whereas field 
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measurements are performed in the proximity of the actual end of the season, at some arbitrary day in 

October (the exact date may change site by site, and it is not available). The reduced statistical 

significance of the relationship between RS-derived variables and measured biomass can be partially 

explained by the smaller sample size available for the two type of regressions (n = 3 to 7 when using 

measured biomass and n = 15 when using CFAPAR). Other causes of disagreement between CFAPAR 

and field measured biomass may include: spatial mismatch between the RS footprint (3 × 3 pixels) and 

the field transect; and possible biomass removal by animal grazing (undetected by single end-of-season 

biomass field measurements). 

4. Conclusions 

We retrieved key phenological and maximum productivity variables from a 15-year time series of 

SPOT-VEGETATION Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) using a 

model-fit approach, and we determined their correlation with a proxy of seasonal biomass production 

(CFAPAR, the cumulative FAPAR during the growing season). Our analysis over the entire Sahel 

region shows that: (i) the growing season length (GSL) exhibits the strongest correlation with 

CFAPAR over the entire study area (mean r = 0.78); (ii) the correlation with start of season (SOS) is 

stronger and more widespread in the agricultural band in the south (mean r = −0.71); whereas, (iii) the 

indicator of the maximum productivity attained during the growing season (Peak) is more important in 

the northern and dryer grassland band (mean r = 0.75). 

In order to increase the confidence in the analysis, we tested these correlations against field 

measurements of herbaceous biomass production in Senegal. For this specific dataset, we verified that: 

(i) there is a significant relationship between actual biomass production and CFAPAR; and (ii) the 

correlation between phenological variables and CFAPAR is consistent with the correlation between 

such variables and measured biomass. 

Our results show that there is potential for the use of the SOS anomaly, which is detectable during 

the first stages of vegetation development, as an early warning indicator of end-of-season biomass 

production and, hence, crop yield. The use of Peak, detectable in a later stage of the season, appears to 

have more potential for monitoring grassland rather than cropland biomass production. 

However, a large heterogeneity exists in the strength of the relation between CFAPAR, on the one 

hand, and SOS and Peak, on the other. This implies that both variables should be used with care as 

indicators of seasonal pasture production or crop yield, that is, only where a significant correlation 

could be ascertained. Under this condition, the use of such phenological variables can provide relevant 

early warning information and improve risk management systems. 

Further analysis at the local level is needed to identify the characteristics and processes that 

determine the spatial patterns of the observed correlations, as well as to further validate the results in 

different areas of the Sahel. 
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