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Abstract: Quantitative, spatially explicit estimates of canopy nitrogen are essential for 

understanding the structure and function of natural and managed ecosystems. Methods for 

extracting nitrogen estimates via hyperspectral remote sensing have been an active area of 

research. Much of this research has been conducted either in the laboratory, or in relatively 

uniform canopies such as crops. Efforts to assess the feasibility of the use of hyperspectral 

analysis in heterogeneous canopies with diverse plant species and canopy structures have 

been less extensive. In this study, we use in situ and aircraft hyperspectral data to assess 

several empirical methods for extracting canopy nitrogen from a tallgrass prairie with 

varying fire and grazing treatments. The remote sensing data were collected four times 

between May and September in 2011, and were then coupled with the field-measured leaf 

nitrogen levels for empirical modeling of canopy nitrogen content based on first 

derivatives, continuum-removed reflectance and ratio-based indices in the 562–600 nm 

range. Results indicated that the best-performing model type varied between in situ and 

aircraft data in different months. However, models from the pooled samples over the 

growing season with acceptable accuracy suggested that these methods are robust with respect 

to canopy heterogeneity across spatial and temporal scales. 
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1. Introduction 

Research efforts into grassland ecosystems are substantial [1–4], given that grasslands are the 

potential vegetation covering approximately 36% of the earth’s surface [5], and one of the largest 

vegetative provinces in North America [6]. Along with fire and climate, herbivore grazing plays a 

central role in altering the structure and function of grassland ecosystems [7–9]. Grassland 

heterogeneity is a major outcome of fire and grazing activities, which in turn affects future forage 

pattern of grazers. This interplay between grassland heterogeneity and grazing pattern is of great 

interest [10,11] due to its significant influences on grassland processes through nutrient redistribution 

and cycling. Quantitative estimates of canopy biochemical properties are essential for understanding 

the forage quality distribution and heterogeneity in grassland ecosystems. Among the more important 

of these biochemical properties is foliar nitrogen content. Nitrogen (N) is an indispensable element in 

the composition of amino and nucleic acids in all living organisms and an often limiting nutrient in 

natural ecosystems including grasslands [12]. N cycling is a key biogeochemical flux through the earth 

system, where vegetation is involved in uptake, storage and exchange with other components of the 

system. Understanding the concentration and distribution of N within vegetative canopies is therefore 

important for addressing a wide variety of applied and systemic questions in biospheric science. 

There is widespread interest in developing methods to estimate the distribution of foliar quality of 

vegetation canopies using remote sensing [13,14]. Traditional methods for measuring nitrogen in 

vegetative canopies based on laboratory chemical analysis of field-collected foliar samples are 

complex and expensive. This is especially true when a large number of samples are needed to adequately 

characterize N distribution over a relatively large area. To address such questions using traditional 

methods, samples typically consisting of a few grams of canopy material must be collected from point 

sites distributed throughout the area of interest. Each individual sample represents only a few square 

centimeters of the canopy, thus some sort of spatial interpolation/extrapolation scheme must be used to 

estimate values between the point samples if nitrogen is to be mapped over an extensive area. 

Interpolation schemes can themselves be a significant source of error. 

In general, remote sensing based methods for retrieving canopy nitrogen have used high spectral 

resolution (hyperspectral) reflectance spectra collected from leaf or canopy surfaces [13,15–18]. 

Remote sensing of canopy nitrogen is complicated by the interaction of light in the VNIR/SWIR  

(400–2500 nm) spectral region with nitrogen in foliar tissues. Nitrogen in foliar tissues directly affects 

the reflectance spectrum resulting from absorption features due to molecular nitrogen in these 

reflectance spectra [19]. However, the relevant spectral regions for direct analysis of canopy N are  

in the SWIR spectral region, and are thus not accessible to spectrometers or imaging system which lack 

sensitivity in this region. Other commonly used methods for retrieving estimates of N from vegetation 

canopies depend on indirect estimates that exploit the fact that foliar nitrogen is concentrated in plant 

chloroplasts [20,21]. Chlorophyll absorption bands are very prominent in the visible region of the 

spectrum, and are readily accessible to current remote sensing detectors. The efficacy of using the 
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indirect methods in remote sensing studies for estimating nitrogen concentration via the use of chlorophyll 

absorption features is now well known and widely used [22–26]. 

A main challenge of retrieving canopy-level N using remote sensing is that the structure and 

composition of vegetation canopies is complex, affecting the reflectance of the canopy and therefore 

the signal received by the sensor. Even relatively homogeneous canopies such as crops are structurally 

complex mixtures of living and senescent plant tissues, stems and other components. These diverse 

materials, which in sparse canopies may also include the soil background, are integrated within the 

field of view of the remote sensor, producing a mixture of spectral elements in the received signal.  

In heterogeneous canopies (e.g., grasslands) with a diverse mixture of species and growth forms,  

the signal received at-sensor can be an even more complex mixture spectral responses from diverse 

reflective materials [13,27]. 

Available methods for normalizing spectral signals to minimize the effects of canopy heterogeneity 

have mainly concentrated on removing background effects in order to ―isolate‖ the biochemical signal 

of interest. These methods include: (1) use of the first derivative of the spectral reflectance curve and 

(2) continuum removal [28–30]. The first derivative of reflectance characterizes the changes of the original 

reflectance by which the background effects are countervailed [31]. Continuum removal provides a 

common baseline that allows the spectral features to be standardized and compared [21,32]. Additionally, 

hyperspectral vegetation indices (VIs) integrating spectral values at different wavelengths can normalize 

spectral features [33–35] and are thus potentially applicable to the canopy heterogeneity problem.  

The standardized difference between two spectral values is the most commonly used form of VI, due to 

its inherent scaling of the spectral signals and reduced sensitivity to background variations [27,36]. 

The results we present here are part of a larger project aimed at understanding the relationship 

between canopy nutrient quality and grazer behavior in tallgrass prairie. The interaction between 

distribution of foliar nutrients (e.g., N) in a grassland canopy and the forage pattern of ungulate grazers 

is of special interest since these grazing activities alter the structure and composition of vegetation  

and therefore influence vegetation quality [37,38]. Grazed sites often yield higher nutritional value 

with greater plant species diversity than do ungrazed sites [39–41] due to the capability of plants to 

overcompensate with regrowth for low levels of herbivory [42]. Vegetation quality is one of the major 

factors that influence grazing strategies of herbivores, and the sites with higher nutrient concentration 

are likely to be more frequently used by grazers [1,3]. Canopy N is a key index of grassland forage 

quality, and detailed information on its spatial and temporal distribution derived from remote sensing 

is essential to the goals of this research. 

The problem of remote sensing nitrogen in tallgrass prairie canopies is conceptually similar to other 

canopies, although in practice it is complicated by the heterogeneity problem discussed above. Among 

grassland canopies, tallgrass prairie is especially heterogeneous, consisting of a diverse, intermingled 

mix of herbaceous and woody species. Several interacting biophysical factors, including fire, topography, 

and grazing determine this complex spatial distribution of canopy properties [38,43]. Tallgrass prairie 

canopies can have more than twenty species present in a single square meter, each with different 

growth forms and leaf structure, thus producing a closely intermingled mixture of species. In addition, 

these intermingled species often have different photosynthetic pathways. Most of the graminoids 

(grasses and sedges) are C4 plants, they photosynthesize via a pathway in which the first intermediate 

product is a 4-carbon molecule. The majority of forbs (flowering species) are C3 photosynthesizers, 
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whose first intermediate product is a 3-carbon molecule. In general, C4 plants tolerate temperature 

extremes better than C3s [44]. All these factors influence the spectral response of the canopy, making 

the aggregate reflectance signal from even a small area of the canopy a complicated mixture of 

individual components, and potentially making the retrieval of biophysical information from tallgrass 

prairie much more difficult. Our objective is to develop and evaluate empirical models using 

hyperspectral remote sensing data that can be used for estimating and mapping canopy nitrogen in 

tallgrass prairie canopies. 

2. Study Site 

This research was conducted at the Konza Prairie Biological Station (KPBS), near Manhattan, KS, 

USA (39°05′N, 96°35′W, Figure 1). KPBS is located in the Flint Hills, the largest extant area of 

tallgrass prairie in North America. The site covers an area of 34.87 km
2
, and is characterized by  

a continental climate with warm, wet springs, hot summers and dry, cold winters. Approximately 75% 

of the annual precipitation (~826 mm) is concentrated during the period from April to September, 

supporting vegetation growth in the prairie. The vegetation in KPBS is characterized by C4 perennial 

grasses interspersed with C3 forbs and a few C3 grasses, resulting in great species diversity. Grasses 

compose 80%–90% of total vegetation cover; dominant grass species include Andropogon gerardii, 

Sorghastrum nutans, Bouteloua gracilis, Panicum virgatum, and Schizachyrium scoparium.  

Forbs constitute a minor component of the canopy but account for much of the species diversity. 

Common forbs include Aster ericoides, Psoralea tenuiflora, Solidago missouriensis, Soldiago rigida,  

Liaris aspera, Vernonia baldwinii and Ambrosia psilostachya [38,45]. 

Figure 1. Study sites at Konza Prairie Biological Station (KPBS). KPBS include more than 

50 watersheds with different fire frequencies. Samples for this study were collected in 

three watersheds, N1B, N4D and N20B, with fire frequencies of one year, four years and 

20 years respectively. The total area of the three watersheds is ~3.40 km
2
. 
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A long term watershed-level experiment at KPBS is designed to investigate the effects of fire and 

grazing on the structure and function of the tallgrass prairie vegetative community. The site is divided 

into more than 50 watersheds, each with varying combinations of fire return frequencies (1,2,4,10, and 

20 years) and one of three grazing treatments (grazed by American bison (Bison bison), grazed by 

domesticated cattle (Bos taurus), and ungrazed). Since this research was conducted as part of a larger 

study of grazing behavior in Bison bison, we selected three watersheds (with a total area of ~3.40 km
2
) 

in the bison grazing area for our analysis (see Figure 1 for locations of selected watersheds). In situ 

hyperspectral data and foliar samples were collected in three watersheds (N1B, N4D and N20B) with 

fire frequencies of one year, four years and 20 years, respectively. Variations in fire frequency influence 

the proportion of green vegetation, senescent materials, stems, and litter in the canopy, which in turn 

influences spatial patterns of grazing by bison [46–48]. All of these fire-related factors contribute to  

a complex, spatially variable canopy. Thus, our selected combination of fire and grazing treatments 

yields a study area with widely varying species composition and canopy density, resulting in a very 

heterogeneous canopy. 

3. Data and Methods 

3.1. Data Collection  

Data were collected on four dates spanning the 2011 growing season. Each data collection effort 

consisted of a field component (Table 1), coordinated with an aircraft overflight. Field data were 

collected from fifteen 10 m × 10 m plots randomly distributed in each of the three designated 

watersheds, giving a total of 45 sampling sites. Random selection of sites ensured that the samples we 

collected were representative of species composition over the entire watershed. Technical problems 

limited the usable data from the September field survey to only 27 sites. 

Table 1. Datasets of in situ measurements. 

Dates # of Samples Data Collected 

12–13 May 45 Spectral, N samples 

29 June–1 July 45 Spectral, N samples, Ceptometry 

1–2 August 45 Spectral, N samples, Ceptometry 

11 September 27 Spectral, N samples 

In each plot, subsamples consisting of six randomly selected points were distributed around the 

center of the plot (Figure 2). Two types of nondestructive data sampling were performed at each site, 

(1) spectral reflectance; and (2) PAR (above and below canopy). In addition, a destructive sample  

of plant tissue was collected for laboratory analysis of nitrogen content. Hyperspectral reflectance data 

were taken for each subplot using an Analytical Spectral Devices (ASD) FieldSpec Pro portable 

spectrometer (Analytical Spectral Devices, Boulder, CO, USA). Spectra were collected from a height 

of 1.5 m above the target using a 25° field of view optic, yielding a ~0.4 m
2
 circular field of view,  

with a diameter of ~0.7 m on the target. The acquired reflected spectra range from 350 to 2500 nm,  

with spectral resolution ranging from ~3 nm at the 700 nm wavelength to 10–12 nm for wavelengths  

of 1050–2500 nm. Individual spectra were converted to reflectance by normalization to a Spectralon 
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reflectance standard. For each plot, a single spectrum was calculated by averaging the reflectance 

values of each wavelength from the spectra collected from each subplot. On two of the four sampling 

dates (29 June–1 July and 1–2 August 2011), PAR samples were collected from the same IFOV as the 

spectral data using an Accupar LP-80 line ceptometer. Geographic coordinates for the center of each 

plot were collected using a portable GPS receiver. 

Figure 2. Plot design. Fifteen 10 m × 10 m plots with six subplots spirally arranged around 

the plot center were set up for data collection in each of the three watersheds. Hyperspectral 

measurements for each subplot were taken from a 0.4 m
2
 circular field of view with a 

diameter of 0.7 m. Five foliar samples were clipped in each field of view for chemical 

analysis of leaf nitrogen concentration. 

 

Immediately following the non-destructive sampling, five foliar samples from each of the six subplots, 

representative of the plant species (grasses and forbs) in each subplot, were clipped from the same 

IFOV as the spectral and PAR data. In the laboratory, these samples were mixed and ground after 

drying at 60 °C for 48 h. Dried ground samples from three randomly selected subplots of the six, 

sufficient to characterize the N status in the whole plot, were then used for foliar nitrogen concentration 

determination by laboratory elemental analysis using a Costech ECS 4010 (Costech Analytical 

Technologies Inc., Valencia, CA, USA). Foliar nitrogen content for each plot was determined by 

averaging the values from the three samples. 

Hyperspectral imagery were collected concurrently with each field sampling session using an  

AISA Eagle camera mounted on a Piper Warrior aircraft operated by the Center for Advanced Land 

Management Information Technology (CALMIT) of the University of Nebraska-Lincoln. On each 

date, 4–5 lines were flown, covering the whole area of KPBS and including the three watersheds used 

in this analysis. The aircraft was flown at an altitude yielding a spatial resolution of 2 m × 2 m. 

Spectral resolution varied between ~3 nm for the May–August flights, and ~10 nm for the September 

flight. The camera was configured with a spectral range from 435 to 950 nm (note that the ASIA Eagle 

is not sensitive beyond 970 nm). 
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3.2. Data Analysis 

3.2.1. Canopy Nitrogen Calculation 

Since our interest was in estimating canopy nitrogen content, converting leaf nitrogen (Nleaf) samples 

to canopy scale was a key step in data analysis. Nitrogen content can be scaled from the leaf to the 

canopy level using the canopy-integrated method [49], which relates canopy nitrogen (Ncan) to Nleaf 

with respect to a leaf area index (LAI):  

can leafN N LAI   (1) 

LAI can be estimated from above and below canopy PAR measurements using:  

2cos ln below

above

PAR
LAI

PAR
    (2) 

where θ is the solar zenith angle. As earlier noted, direct ceptometric PAR measurements were not 

available for all of the data collection periods. In addition, PAR-method was limited in senescent 

canopies, which usually overestimated the green LAI. We therefore used an alternative method of 

calculating LAI, based on the Normalized Difference Vegetation Index (NDVI):  

3.7060.08 NDVILAI e    (3) 

where NDVI was calculated from the ASD reflectance values by integrating the wavelengths of  

780–800 nm for broadband red reflectance, and 670–678 nm for the broadband NIR. This empirical 

relationship was validated using data of the two dates for which both ceptometry and spectral reflectance 

were available, and was found to be reasonably accurate (R* = 0.85, based on jackknife analysis with 

sample size = 27) [50]. 

3.2.2. Spectral Reflectance Indices Calculation—Field-Collected Spectra 

Preparation of the field measured spectral reflectance data for analysis consisted of numerical 

differentiation of the spectral curves, continuum removal, and calculation of relevant vegetation 

indices. Both the first derivative calculation and continuum removal are sensitive to random noise in 

the spectral signal, so the raw reflectance spectra were smoothed prior to further analysis using a  

three-point moving average filter. Because the actual spectral resolution of the spectrometer is ~3 nm, 

we resampled the field spectra by averaging reflectance at every three nanometer increments into one 

value, similar to the way in which the aircraft sensor sampled spectra. The first derivative of reflectance, 

a transformation which has been shown to be useful for extracting biophysical information from 

spectral curves [28,31], was calculated in the spectral region of 562–600 nm. This spectral region  

has a subtle absorption feature (Figure 3a) sensitive to leaf chlorophyll concentration [51,52], and  

leaf chlorophyll concentration has been demonstrated to be linked with foliar nitrogen more or  

less [20,21,53,54]. As earlier noted, we did not use the nitrogen absorption feature centered at 1510 nm 

because the spectral range of the aircraft-mounted sensor (435–950 nm) does not include the SWIR 

spectral region. The ASD spectrometer does include this region, but we elected not to use it in order to 

keep the methods applied to both the field and aircraft data sets as parallel as possible. Derivatives 

were calculated using:  
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where Di is the first derivative at the wavelength i; SRi is the smoothed reflectance value at the 

wavelength i, and λi is the value of the wavelength i. 

Figure 3. (a) The absorption feature related to leaf chlorophyll concentration in the 

spectral region of 562–600 nm. (b) Continuum removal applied to the absorption feature. 

  

Continuum removal standardizes the canopy spectral signals using a linear hull (continuum line)  

to fit over the top of a given absorption feature in the spectrum [29,30]. The continuum removed 

spectral value at a wavelength is calculated as the ratio of the value in the reflectance spectrum to the 

corresponding value in the continuum removal line at the given wavelength (Figure 3b). We used the 

same absorption feature for continuum removal (562–600 nm) that we used for the first derivative 

calculation, for the same reasons. The continuum removed value at each wavelength was calculated as:  

i
i

i

SR
CR

SL
  (5) 

where CRi is the continuum removed spectral value at the wavelength i; SRi is the smoothed reflectance 

at the wavelength i; and SLi is the value at the wavelength i in the continuum line fitted over the absorption 

spectral feature. 

The standardized difference vegetation index (SDVI) was developed for various derivative and 

continuum removed spectral features using:  

i j

i

i j

S S
SDVI

S S





 (6) 

where Si is the spectral feature at the wavelength i. SDVI derives from the theoretical underpinning  

of ratio-based vegetation indices such as NDVI [55] that scales the difference in two spectral features 

which behavior diversely. 
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3.2.3. Spectral Reflectance and Indices Calculation—Aircraft-Collected Spectra 

Aerial imagery was processed using the ENvironment for Visualizing Images (ENVI) software 

(Exelis Visual Information Solutions, Inc., Boulder, CO, USA). Prior to analysis, the FLAASH model 

implemented within ENVI was used for atmospheric correction. For each of the four FLAASH runs, 

the atmospheric model was set to midlatitude summer and the aerosol model to rural. Visibility for 

each day was estimated using meteorological optical range (MOR) data from the Topeka, KS, National 

Weather Service station (located approximately 80 km from the study site). Visibilities were 16 km for 

the May, July and August acquisitions, and 14 km for the September acquisition. Since our analysis 

was restricted only to grassland canopies, supervised Maximum Likelihood classification was used to 

classify land cover on the four images captured during May–September into four classes, including 

gallery forests (i.e., wooded areas along drainages), roads, sparse grasses and dense grasses. The 

gallery forest areas and the roads were masked from the imagery and not included in subsequent 

analysis. Since the gallery forests were expanding during the growing seasons, the forest mask varied 

over time. A union of masks for the four data collection sessions was built and applied to make sure 

that the mask looked the same and all forested pixels were removed. 

Plots for in situ data collection were located on aerial imagery using the plot center coordinates 

collected in the field. Spectral data from airborne imagery for each plot were obtained by calculating 

the mean of spectral reflectance data within a window of 5 pixel × 5 pixel (10 m × 10 m) centered 

around the plot center on the imagery. These averaged values were then subjected to the same analysis 

(smoothing, continuum removal, numerical differentiation, index calculation) as the field data. The 

spectral region used was 562–600 nm, as in the field data analysis. 

4. Results 

4.1. Field Data—Descriptive Statistics 

Descriptive statistics of in situ Nleaf, LAI and Ncan are summarized in Table 2. Ncan was determined 

by the product of measured Nleaf and LAI, where LAI was derived from NDVI based upon a validated 

empirical exponential relationship between LAI and NDVI (Formula (3) in Section 3.2.1). The use  

of empirical LAI-NDVI relationship should be prudent due to NDVI saturation at high LAI values  

(LAI > 2.5), but possibly appropriate in this study given the low ranges of LAI overall (all LAI  

values < 2.5). Relatively high ranges of Nleaf appeared in May, and of LAI appeared in July. Average 

Ncan was higher in May and July than in other months. Various fire intensity influenced nitrogen 

spatial distribution in different watersheds. Watershed N1B with high fire frequency of one year had 

higher levels of Ncan than the other two watersheds N4D and N20B throughout the growing seasons 

from May–September. 
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Table 2. Descriptive statistics of in situ Nleaf, LAI and Ncan. 

Sample 

Sites 

Sample 

Size 

Leaf Nitrogen (g∙m
−2

) LAI Canopy Nitrogen (g∙m
−2

) 

Min. Max. Mean Min. Max. Mean Min. Max. Mean 

May 

N1B 15 2.04 2.96 2.38 0.48 1.64 1.06 1.18 4.18 2.51 

N4D 15 1.44 2.10 1.83 0.64 1.67 1.20 1.21 3.06 2.19 

N20B 15 1.83 2.41 2.03 0.29 1.41 0.75 0.64 3.06 1.53 

July 

N1B 15 1.36 2.15 1.58 0.43 2.35 1.41 0.62 3.48 2.21 

N4D 15 1.22 1.80 1.42 0.49 1.74 1.22 0.77 2.57 1.73 

N20B 15 1.22 1.82 1.52 0.46 1.63 1.13 0.63 2.71 1.74 

August 

N1B 15 1.20 1.89 1.50 0.33 1.87 1.01 0.45 2.80 1.50 

N4D 15 1.08 1.53 1.29 0.51 1.50 0.96 0.68 1.81 1.21 

N20B 15 1.21 1.65 1.36 0.48 1.27 0.84 0.71 1.82 1.14 

September 

N1B 12 0.92 2.05 1.27 0.34 0.97 0.55 0.36 1.17 0.68 

N4D 8 0.90 1.61 1.24 0.39 0.76 0.52 0.47 1.09 0.64 

N20B 7 0.89 1.50 1.14 0.40 0.72 0.53 0.36 1.07 0.62 

Analysis of correlations (Pearson’s r) between Ncan and the various spectral indices was used to 

evaluate the strength of relationships between canopy N and spectral reflectance across the 562–600 nm 

absorption feature for each watershed individually, and for the three watersheds together. For each 

pooled dataset of three watersheds, thirty samples were randomly selected from the total samples of 45 

in the May–August data (18 from the total 27 in September data) for correlation analysis. For the first 

derivative data (Figure 4), significant wavelengths related to nitrogen content included the regions 

from 563–566 nm and 593–596 nm, where the absolute r-values were greater than 0.75 across all 

watersheds and all dates. A common region with relatively low absolute r-values was at wavelengths 

of 569–575 nm centered at 572 nm, corresponding to the region with maximum absolute values of the 

first derivative data, where the original reflectance values decreased fastest. Absolute r-values for the 

pooled datasets (May–September) were greater than 0.86 (Figure 4e), which indicates a generally 

strong correlation between foliar N and the first derivative data in the given absorption spectral feature 

across various spatial and temporal scales. 

For the continuum removed spectra (Figure 5), absolute r-values at wavelengths of 569–593 nm in 

May–August had a range from 0.83 to 0.89 (Figure 5a–c). Spectral region of 578–593 nm in 

September with the absolute r of 0.72–0.76 (Figure 5d), was strongly related to Ncan across the three 

watersheds. Correlations between the nitrogen and the spectral dataset incorporating data for the three 

watersheds throughout the entire growing season were relatively strong in the region of 569–584 nm 

with the absolute values of r greater than 0.90 (Figure 5e). 

Based on the results of the correlation analyses, absolute values of r in the region of 562–569 nm 

start with low ranges and vary dramatically. This can be accounted for the continuum removal line that 

presses close to the reflectance spectral curve at the left end of the absorption feature, resulting in 

highly ―compressed‖ continuum removed values in this region (Figure 3b). It was better to exclude this 
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region in analysis as the highly ―compressed‖ continuum removed values reveal little useful spectral 

variation information. We therefore calculated the SDVI using the continuum removed spectral features 

at the wavelengths of 572 nm and 581 nm—CR572 and CR581. The wavelength at 572 nm is in the 

starting portion of the ―normal‖ continuum removed spectral region; 581 nm is around the middle 

point between 562 and 600 nm, which is the nadir in the continuum removed absorption trough. 

Further correlation analysis supports the use of SVDI formed at these wavelengths as an indicator of 

canopy N, with absolute r-values between Ncan and the SDVI varying from 0.78 to 0.96 (Table 3). 

Figure 4. Correlations between canopy nitrogen and the first derivative spectral data at  

the wavelengths of 562–600 nm for three watersheds N1B, N4D and N20B respectively 

and as a whole in (a) May, (b) July, (c) August, (d) September, and for (e) four months 

respectively and the whole growing seasons in May–September across various watersheds. 
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Figure 5. Correlations between canopy nitrogen and the continuum removed spectra at  

the wavelengths of 562–600 nm for three watersheds N1B, N4D and N20B respectively 

and as a whole in (a) May, (b) July, (c) August, (d) September, and for (e) four months 

respectively and the whole growing seasons in May–September across various watersheds. 
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Table 3. Correlations between canopy nitrogen Ncan and the SDVI for the field-collected data. 

Months Sites Sample Size r 

May 

N1B 15 0.93 

N4D 15 0.87 

N20B 15 0.96 

N1B, N4D, N20B 30 0.88 

June/July 

N1B 15 0.87 

N4D 15 0.93 

N20B 15 0.94 

N1B, N4D, N20B 30 0.87 

August 

N1B 15 0.93 

N4D 15 0.93 

N20B 15 0.96 

N1B, N4D, N20B 30 0.83 

September 

N1B 12 0.85 

N4D 8 0.78 

N20B 7 0.82 

N1B, N4D, N20B 18 0.83 

May–September N1B, N4D, N20B 108 0.88 

4.2. Canopy Nitrogen Modeling From in situ Data 

Thirty samples were randomly selected from the May–August data (18 from the September data) 

for model development. The remaining 15 samples (nine from September) were reserved for validation. 

Descriptive statistics of the in situ datasets of canopy nitrogen contents for modeling and validation 

(Table 4) demonstrate that the ranges of the modeling datasets were in general slightly larger than  

that of the corresponding validation datasets, indicating that the modeling datasets cover the full range 

of N contents well. Similar values of the mean and standard deviation (SD) between the modeling and 

validation datasets suggest similar central tendencies and dispersions between the two types of datasets. 

This verifies a reasonable selection of modeling and validation values. 

Table 4. Descriptive statistics of the in situ Ncan datasets for modeling and validation. 

Months 

Modeling Validation 

Sample 

Size 

Min. Max. Mean SD Sample 

Size 

Min. Max. Mean SD 

(g∙m
−2

) (g∙m
−2

) 

May 30 0.64 4.18 2.11 0.89 15 0.73 3.54 2.01 0.83 

June/July 30 0.62 3.48 1.90 0.73 15 0.70 3.30 1.88 0.75 

August 30 0.45 2.80 1.31 0.50 15 0.46 2.22 1.24 0.45 

September 18 0.36 1.17 0.68 0.25 9 0.36 1.13 0.60 0.21 

May-September 108 0.36 4.18 1.59 0.84 54 0.36 3.54 1.52 0.81 

Monthly models of canopy nitrogen retrieval using hyperspectral data for May, July, August and 

September, and a general model for the whole growing season were derived using regression analysis. 

All of possible wavelength combinations were examined using the first derivative and continuum 

removed spectra, subject to restrictions imposed by the modeling method. Chief among these choices 
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was to limit the number of independent variables. Although a model may fit the data better when 

incorporating more independent variables, an excessive number may result in an overfit model that 

will not perform well in validation. For our data, the need to limit model inputs is even more 

pronounced since the independent variables are spectral features concentrated in a narrow region, 

which might be strongly correlated with each other and thus might not be all statistically significant in 

the model. We therefore used combinations of no more than three independent variables for each model. 

In addition to the multivariate models based on individual spectral bands, other models were derived 

using only the SDVI. All of the regression models were validated by comparing the measured nitrogen 

from the samples reserved for validation with the values estimated using the remote sensing methods. 

The best-performing models from the regression analysis are summarized in Table 5. Note that 

while the form of the regression models remains the same, the empirical coefficients of each model 

changed in each month of data collection. This is hardly surprising, given the empirical nature of the 

modeling and the continual changes in the canopy over the growing seasons.  

Table 5. Regression models for canopy nitrogen recovery using field-measured derivative (D), 

continuum removed reflectance (CR) spectra and SDVI. 

Month 

Modeling Validation 

Sample 

Size 
Formula R

2
 

Adj 

R
2
 

Sample 

Size 

RMSE 

(g∙m
−2

) 
R

2
 

  
Ncan = 2.24−27510 × D566 + 35220 × D578 − 17900 

× D599 
0.86 0.84  0.50 0.74 

May 30 Ncan = 46.64 − 442.52 × CR581 + 395.33 × CR584 0.81 0.80 15 0.29 0.94 

  Ncan = 197.56 × SDVI 0.77 0.76  0.21 0.96 

  
Ncan = 2.22 − 8171 × D563 + 18330 × D584 − 18070 

× D593 
0.85 0.84  0.35 0.79 

June/July 30 Ncan = 21.22 − 230.92 × CR581 + 209.85 × CR587 0.85 0.84 15 0.30 0.86 

  Ncan = 162.16 × SDVI 0.74 0.73  0.24 0.90 

  
Ncan = 1.55 − 24840 × D569 + 24150 × D572 − 5622 

× D599 
0.86 0.85  0.23 0.74 

August 30 
Ncan = 115.57 − 155.35 × CR575 + 325.07 × CR590  

− 284.87 × CR593 
0.84 0.82 15 0.21 0.78 

  Ncan = 147.57 × SDVI 0.67 0.65  0.16 0.86 

  
Ncan = 1.40 − 8152 × D563 + 11096 × D569 − 8887 × 

D578 
0.77 0.72  0.22 0.37 

September 18 Ncan = 252.02 + 83.51 × CR566 − 335.41 × CR599 0.69 0.65 9 0.17 0.45 

  Ncan = 137.09 × SDVI 0.69 0.67  0.17 0.41 

  
Ncan = 1.71 − 13570 × D566 + 14160 × D575 − 7232 

× D590 
0.85 0.85  0.28 0.89 

May–

September 
108 Ncan = 38.44 − 311.08 × CR581 + 272.56 × CR584 0.86 0.85 54 0.24 0.92 

  Ncan = 169.73 × SDVI 0.77 0.77  0.25 0.92 
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The coefficient of determination (R
2
) was generally lower for the validation data than for the  

model-development data. Again, this is not unexpected. The similarity of the error metrics from  

the model development step and the validation step suggests that the models have little overfitting and 

should therefore be robust when applied to new data. In general, there was little difference between  

the two best multivariable band-based models and the univariate SDVI model. Model performances 

were also similar throughout most of the growing season, although there was a notable decrease  

in model performance in September. This result could be due to differences in canopy phenology.  

At the time of the September data collection the canopy was beginning to senesce, so the fraction of 

green material in the canopy was likely less than in the previous data collection periods. It could also 

be an artifact of the smaller sample size, which resulted in a validation set with samples size = 9. 

The results from pooling all the data (May–September) were similar to, and in some cases better 

than, the results from the individual months. This is a particularly important outcome, since it suggests 

that one model may be sufficient to predict Ncan across the entire growing season, eliminating the need 

to use multiple models depending on the growth state of the canopy. The larger sample size available 

for both model development and validation (the result of combining all of the measurements) might 

also explain some of the better validation results in the pooled sample. 

4.3. Canopy Nitrogen Retrieval from Airborne Imagery 

Results from the in situ spectrometry (Sections 4.1 and 4.2) suggest that SDVI calculated using 

continuum removed reflectance in the spectral region of 562–600 nm yielded the best model for 

retrieving Ncan. While the validation metrics for the SDVI model differed little from the multivariate 

models, the intrinsic parsimony of the SDVI model (because it is based on a single independent 

variable) strongly support its further use in Ncan retrieval models. However, we chose to analyze  

the data from the aerial imagery as we did the in situ data. Here, we tested all forms of retrieval model 

in order to confirm if SDVI still yielded the best prediction models when applied to a data set with 

different spatial and spectral resolution. We therefore repeated the analysis described in Section 4.2, 

using the atmospherically corrected reflectance data collected during the four aircraft overflights. 

Results of modeling and validation for nitrogen retrieval from airborne imagery (Table 6) showed 

that reasonably accurate Ncan estimation models can be determined from datasets of either the first 

derivative and continuum removed reflectance or the SDVI values. Feasible models for September 

suggested that the wider spectral bands (10 nm vs. 3 nm, see Section 3.1) were still adequate for 

nitrogen estimates. Despite variations in selection of wavelength combinations for optimal nitrogen 

modeling in different months, general nitrogen retrieval models could be developed for the growth 

seasons during May–August. 

The models developed from the first derivative and the continuum removed spectral data showed 

higher R
2
 values for regression modeling and lower ranges of RMSE for model validation than the 

SDVI model, indicating that multivariate models performed better for the canopy N estimates based on 

the aircraft data. As with the in situ data, there was little difference between the accuracy of each 

month’s model and the overall accuracy of the pooled (all-months) models. Again, this is a significant 

result, as it shows that Ncan can be extracted across the growing season using the same retrieval model, 

simplifying the processing of data collected at various times during the growing seasons. 



Remote Sens. 2014, 6 4445 

 

 

Table 6. Regression models for canopy nitrogen retrieval using derivative (D), continuum 

removed reflectance (CR) spectra and SDVI derived from aircraft image. 

Month 

Modeling Validation 

Sample 

Size 
Formula R

2
 Adj R

2
 

Sample 

Size 

RMSE 

(g∙m−2
) 

R
2
 

  
Ncan = 2.15 + 6267.42 × D567 − 4594.36 × D578  

− 5714.14 × D599 
0.84 0.82  0.23 0.85 

May 30 Ncan = 47.88 − 48.50 × CR583 0.87 0.86 15 0.21 0.86 

  Ncan = 113.47 × SDVI 0.84 0.83  0.24 0.82 

  Ncan = 2.45 − 6392 × D595 0.72 0.72  0.23 0.82 

June/July 30 Ncan = 53.37 − 54.67 × CR583 0.67 0.66 15 0.25 0.69 

  Ncan = 118.37 × SDVI 0.59 0.58  0.16 0.79 

  
Ncan = 0.67 − 4597.39 × D564 + 2819.05 × D578  

− 1013.86 × D597 
0.93 0.92  0.20 0.63 

August 30 Ncan = 55.58 − 56.50 × CR574 0.83 0.83 15 0.15 0.75 

  Ncan = − 0.48 + 109.11 × SDVI 0.76 0.75  0.18 0.74 

  Ncan = 1.01 − 2522 × D582 0.67 0.65  0.09 0.80 

September 18 Ncan = 72.75 × CR572 − 72.42 × CR582 0.59 0.56 9 0.19 0.44 

  Ncan = 0.33 + 141.62 × SDVI 0.58 0.56  0.19 0.45 

  Ncan = 1.40 − 2699 × D583 − 1094 × D592 0.81 0.80  0.22 0.86 

May–August 90 
Ncan = 42.90 − 46.72 × CR569 − 174.86 × CR585  

+ 178.43 × CR588 
0.84 0.83 45 0.24 0.84 

  Ncan = − 0.33 + 125.38 × SDVI 0.60 0.60  0.32 0.67 

4.4. Comparison of Results and Nitrogen Mapping using Aerial Imagery 

Even though the in situ data were resampled with similar band passes to the aerial imagery, 

differences in other physical mechanisms and measurement conditions between the two sensors 

possibly make it still difficult for the two sets of measurements to be interchangeable. Wavelength 

combinations and empirical model coefficients vary between optimal in situ models and the 

corresponding aerial imagery models. This is not unexpected given the intrinsic features of empirical 

methods. However, similar results of model performance and validation suggest that these methods are 

feasible and stable when applied to respective datasets of field spectra and aerial imagery. In other 

words, the field model is applicable to the field data, and the aircraft model to the aircraft data, but the 

two cannot be interchanged. 

Maps of Ncan for the entire study site were made using the best-performing equation among the 

pooled retrieval models. Because the pooled model developed from the first derivative of spectral 

reflectance at 583 and 592 nm had the lowest RMSE, we used it to create maps of Ncan for May–August 

(Figure 6a–c). The Ncan map for September was created using the first derivative at 582 nm due to  
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the different spectral resolution of aerial imagery in September (Figure 6d). These Ncan maps support 

the statistical comparison across various spatial and temporal scales (Table 2 in Section 4.1), and also 

provide more spatial detail and phenological characteristics.  

Figure 6. Maps of Ncan distribution in selected watersheds at KPBS in (a) May, (b) July, 

(c) August, and (d) September. White areas are where gallery forest pixels were masked 

prior to analysis. 

 

4.5. Assessment of N Relation to Fire, Vegetation Density and Topography 

The patterns in the Ncan maps were expected to be affected by fire frequency, vegetation density and 

topography over the study site. To evaluate these influences on Ncan distribution, Ncan estimations on 

each map were stratified into the low, medium and high levels by 3-quantiles, and then compared to 

the land cover type (sparse grasses vs. dense grasses, classified by supervised Maximum Likelihood in 

Section 3.2.3) and a digital elevation model (DEM, with spatial resolution of 2 m × 2 m) [56]. The effect 

of fire frequency can be seen in the Ncan stratifications between watersheds (Figure 7). Ncan values in 

watershed N1B with fire frequency of one year are generally higher than in the other two watersheds. 

This is especially noticeable in the May and September imagery, where the effects of canopy and 

treatment heterogeneity are most prominent. The July image shows relatively even distribution of Ncan, 

consistent with a period in which the canopy is more uniformly green and actively photosynthesizing.  
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Figure 7. Comparison between Ncan stratification and grass density in selected watersheds 

at KPBS in (a) May, (b) July, (c) August, and (d) September. Overlaps of high Ncan level 

and dense grasses are in the dark shade; low Ncan level and sparse grasses are in the light. 

 

The spatial relationships between Ncan, canopy density and topography observed in the three 

watersheds of our study (Figures 7 and 8) are fairly straightforward, similar to those observed throughout 

KPBS [57]. Values of Ncan coincide directly with canopy density. Canopy density, in turn, is closely 

related to topography through its effect on soil thickness and moisture. The densest canopies are found 

in flatter, low-lying areas, where the soil depth is greatest and soil moisture tends to be highest. 

Thinnest canopies occur on hill sides, where slope is greatest and the thin, rocky soil layer is unable to 

retain the moisture needed to support a denser canopy. Intermediately thick canopies occur mainly on 

hilltops, drainage divides, and other topographic highs, where slopes are low and soils depths are 

greater than on slope sides but less than in the bottom areas. This topographic effect on Ncan 
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distribution is most noticeable in May, but becomes less so as the canopies become more developed 

during the growing seasons. 

Figure 8. Comparison between Ncan stratification and (a) DEM in selected watersheds at 

KPBS in (b) May, (c) July, (d) August, and (e) September. Hillslopes are highlighted in the 

light shade, and flat lowlands are in the dark shade. Coincidence between Ncan distribution 

patterns and topographic features is most noticeable in May. 

 

5. Conclusions 

Our results show that canopy nitrogen can be estimated using empirical models based on hyperspectral 

remote sensing data collected from a tallgrass prairie canopy subjected to varying fire treatments and 

characterized by a heterogeneous mix of species and canopy structures. Spectra collected from both 

ground-based and aircraft-mounted spectroradiometers were used to develop empirical retrieval 

models. A simple model based on the SDVI was best for estimating Ncan from the ground-based data, 

whereas a multivariate regression model performed best using the aircraft data. However, the differences 

between the models were small, and in general models from both data types were comparably accurate.  

Comparing our results with similar studies recorded in the literature suggests that the performance 

metrics for our best empirical models were generally comparable to those of similar analyses conducted 

over other canopy types. In past efforts, remote estimation of canopy N content yielded the best results 

when applied to agricultural ecosystems of various types [35,58–60]. This is perhaps to be expected. 
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Although crop canopies are not simple monocultures they are more homogeneous than most natural 

vegetation canopies and therefore present a more uniform surface from which to extract biophysical 

information. Forest canopies, a natural surface but one typically characterized by a less diverse range 

of species actually visible to the sensor, also tended to provide slightly better results in remote analysis 

of nitrogen when compared to ours [61–63]. Among those studies done in grasslands or other more 

heterogeneous environments, our results were quite similar to those reported by Boegh et al. [64]—a 

study in which the problem of canopy heterogeneity was considered directly—and to those reported by 

Asner et al. [13], Kooistra et al. [65], and Mitchell et al. [66]. 

While our results agree with and support previous work on retrieving canopy biochemical 

concentrations via remote sensing, there are also findings of further relevance. Most importantly,  

our results show that empirical methods for N retrieval can be robust when applied to a canopy with 

both spatial and temporal heterogeneity. In this case, the spatial heterogeneity was introduced as part 

of the research protocol by including three experimental units (i.e., watersheds) whose differing burn 

treatments yield very different canopy conditions. In addition, all three of these watersheds studied 

here were subjected to grazing by large ungulates, further contributing to a diverse and complex 

canopy. For each month of data collection, the same empirical model was able to estimate Ncan in each 

watershed with comparable accuracy. This is a significant result since it shows that Ncan (and possibly 

other elements of stoichiometric interests) can be mapped across diverse canopies without the need for 

stratification and the use of multiple models. In addition, our results show that empirical models can 

perform well across the entire growing season, again obviating the need for multiple empirical models 

calibrated to account for phenology. 
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