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Abstract: In this study, the capability of geographic object-based image analysis 

(GEOBIA) in the reconstruction of the recent fire history of a typical Mediterranean area 

was investigated. More specifically, a semi-automated GEOBIA procedure was developed 

and tested on archived and newly acquired Landsat Multispectral Scanner (MSS), 

Thematic Mapper (TM), and Operational Land Imager (OLI) images in order to accurately 

map burned areas in the Mediterranean island of Thasos. The developed GEOBIA ruleset 

was built with the use of the TM image and then applied to the other two images. This 

process of transferring the ruleset did not require substantial adjustments or any replacement 

of the initially selected features used for the classification, thus, displaying reduced 

complexity in processing the images. As a result, burned area maps of very high accuracy 

(over 94% overall) were produced. In addition to the standard error matrix, the 

employment of additional measures of agreement between the produced maps and the 

reference data revealed that ―spatial misplacement‖ was the main source of classification 

error. It can be concluded that the proposed approach can be potentially used for 

reconstructing the recent (40-year) fire history in the Mediterranean, based on extended 

time series of Landsat or similar data. 
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1. Introduction 

Forest fires are considered to be one of the major factors affecting vegetation succession, and 

nutrient and global carbon cycles [1,2]. In addition, they potentially contribute to biodiversity loss, soil 

erosion, and degradation processes [3,4]. Understanding the behavior and interaction of forest fires 

with different ecosystems is important for analyzing spatial and temporal patterns of fire occurrence, as 

well as for studying changes in ecosystem functions [5,6]. While, historically, fire regimes have been 

mainly influenced by human activities and practices [7], more recently, climatic and environmental 

changes are also considered as driving factors affecting fire occurrence and vegetation succession [8,9]. 

These constantly evolving interactions and effects of fire in space and time constitute what is referred 

in the literature as fire history [10]. 

Collection of reliable fire statistics and generation of time series of burned area maps become 

essential when the fire history of a certain area is considered [5,11]. Accurate reconstruction of fire 

history is related, among others, to the following: 

 investigation and monitoring of the long-term post-fire vegetation succession [12], 

 understanding of the causes of fire ignition [13], 

 investigation of the interactions between climate change and fire occurrence [11], 

 preservation and management of biodiversity [14], and 

 determination of pre-fire planning and other fire management related policies [15]. 

However, the consistency of fire statistics varies according to the spatial and temporal scale of 

interest, the collection method, and the organization they are delivered by [11,16]. Given the increase 

in the number of extreme fire events over the past decades, in many parts of the world, and especially 

in the Mediterranean region [12], delivering accurate and timely-consistent fire statistics has become 

important for national, as well as international, organizations (e.g., national forest services, EUROSTAT, 

European Forest Fire Information System, Food and Agriculture Organization). 

Satellite remote sensing has been widely employed for fire history reconstruction both at the 

local/regional/national [17,18], as well as the continental/global [19,20], level. More specifically, the 

most recent (post-2000) global fire history reconstruction is based mainly on the use of MODIS [20,21] 

and SPOT VEGETATION [22] data, while the creation of fire history over longer time periods 

involved the extensive use of the Advanced Very High Resolution Radiometer (AVHRR) [11,23]. 

Despite the limitations of these sensors due to detection capabilities and sampling inconsistencies [16], 

they constitute the primary source for producing global records of fire activity. At a local/regional 

scale where more detailed information is required, satellite data with higher spatial resolution could 

constitute an alternative, and, often, the only available source of information, for the reconstruction of 

the recent and sometimes longer fire history of an area. 

With a more than 40-year archive covering the globe with moderate resolution (30–80 m) 

multispectral data provided at low or zero cost, the Landsat sensors have significantly contributed  

to land management [24]. Indeed, since the initiation of the Landsat satellite program, numerous land 

management projects, including fire-related ones, have been based on data from the three main sensors 

on board the different Landsat satellites, namely the Multispectral Scanner (MSS), the Thematic (TM), 

and Enhanced Thematic Mapper (ETM+) sensors [15,18,25]. The recent launch of Landsat-8, as part 
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of the Landsat Data Continuity Mission (LDCM) [26], ensures open access to Landsat data for the 

coming years, both for operational and scientific applications. Consequently, these time series of 

archived and newly acquired Landsat images offer the potential of reconstructing fire history not only 

at local/regional but also at a global scale with improved spatial accuracy. 

A prerequisite of recreating the fire history of an area is the detection of fire scars and the accurate 

mapping of the burned areas. Along with the abundance of satellite data, numerous approaches and 

techniques have been developed for detection and mapping of burned areas including: vegetation index 

differencing [27,28], Principal Component Analysis (PCA) [29], Spectral Mixture Analysis (SMA) [30], 

logistic regression [31], supervised classification [17], and multitemporal image compositing [32].  

In addition, advanced image analysis techniques, such as neural networks [33] and support vector 

machines [34], have also been employed. According to Katagis et al. [35], the selection of an appropriate 

procedure or technique depends on the aim of the study, data availability and ecosystem characteristics. 

Existing automated or semi-automated procedures for detection and mapping of burned areas are based 

mainly on low-resolution data with high temporal frequency, such as AVHRR and MODIS [19,20,36]. 

In contrast, semi-automated procedures that employ medium to high spatial resolution data are 

considerably fewer and are mainly developed with the use of Landsat imagery [12,37–39]. 

The majority of the conducted research, created products, and developed services rely, thus far, on 

pixel-based (spectral) information and the related image analysis techniques. However, recently, the 

use of objects (instead of pixels) that can facilitate the usage of, not only spectral, but also contextual 

and spatial information, considering the shape and texture of objects, as well as topological features 

(neighbor, super-objects, etc.), has been developed [40,41]. Geographic object-based image analysis 

(GEOBIA) has been devoted to developing automated methods of partitioning high-resolution,  

remote-sensing imagery into meaningful image-objects, and assessing their characteristics through a 

scale [42]. A semi-automated GEOBIA procedure with Landsat TM data was proposed by Mitri and 

Gitas [37] for mapping burned areas in the Mediterranean region. GEOBIA of optical satellite data, 

ranging from low to very high spatial resolution, has been successfully used for burned area mapping, 

resulting in high classification accuracies [43–45]. The findings of these studies also demonstrated that 

confusion between burned areas and other land cover classes were significantly minimized. 

Based on the above, it would be worth exploring the capability of GEOBIA for the generation of 

time series of burned area maps with the use of past and current Landsat acquisitions. The aim of this 

work was to develop an object-based model that would take advantage of the Landsat image availability 

in order to reconstruct recent (30 years) fire history in a typical Mediterranean environment. For this 

purpose, data from the Multispectral Scanner (MSS), the Thematic Mapper (TM), and the Operational 

Land Imager (OLI) sensors were employed. The specific objectives were: 

 to develop an object-based classification model for mapping in detail burned areas using  

the TM scene for which accurate official fire perimeter provided by the Greek Forest Service 

was available; 

 to test the transferability of the developed model by applying it to the MSS and OLI images  

in order to investigate the potential of the proposed method to be used operationally for the 

reconstructions of the recent fire history of the study area. 
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2. Study Area and Dataset Description 

The study area of the Mediterranean island of Thasos in Greece was used to develop and test the 

model for creating these times series of burned area maps. Thasos is Greece’s most northerly island, 

extending from 24°30′ to 24°48′E and 40°33′ to 40°49′N, with a surface area of 399 km
2
 and a perimeter 

of approximately 102 km (Figure 1). Elevation ranges from sea level to 1217 m. Pinus brutia is 

the dominant tree species at lower elevations (0 to 800 m), whereas Pinus nigra is found at higher 

altitudes [46]. In addition, other types of Mediterranean vegetation, such as maquis and garrigue 

(a scrubland vegetation of the Mediterranean region composed primarily of leathery broad-leaved 

evergreen shrubs or small trees), are also present. The dry/hot season (xerothermic period) starts in 

May and lasts for four to five months, up to mid-September, with August being the driest and July the 

warmest month of the year. 

Figure 1. Location of Thasos Island and the Landsat images used in the study. 

 

The island of Thasos has been severely damaged by forest fires during the last 30 years, almost  

in its entirety. Before the large forest fire of 1984, forest and forested lands covered 47.5% of the 

island [47], making forests the dominant land cover type at the time. After the fires of 1984 and 1985, 

forests and forested lands were reduced to 37.95% of the island [47]. The present study focuses on the 

fires during the summers of 1984, 1989, and 2013. 

Three Landsat images were used, that were acquired soon after the fire events in the study area. 

More specifically, MSS, TM, and OLI images acquired on 4 August 1984, 19 September 1989,  

and 20 August 2013, respectively, were collected (Table 1). Ancillary data utilized for pre-processing 
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of the data and validation of the classification results were: the official forest service perimeters of the 

fires in Thasos, field data when available, a 1:50,000 topographic map and a 10 m digital elevation 

model (DEM) of Thasos. In addition, three pre-fire Landsat images were used respectively to further 

assist the validation procedure only, as it is described in the following sections. 

Table 1. Description of Landsat imagery used in this study. 

Landsat Data Spatial Resolution Acquisition Date Date of Fire Event Area (ha) 

Landsat 5 MSS 60 m 1984-08-04 
1984-07-21 1605 

Landsat 5 MSS (pre) 60 m 1984-06-26 

Landsat-4 TM 30 m 1989-09-19 
1989-08-16 9560 

Landsat-4 TM (pre) 30 m 1989-07-09 

Landsat-8 OLI 30 m 2013-08-20 
2013-08-16 818 

Landsat-8 OLI (pre) 30 m 2013-08-04 

3. Methodology 

In the following subsections the methodology steps are presented in detail. The methodology 

comprised pre-processing of the satellite data, development of the object-based classification model 

with the use of the TM image, application of the model to the other two images, and, finally, the 

accuracy assessment of the produced burned area maps. 

3.1. Data Pre-Processing 

Initially, the Landsat images were ortho-rectified with the use of the DEM and the 1:50,000 

topographic map of the island as reference map. The correction involved identification of ground 

central points (GCPs) in the Landsat images and on the topographic map. The images were then 

reprojected into the EGSA projection system (Greek grid) using a bilinear interpolation. The statistical 

technique of least squares regression was used to determine the coefficients for the coordinate 

transformation equations. The total RMS errors associated with the GCPs were lower than 0.6 pixels 

for all images. 

The MSS and TM image values were converted from raw Digital Numbers (DN) to Top of the 

Atmosphere (ToA) reflectance by using the calibration coefficients and equations, as described by 

Chander et al. [48]. The OLI image was likewise converted to ToA reflectance following the procedure 

described in the USGS Landsat mission website (https://landsat.usgs.gov/Landsat8_Using_Product.php). 

Moreover, the images were corrected for atmospheric effects by applying the Dark Object Subtraction 

(DOS) technique, which is one of the most-widely used, and simplest, absolute atmospheric correction 

approaches [49,50]. Although atmospheric correction is not always required when single date images are 

analyzed, applying a basic correction was considered useful for improving the classification performance. 

3.2. Development of the GEOBIA Classification Model 

The object-based classification model was developed with the use of the 1989 Landsat TM  

image [37] by employing the software eCognition Developer 8. The 1989 image was initially selected 

for building the model due to the availability of accurate fire reference data for that year. The 
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transferability of the model was tested and assessed using the 1984 MSS image and the 2013 OLI 

image consecutively. The object-based image analysis involved two steps, namely segmentation  

and classification, where the generated image objects were classified according to class descriptions 

organized in an appropriate knowledge base. In the development process few modifications and 

changes from the initially developed model with the TM scene [42] were performed, in order to 

accommodate changes in the characteristics of the other satellite images. The basic processes of the 

initial model development and the subsequent modifications are described below (Figure 2). 

Figure 2. Flowchart of the methodology steps followed for the development of the 

GEOBIA classification model. This was initially developed with the use of the TM image. 

Minor modifications were performed when applied to the other Landsat images. 

 

The strategy before classifying the burned area was to create a three-level graded scale of 

segmentation in a bottom up region-merging approach, starting with one-pixel objects. The near-infrared 

(NIR) spectral band was used for segmenting the images. The multi-resolution segmentation results 

were used to construct a hierarchical network of image objects that simultaneously represented image 

information at different spatial resolutions. Thus, the smaller objects at level 1 (regarded as sub-objects) 

and the larger objects at level 3 (regarded as super-objects) provided information for the final 

classification of objects at level 2. 

In order to generate the optimum, in terms of homogeneity, segments for the classification, several 

parameters had to be adjusted. These included the scale of the objects, the weights of the single layers 

and the heterogeneity criterion. Scale remains one of the most important factors for image understanding, 

since an image object may appear differently or not at all depending on various levels of scales [45]. 

Consequently, in this work, the optimum scale for the object analysis was determined according to the 
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classification purpose, with the largest objects created at scale 5. The weight defined the degree of 

information from each selected layer to be considered for the segmentation process. Regarding the 

heterogeneity criterion, this included the gray tone (color), as expressed by the digital value of the 

objects, and shape (textural homogeneity) primary object features, with the latter consisting of two 

sub-criteria, smoothness and compactness of objects. Considering this multi-resolution segmentation as 

an optimization process, the main goal was to minimize the spectral heterogeneity of the generated objects. 

Figure 3. Classification of objects at level 2 as burned (in yellow), not burned (in green) 

and water (in blue) for the MSS (a) and OLI (b) images of Thasos. Membership functions 

of ratios of NIR (c) and SWIR (d) for classifying ―burned‖ at level 2 are displayed for the 

OLI image. 

 

 

(c) 

 

(d) 

The next step was to perform classification of the resulting objects. The classification was based on 

fuzzy logic, where each class contains a class description and a class description can consist of a set of 

fuzzy expressions. The fuzzy sets are defined by membership functions that identify those values of  

a feature that are regarded as typical, less typical, or not typical of a class, i.e., they have a high, low, 

or zero membership, respectively, of the fuzzy set. Therefore, for each class a rule was defined, which 

comprised one or a combination of features (conditions) that had to be fulfilled for an object to be 

assigned to a class. 

(b) (a) 
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Classification at level 1 included the following classes: ―burned (l1)‖, ―unburned vegetation‖, 

―urban/bare‖, and ―water‖, while classification at level 3 included the following classes: ―not burned‖, 

―burned (l3)‖, and ―water‖. The final classification of the burned area at level 2 was based on the 

information of objects classified as burned at levels 1 and 3. Through this hierarchical network at the 

different scales each image object ―knows‖ its sub- and super-objects allowing for a more precise 

analysis of the class objects. The main features selected for the classification were the mean values and 

ratios of the NIR (0.76–0.90 μm) and SWIR (2.08–2.35 μm) bands of the TM image. Layer mean 

value 𝑐 𝐿 is calculated from the layer values 𝑐𝐿𝑖  of all n pixels forming an image object, whereas the 

ratio 𝑟𝐿 is the layer L mean value of an image object 𝑐 𝐿𝑂  divided by the sum of all layer mean values of 

the object 𝑐 𝐿𝑆𝑂  [51]: 

 (1) 

 
(2) 

The developed model was finally applied to the MSS and OLI images, where the segmentation 

parameters, regardless of the different spatial resolution of the MSS, and class structure were retained 

(Figure 3). Modifications in the ruleset were performed for mapping the 1984 fire, since the MSS 

image lacked the SWIR band and analysis relied on information from mean value of the red, blue  

and ratio of the NIR spectral bands. Regarding the OLI image, the model was applied likewise  

after adjusting the feature values, namely mean and ratio values of NIR (0.85–0.88 μm) and SWIR  

(2.11–2.29 μm), in the membership functions. 

3.3. Validation of the Burned Area Maps 

The validation of the burned area maps was based on the estimation of the error matrix for each 

classification. The error matrix, one of the most common methods to assess the accuracy of thematic 

maps, generates descriptive statistics for the overall accuracy of the product as well as for the omission 

and commission errors (Oe, Ce) of the desired class [52]. Based on the error matrix, two summary 

measures were also computed, the quantity and allocation disagreement [53,54]. After analyzing 

various Kappa indices of agreement and comparing the standard Kappa with the disagreement 

components in selected published literature, Pontius and Millones [54] concluded that the latter 

measures are simpler and much more convenient for summarizing the estimated error matrix in remote 

sensing applications. Quantity disagreement between the reference and the produced map occurs when 

the number of pixels for each category is different in the two maps, while allocation disagreement  

is caused by mismatch in the spatial allocation of the pixels of each category. These measures  

are expressed by the following equations, where Q and A are the overall quantity and allocation 

disagreement of all categories J, respectively, qg is the quantity disagreement for an arbitrary category 

g, ag is the allocation disagreement of category g, and p expresses the proportion of each category in 

the error matrix [54] (Pontius and Millones 2011): 
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(3) 

 
(4) 

 

(5) 

 
(6) 

The validation procedure was based on random sampling meaning that every pixel, which is 

considered here as the sampling unit, had the same chance of being included in the sample, regardless 

of the final classification map. A total of 150 pixels were selected from each classified image and 

compared with the reference data for validating each map. The sample size was considered statistically 

sound, as suggested by Czaplewski [55], considering a desired accuracy of at least 90% with a 

maximum allowed error of 5%. Ideally, the results of the OBIA classification should be validated with 

the use of objects as sampling units, in order to reduce inherent point-based approach errors, such as 

geolocation inaccuracy [56], although there is no standard method generally adopted in the literature. 

However, selection of consistent reference objects would be still a challenging task if we consider that: 

(i) the field surveys conducted after the three fires were not based on an object-oriented response 

design; and (ii) photo-interpretation of the images could still not ensure the generation of homogeneous 

reference segments, especially for the 60-m resolution MSS image. 

It should be mentioned that the official fire perimeters did not include unburned patches inside the 

polygons. It is quite common that the reference maps provided by the forest services are based on 

rough delineations leading to over- or under-reporting of areas burned, which affects the validation 

results [57]. Hence, in order to assist the creation of more accurate reference data, the Normalized 

Burn Ratio (NBR) (Equation (7)) and Normalized Difference Vegetation Index (NDVI) (Equation (8)) 

indices were calculated for the pre- and post- fire Landsat images and spectral image differencing  

was applied. The resulting differenced Normalized Burn Ratio (dNBR) (Equation (9)) [58] and the 

differenced Normalized Difference Vegetation Index (dNDVI) (Equation (10)) [59] allow for a more 

clear discrimination between burned and unburned vegetation. The NDVI was used for the MSS 

images, since short-wave infrared (SWIR) (2.08–2.35 μm) spectral bands are only available in the TM, 

OLI sensors. NIR (0.76–0.90 μm) and RED (0.63–0.69 μm) refer to the near infrared and red spectral 

bands, respectively. The index differencing was specifically applied for the validation step and was not 

considered for the model development. 
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4. Results and Discussion 

The effectiveness of the developed GEOBIA model to map the burned areas, and thus reconstruct 

the recent fire history of the island, was assessed by comparing the classification results (Figure 4) 

with the reference data. 

Figure 4. Burned area maps (in white) of the study area derived after applying the OBIA 

classification model. The forest service perimeters are displayed in black. 

 

Initially, accuracy assessment was performed for the 1989 burned area. The descriptive statistics 

derived from the error matrix are presented in Table 2. The developed object-based image analysis 

procedure successfully mapped the burned area achieving an overall accuracy (OA) of 95.33%. The 

omission (Oe) and commission (Ce) errors were quite low (4.81% and 3.66%, respectively), with  

only three pixels being misclassified as unburned out of the 82 predicted as burned. Regarding the 

effectiveness of the model when applied to the TM and OLI images, high overall accuracies were also 

achieved for the fires of 1984 and 2013. In the fire of 1984 the number of misclassified pixels was 

higher overall when compared with the other two events, resulting in higher omission error (8.00%). 

This can be attributed to the lower spatial resolution of the MSS image used for classifying the burned 

area. High omission error (6.01%) was also observed in the burned area of 2013, where it seems that 

part of the predicted as unburned area was actually affected by the fire. In all classifications, omissions 

of the burned area are mainly caused by slightly burned, sparsely vegetated patches that were not 

mapped by the model. Still, the observed errors were low in all study areas and confusion between 

burned, shaded, and urban areas was successfully minimized. 

postpre NBRNBRdNBR 

postpre NDVINDVIdNDVI 
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Table 2. Accuracy assessment results for the classifications of the burned areas. Overall 

accuracy (OA), Omission (Oe), and Commission (Ce) errors are estimated based on the 

error matrix. The estimated size of the burned areas that were classified by the object-based 

image analysis is also presented. 

Classified 
Reference 

OA (%) Oe (%) Ce (%) Area (ha) 
Burned Unburned 

1984       

Burned  57 4 94.00 8.00 6.56 1214 

Unburned 5 84     

Total 62 88     

1989       

Burned 79 3 95.33 4.81 3.66 8558 

Unburned 4 64     

Total 83 67     

2013       

Burned 62 1 96.67 6.01 1.59 887 

Unburned 4 83     

Total 66 84     

In addition to the standard statistics of the error matrix, the quantity and allocation disagreement 

components were derived for each case. These are an additional measure of agreement between  

two maps and quantify the differences in terms of the number and spatial mismatch of the pixels  

of a given category [58]. These components are displayed in Figure 5 and are expressed as the 

disagreement proportions for both burned and unburned classes. The overall accuracy or agreement 

proportion can be derived if the total disagreement proportion is subtracted from 1. The highest 

disagreement is estimated for the 1984 map (6%) while a 5% and 3% disagreement are estimated for 

the 1989 and 2013 maps, respectively. The quantity difference is equal to only 1% for the 1984  

and 1989 maps, which accounts for less than 20% of the overall disagreement. For the 2013 map, we 

observe that quantity difference is slightly higher (2%) accounting for more than 50% of the total error, 

however these figures are still quite low. These results exhibit that the number of pixels predicted for 

each class do not differ substantially from the number of reference pixels. Even if the quantity 

disagreement was zero, meaning that the number of predicted and observed changes was equal, 

disagreement would still occur due to the assignment of pixels in the wrong class by the classifier. 

Consequently, these measures seem to provide a straightforward and more comprehensive way to 

summarize the error matrix and explain the source of error. 

The combined use of spectral and contextual information in this GEOBIA approach significantly 

reduced errors related to the confusion of burned areas with other land cover classes. Additionally,  

the annoying ―salt-and-pepper‖ effect appearing in pixel-based classifications was avoided. The 

advantages of applying fuzzy classification to image objects for mapping burned areas with Landsat 

imagery has been discussed in detail in the work of Mitri and Gitas [37]. In their work, a comparison 

between object and pixel-based classification results revealed also that the misclassified area in the 

object approach was considerably smaller. 
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Figure 5. Quantity and allocation disagreement components estimated for each classification. 

The components are expressed as proportions of burned and unburned classes. 

 

However, in order to accomplish this high classification performance, extraction of homogeneous 

segments was required. This is not always an easy task as the spatial resolution of the data and the 

topography of the study area can limit the extraction of highly homogeneous segments. Object 

delineation and segmentation procedures are facilitated in a 1-m resolution image, but this is not the  

case at 30 m or more. We should not neglect the fact that the specific benefits of GEOBIA were 

primarily emphasized in applications with very high-resolution data, before object-based procedures  

were applied to Landsat or other medium and coarse resolution data [41]. In this work the relatively 

homogeneous distribution of the burned areas assisted the segmentation and accordingly the 

classification performance, which has been also reported in a similar study [45]. 

It is worth mentioning that the features selected for classifying the burned areas involved only the 

mean and ratio values of the spectral bands of the single images. No additional image transformation, 

such as vegetation indices or image differencing, were needed to achieve these high accuracies  

overall. This does not mean, of course, that additional information would not further assist the analysis. 

Nonetheless, this indicates that the developed model can provide reliable results by integrating spatial 

and basic spectral information through a semi-automated procedure. Moreover, the process of applying 

the model to the other Landsat images did not require substantial tuning, thus, extended series of 

images could be processed with minor complexity for creating time series of burned areas maps. 

The current acquisition plan of Landsat-8 ensures now that almost two images per month (16-day 

revisit) are available over a certain location, thus, assisting the selection of high-quality images to be 

used for rapid post-fire assessment on an operational basis. Obviously, in Mediterranean sites selection 

of the most suitable images is also favored by the availability of more cloud-free images, as opposed to 

higher latitude areas for example. Despite spatial and temporal discontinuities existing in the Landsat 

archive due to technology limitations and sensor failures, the Landsat time series consist, nowadays, 

the largest pool of medium resolution data for reconstructing the fire history of an area. 

5. Conclusions 

The main conclusion drawn from this work is that the developed object-based approach is capable 

of producing burned area maps of very high accuracy independently of the type of Landsat image 
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employed, and, therefore, has the potential to be used for the recent (40-year) fire history 

reconstruction of an area at the local/regional/national level. 

More specifically, the developed OBIA model produced burned area maps of very high accuracy 

(over 94%) when it was tested on MSS, TM, and OLI images of the Mediterranean island of Thasos.  

It should be noted that supplementary measures of agreement between the produced maps and the 

reference data revealed ―spatial misplacement‖ as the main source of the classification error estimated 

by the error matrix. This allocation disagreement occurs since the classifier predicts burned or 

unburned areas in wrong locations in the maps, and these predictions are then expressed as omission 

and commission errors. In addition, the proposed OBIA approach was proven efficient in minimizing 

the confusion between the burned areas and other land cover classes. 

The proposed semi-automated approach which makes use of original spectral information and 

simple ratios found in the bands of all three sensors used in this study, proved to be easily transferable 

between MSS, TM, and OLI, without requiring any substantial adjustments to the spatial and spectral 

characteristics of the images. This is one of the advantages of the proposed approach when compared 

to multi-step approaches found in similar studies. The use of a complete time-series of Landsat images 

of an area with similar characteristics will be the next logical step in order to examine the applicability 

of the proposed approach as an operational tool for fire history reconstruction in the Mediterranean. 
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