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Abstract: Land Surface Temperature (LST) is one of the key inputs for  

Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of 

BIOSPEC (Linking spectral information at different spatial scales with biophysical 

parameters of Mediterranean vegetation in the context of global change) and FLUXPEC 

(Monitoring changes in water and carbon fluxes from remote and proximal sensing in 

Mediterranean ―dehesa‖ ecosystem) projects LST retrieved from Landsat data is required 

to integrate ground-based observations of energy, water, and carbon fluxes with multi-scale 

remotely-sensed data and assess water and carbon balance in ecologically fragile 

heterogeneous ecosystem of Mediterranean wooded grassland (dehesa). Thus, three 

methods based on the Radiative Transfer Equation were used to extract LST from a series 

of 2009–2011 Landsat-5 TM images to assess the applicability for temperature input 
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generation to a Landsat-MODIS LST integration. When compared to surface temperatures 

simulated using MODerate resolution atmospheric TRANsmission 5 (MODTRAN 5) with 

atmospheric profiles inputs (LSTref), values from Single-Channel (SC) algorithm are the 

closest (root-mean-square deviation (RMSD) = 0.50 °C); procedure based on the online 

Radiative Transfer Equation Atmospheric Correction Parameters Calculator (RTE-ACPC) 

shows RMSD = 0.85 °C; Mono-Window algorithm (MW) presents the highest RMSD 

(2.34 °C) with systematical LST underestimation (bias = 1.81 °C). Differences between 

Landsat-retrieved LST and MODIS LST are in the range of 2 to 4 °C and can be explained 

mainly by differences in observation geometry, emissivity, and time mismatch between 

Landsat and MODIS overpasses. There is a seasonal bias in Landsat-MODIS LST 

differences due to greater variations in surface emissivity and thermal contrasts between 

landcover components.  

Keywords: land surface temperature; Landsat; multitemporal 

 

1. Introduction 

Land surface temperature (LST) is a state variable that plays a crucial role in many land surface 

processes [1]. LST is related to the transport of heat between the land surface and the atmospheric 

boundary layer [1–3], and makes possible estimation of sensible heat flux [4] and latent heat flux, or 

evapotranspiration [5,6]. It is a necessary input for ecosystem modeling [7], which can be performed at 

local [4], regional, and global scales. While local modeling relies heavily on field data, remote sensing 

has become the main source for LST estimation at the regional and global scales [8].  

Radiance measured at a sensor can be transformed into LST by inverting the Radiative Transfer 

Equation (RTE) applied to a particular thermal IR band or wavelength: 

Lsensor = τεLTs + Lu + τ(1 − ε)Ld (1) 

where Lsensor is the radiance registered by the sensor, also referred to as top of atmosphere radiance, LTs 

is the blackbody radiance related to the surface temperature by Planck’s law and Ts is the LST, Lu and 

Ld are the upwelling and downwelling atmospheric radiances, respectively (all the radiances in  

W∙sr
−1

∙m
−2

∙μm
−1

), τ is the atmospheric transmissivity and ε is the land surface emissivity. In the case of 

dealing with a waveband, all these parameters are integrated according to the spectral response 

function of this band. 

The signal coming from the target to the sensor is modified as it passes through the atmosphere, 

which both emits and absorbs thermal radiation. The latter effect is mainly caused by the presence of 

water vapor. When atmospheric conditions are known, emission and absorption of radiation in the 

atmosphere can be quantified and corrected using one of the radiative transfer computer codes, e.g., 

MODerate resolution atmospheric TRANsmission (MODTRAN) [9]. Atmospheric conditions are 

typically assessed using in situ atmospheric profile data, which are often not available for the place and 

time the image was acquired, although on-line atmospheric databases [10,11] or estimations based on 

empirical models [12] can be used.  
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At present, there are several satellites providing global data from the thermal region of the  

spectrum at different scales. Among them are MODIS [13] and Spinning Enhanced Visible and 

Infrared Imager (SEVIRI) [14] characterized by low spatial and high temporal resolutions, for which 

LST products are available on a regular basis. At the medium spatial scale Landsat has provided global 

brightness temperatures since 1984, with Landsat 8 launched at the beginning of 2013 giving 

continuity to the data record [15]. The assessment of methods for LST estimation from a unique 

thermal band gains additional importance if we consider problems with data from one of the Landsat 8 

thermal bands (band 11) and National Aeronautics and Space Administration (NASA) suggestion not to 

use band 11 for surface temperature retrieval [16]. The recently published reviews [8,17] mention 

several single-channel methods based on approximations from the RTE, which can be applied for LST 

retrieval from Landsat-5 unique thermal band [18–21]. These methods perform atmospheric correction 

based on water vapor content [19,20] or both water vapor and near-surface air temperature [18,21]. 

Apart from the atmospheric correction parameters, the surface emissivity (defined as the ratio between 

the target emitting capacity and that of a blackbody at the same temperature) is also required. A review 

of methods for surface emissivity estimation from satellite data is available in Li et al. [22]. Because of 

the high level of correlation between NDVI and surface emissivity, many methods proposed for 

estimating emissivity are based on this vegetation index [23–27]. 

One of the research fields with a great demand of LST data at a local scale is carbon and water 

fluxes modeling in terrestrial ecosystems. BIOSPEC (Linking spectral information at different spatial 

scales with biophysical parameters of Mediterranean vegetation in the context of global change) [28] 

and FLUXPEC (Monitoring changes in water and carbon fluxes from remote and proximal sensing in 

Mediterranean ―dehesa‖ ecosystem) [29] projects carry out the analysis of these processes using 

information from ground-based measurements of fluxes and vegetation biophysical parameters, and 

their modeling throughout the integration of spectral data from remote sensors having different spatial, 

spectral and temporal resolutions (Landsat and MODIS) following the attempts of other scientific 

teams [30,31]. Landsat can provide LST at a spatial detail much higher than MODIS, but only once in 

16 days compared to daily images acquisition by MODIS. Thus, integration of the data from these two 

satellites would be highly beneficial given the spatial resolution of the former and the temporal 

resolution of the latter. However, the challenges and persisting uncertainties related to the use of 

Landsat for LST estimation [32], especially in heterogeneous environments, make it necessary to 

evaluate the methods and atmospheric information sources looking for those more similar to MODIS. 

Although there are a number of studies comparing methods for LST retrieval from one thermal  

band [18,19,33,34], the evaluation is usually based on data from homogeneous environments. On the 

other hand, this study presents an assessment of the single-channel methods in heterogeneous 

environments common for most of the land surface.  

Our main interest in this study is to compare the performance of the most common methods for LST 

retrieval from Landsat-5 TM images of the dehesa tree-grass ecosystem [8] and analyze the 

relationship between LST estimated from Landsat and LST from MODIS product (MOD11_L2), for 

the use in Landsat-MODIS LST fusion algorithm development to study energy and water exchange 

between the dehesa landcover and the atmosphere. Three procedures are applied for LST retrieval from 

a sequence of 13 images of Central Spain, acquired from 2009 to 2011: (1) RTE inversion with 

atmospheric correction parameters calculated by on-line ACPC tool [10], which is referred to as  
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Radiative Transfer Equation Atmospheric Correction Parameters Calculator (RTE-ACPC) from here 

on and two methods, which are approximations of the RTE with minimum parameters:  

(2) single-channel (SC) method by Jiménez-Muñoz and Sobrino [20], updated in 2009 [19], and  

(3) mono-window MW method by Qin et al. [21]. The results are compared with LSTs simulated by 

Radiative Transfer Code MODTRAN 5. We also assess and analyze the relationship existing between 

Landsat LSTs and those from MODIS LST product (MOD11_L2). In situ grass temperature 

measurements available for some of the images complete the set of reference data.  

2. Study Area and Data 

2.1. Study Area 

The study area shown in Figure 1 is located in a dehesa ecosystem near the Las Majadas del Tietar 

FLUXNET site (geographic coordinates: Lat 39°56′26′′N, Long 5°46′29′′W), which is operated 

by the Mediterranean Center for Environmental Studies (CEAM). FLUXNET is a network of 

micrometeorological observation sites established to perform continuous measurement of exchange 

fluxes in the soil–vegetation–atmosphere system [35]. 

Figure 1. Study area: (a) Location of the study site (b) orthophoto of the study area 

corresponding to MODIS pixel. 
(a)                                (b) 
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(a) (b) 

The dehesa is an open savanna with an integrated agroforestry ecosystem, and has a complex 

vegetation structure typical of Mediterranean areas. The study site is flat, and is covered by grass  

(75% of the area) and holm oak trees Quercus ilex ssp. rotundifolia (25% of the area). The zone 

climate (Csa according to Köppen classification) is characterized by an annual average temperature of 
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16 °C and approximately 550 mm precipitation, and has a four-month hot dry period from June to  

September [36]. 

2.2. Datasets 

2.2.1. Landsat-5 TM Images 

Landsat-5 TM provides images with six bands in the optical region, and a thermal band with a 

bandwidth of 10.4–12.5 μm. The LST was retrieved from 13 Landsat-5 TM (path 202, row 32) clear 

sky images pre-processed by the NLAPS (National Land Archive Production System–USGS) and 

downloaded from [37] (Table 1). The images over the study area were acquired at approximately  

10:50 a.m. GMT from 2009 to 2011. 

Table 1. Acquisition time and observation geometry for Landsat-5 TM and MODIS 

satellite images used in the study.  

Date 

LANDSAT MODIS TERRA 
Difference in 

Acquisition Time 
Acquisition 

Time (a.m. 

GMT) 

Sun 

Azimuth 

Sun 

Elevation 

Acquisition 

Time (a.m. 

GMT) 

Viewing 

Angle 

(degrees) (degrees) (degrees) (min) 

27 June 2009 10:50:18 123.55 63.88 10:31:45 63.00 18 

29 July 2009 10:50:49 128.98 59.94 10:35:30 63.00 15 

30 August 2009 10:51:18 141.13 52.63 10:29:40 63.00 21 

15 September 2009 10:51:32 147.28 47.91 10:24:00 63.00 27 

17 October 2009 10:51:53 156.52 37.36 10:14:00 63.00 37 

6 February 2010 10:52:39 151.39 29.19 10:43:00 63.00 7 

11 April 2010 10:52:40 141.79 52.28 10:30:10 63.00 12 

30 June 2010 10:52:19 124.31 64.00 10:32:25 63.00 20 

1 August 2010 10:52:10 130.34 59.61 10:35:25 63.00 17 

5 November 2010 10:51:34 159.16 31.40 10:12:45 63.00 38 

1 June 2011 10:51:13 127.86 63.89 10:26:35 63.00 24 

4 August 2011 10:50:41 130.72 58.86 10:35:10 63.00 15 

5 September 2011 10:50:24 142.93 50.94 10:27:40 63.00 22 

2.2.2. MODIS LST Images 

The MODIS Terra LST MOD11_L2 product with a 1-km pixel spatial resolution was used for 

comparison. MOD11_L2 constitutes an output of the split window algorithm [38] applied to MODIS 

bands 31 (10.780–11.280 µm) and 32 (11.770–12.270 µm). The time difference between Landsat and 

MODIS passes over the study area is about 20 min (Table 1): MODIS images are acquired 

approximately 20 min earlier. FLUXNET tower data corresponding to the same dates show an average 

air temperature increase of about 0.5 °C for the same time period, while in situ grass surface 

temperature measurements available for three summer dates in 2011 (Table 2) demonstrate an average 

increase of 1.5 °C. Following the procedure applied by other researchers [39,40] to account for 

different spatial resolution of the sensors, MODIS temperature value corresponding to a pixel centered 

in the study area was compared with the mean value of the Landsat-5 TM pixels within that MODIS 
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pixel. Moreover, to minimize the effects of the differences in the observation geometry only the 

images with the best quality MODIS pixel of the study area (MODIS product quality flag 0) were used 

for the comparison. According to the MOD11_L2 product description quality flag 0 is assigned to the 

cloud-free pixels with LST error less than 1 °C and the emissivity errors in channels 31 and 32 involved 

in LST estimation less than 0.01.  

2.2.3. Atmospheric Correction Parameters Sources 

We obtained and compared data on the atmospheric water vapor content from three online sources: 

Aerosol Robotic Network (AERONET) database, National Center for Environmental Prediction 

(NCEP) Reanalysis (hereafter called REANALYSIS) database and from MODIS MOD05 product. 

AERONET is part of the NOAA Observing System Architecture, which includes more than 500 sites 

distributed worldwide. Precipitable water content values (g∙cm
−2

) were downloaded from an online 

database [41] for Cáceres; the observation site is located approximately 50 km from the study area. 

The National Center for Environmental Prediction (NCEP) and the National Center of Atmospheric 

Research Reanalysis Project (NCAR) maintain a free access online database of gridded and 

continuously updated meteorological data at 2.5° × 2.5° spatial and 6 h temporal resolution extending 

back to 1948 [42]. Precipitable water values (kg∙m
−2

) for 2009–2011 were downloaded from [43]. The 

noon values, approximately 1 h later than the Landsat-5 TM overpass, were extracted for the study area 

location and used in the water vapor sources comparison. Atmospheric profiles containing information 

on vertical distribution of pressure, geopotential height, temperature and relative humidity for simulation 

of the reference LSTs were generated by ACPC tool based on the interpolation of the NCEP profiles 

resampled to 1° × 1° spatial resolution [11]. Interpolated profiles were completed with the data from the 

standard atmospheres for the altitude range from 30 km to 100 km and user-supplied information for the 

lowest level, resulting in the 31 levels in each profile. Precipitable water from MODIS MOD05 product 

at 1-km spatial resolution close in time to Landsat overpass was obtained from MODIS web archive [44].  

FLUXNET tower was used as the source of ACPC tool meteorological inputs. Due to the limited 

extension of the study site, meteorological data provided by the tower were considered characteristic 

for all the analyzed area.  

2.2.4. In Situ Grass Temperature Measurements 

To put the obtained results in site context and take into account the difference in LST between the 

overpass times of Landsat and MODIS on board of Terra (from Latin ―land‖) satellite, we used the data 

on grass temperature obtained from an infrared sensor Campbell IR120 installed on a tower at a height of 

8 m (Table 2). The sensor registers data every 10 min with an accuracy of ±0.2 °C. The data are available 

for a part of 2011 beginning 3 March 2011. The device offers a non-contact means of measuring the 

surface temperature of an object by sensing the infrared radiation in the wavelength range of 8 to 14 μm 

in the field of view of 20°. The in situ LSTs coincident with the Landsat image acquisition (10:50 a.m. 

GMT) were only used to assess the significance of time mismatch between Landsat and MODIS TERRA 

overpasses because the data are available only for one of the landcover components (grass) and for less 

than 25% of the images. 
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Table 2. Time difference between Landsat and MODIS passes over the study site and 

corresponding increment in in situ Land Surface Temperature (LST) (grass) temperature 

between 10:30 a.m. and 10:50 a.m. GMT. 

Date 
MODIS 

(a.m. GMT) 

Landsat 

(a.m. GMT) 

Time Difference 

(min) 

In situ Temperature 

Increment (°C) 

01 June 2011 10:26:35 10:51:13 24 2.13 

04 August 2011 10:35:10 10:50:41 15 1.13 

05 September 2011 10:27:40 10:50:24 22 1.31 

3. Methods 

3.1. Land Surface Temperature (LST) Estimation 

Prior to LST retrieval optical bands of Landsat images used in emissivity estimation were corrected 

for atmospheric effects using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) algorithm implemented in the ENVI (software package, a geospatial imagery analysis and 

processing application marketed by Exelis Visual Information Solutions) [45]. The LST was retrieved 

from the thermal band; the digital numbers were first converted into radiance using the header files 

parameters and then to the at-sensor brightness temperature, which was then transformed to LST. Three 

procedures used to transform the at-sensor brightness temperature into LST are: (1) RTE inversion using 

atmospheric correction parameters from on-line ACPC tool [10] available at [46]; and two algorithms 

based on the approximations of RTE: (2) single-channel SC method [19,20]; and (3) mono-window MW 

method [21]. The most recent SC modification [18] is highly sensitive to water vapor changes and was 

not considered, because in situ measurements of water vapor content were not available. Since LST 

estimation methods require clear sky, only cloud-free images were used for processing. 

3.1.1. Radiative Transfer Equation (RTE) 

As mentioned in Section 1, LST can be obtained from RTE (Equation (1)) and Planck’s law 

inversion once parameters for the atmospheric corrections (Lu, Ld and τ) are estimated and the surface 

emissivity is known. The first tested procedure used the atmospheric correction parameters from the 

Atmospheric Correction Parameter Calculator (ACPC). It is an on-line tool developed for atmospheric 

correction of the Landsat 5 and 7 thermal data using MODTRAN 4 radiative transfer code [10,11]. The 

tool receives as input user-provided information on geographical coordinates, site elevation, date and 

time of the image acquisition and calculates site-specific atmospheric transmission, upwelling, and 

downwelling atmospheric radiances to be used in LST estimation through RTE inversion. Henceforth, 

the LST values obtained in the study by this procedure are referred to as RTE-ACPC. NCEP 

atmospheric databases are used to interpolate the profile for the specified place, date, and time; the 

profiles resulting from time interpolation can be provided for the closest lat/long grid corner or 

interpolated for the user-specified location. The latter option was used in this study. The tool processes 

data corresponding to one set of conditions (one Landsat image) at a time; the results are forwarded to 

the user’s e-mail address. The set of parameters generated by the tool for the images analyzed in this 

http://en.wikipedia.org/wiki/Exelis_Visual_Information_Solutions


Remote Sens. 2014, 6 4352 

 

 

study is presented in Table 3. According to developers, the tool provides parameters allowing LST 

estimation through RTE (Equation (1)) inversion within ±2 °C [11].  

Table 3. Parameters provided by Atmospheric Correction Parameter Calculator (ACPC) 

tool for the analyzed Landsat-5 TM images: upwelling (Lu) and downwelling (Ld) radiances 

in W∙sr
−1

∙m
−2

∙μm
−1

, atmospheric transmissivity (τ). 

Date τ Lu Ld 

27/06/2009 0.790 1.430 2.400 

29/07/2009 0.890 0.830 1.410 

30/08/2009 0.820 1.430 2.390 

15/09/2009 0.860 0.940 1.580 

17/10/2009 0.930 0.500 0.860 

06/02/2010 0.870 0.820 1.380 

11/04/2010 0.920 0.530 0.900 

30/06/2010 0.730 2.060 3.370 

01/08/2010 0.820 1.440 2.380 

05/11/2010 0.830 1.220 2.010 

01/06/2011 0.880 0.850 1.420 

04/08/2011 0.750 1.870 3.070 

05/09/2011 0.810 1.430 2.370 

Mean 0.838 1.181 1.965 

St. dev. 0.061 0.484 0.783 

3.1.2. Mono-Window (MW) Method 

In the MW algorithm [21] the LST is determined through decomposition of Planck’s radiance 

function using a Taylor’s expansion and calculation of two empirical coefficients a and b. Three  

a priori known parameters are required for the algorithm: transmissivity (τ)/water vapor content, 

effective mean atmospheric temperature (Ta) and emissivity (ε). All the temperatures are in K. LST 

(Ts) is calculated from the equation (2): 

      CDTTDCDCbDCaTs asensor /11   (2) 

where a = −67.355351 and b = 0.458606 are constants, Tsensor is the at-sensor brightness temperature, 

C and D are calculated using Equation (2a,2b) respectively: 

ετC   (2a) 

   1 τ 1 1 ε τD        (2b) 

The suggested method for calculation of Ta is based on the relationship between Ta and the vertical 

water vapor distribution in the atmosphere [47]. Simulations performed using LOW resolution 

TRANsmission 7 (LOWTRAN 7) [21] indicate that, while water vapor content differs significantly 

depending on the atmospheric conditions, the distribution of the ratio of water vapor content at a 

particular altitude to the total is very similar for all atmospheric profiles. This enabled formulation of 
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the Equation (3a–3c) for calculation of Ta from the total water vapor content and the near surface local 

air temperature (T0), according to the atmospheric conditions [21]: 

Ta = 19.2704 + 0.91118 T0(mid-latitude winter) (3a) 

Ta = 19.2704 + 0.91118 T0(mid-latitude summer) (3b) 

Ta = 17.9769 + 0.91715T0(tropical atmosphere) (3c) 
 

 

The most important parameter of the algorithm τ is estimated using the expressions obtained from 

simulations using LOWTRAN 7 [21] for two air temperature profiles: Equation (4a,4b) for high 

(35 °C) and Equation (4c,4d) for low (18 °C) [21]:  

τ = 0.974290 − 0.08007w (0.4 g∙cm
−2 

<w< 1.6 g∙cm
−2

) (4a) 

τ = 1.031412 − 0.11536 w (1.6 g∙cm
−2 

<w< 3.0 g∙cm
−2

) (4b) 

τ = 0.982007 − 0.09611w (0.4 g∙cm
−2 

<w< 1.6 g∙cm
−2

) (4c) 

τ = 1.053710 − 0.14142w (1.6 g∙cm
−2 

<w< 3.0 g∙cm
−2

) (4d) 

The algorithm performs well for atmospheric conditions where the water vapor content is  

0.5–2.5 g∙cm
−2

 [18,19,21]. 

3.1.3. Single-Channel (SC) Method 

SC method [19,20] is also an approximation of RTE and requires only atmospheric water vapor 

content for atmospheric correction. In this method LST is obtained from the following Equation (5):  

 1 2 3
1

γ ψ ψ ψ δ
ε

sensorTs L
 

    
 

 (5) 

where: ε is surface emissivity, γ and δ are parameters directly depending on Planck function. 

For Landsat TM5 band 6 γ and δ are calculated using expression (5a,5b):  

2

1256
γ sensor

sensor

T

L
  (5a) 

2

1256
δ sensor

sensor

T

sensor L
T   (5b) 

ψ1, ψ2 and ψ3 are atmospheric correction functions expressed for Landsat-5 TM as Equation (6a–c): 

2
1ψ 0.14714 0.15583 1.1234w w    (6a) 

2
2ψ 1.1836 0.37607 0.52894w w     (6b) 

2
3ψ 0.04554 1.8719 0.39071w w     (6c) 

where w is total atmospheric water vapor content in g·cm
−2

. 

Similar to the MW, the optimal performance of the SC algorithm is observed for the atmospheres 

with water vapor content in the range of 0.5–2.5 g∙cm
−2

 [18,19,21]. 
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3.1.4. Reference Land Surface Temperature (LST) 

Because of the incompleteness of the in situ data, LSTs simulated by the latest version of the 

radiative transfer code MODTRAN 5 are used as a reference set. As suggested in previous  

studies [8,17,48,49], LSTs simulated using radiative transfer code can be an alternative for validation 

when field measurements at a required spatial scale are not available. The method was earlier applied 

for Landsat [34] and MODIS [48,49] LST assessment. Among the most important improvements in 

MODTRAN 5 compared to MODTRAN 4 is the incorporation of band model parameters based on 

HITRAN2008, with 2009 updates [9]. MODTRAN 5 performs calculations based on the information 

about observation geometry and atmospheric profiles at the moment of observation. The best results 

are achieved when data come from in situ radiosoundings synchronized in time with image acquisition. 

Unfortunately, they were not available in this study. When discussing the difficulty of obtaining local 

radiosounding data, multiple studies [17,50,51] suggest the use of the atmospheric profiles from the 

reanalysis products as a viable solution. Thus, we use NCEP atmospheric profiles interpolated for the 

exact location and time of Landsat overpass, the choice validated by previous research [17,50,51]. The 

NCEP atmospheric profiles interpolated for the study area and conditions by ACPC tool are 

complemented with on-site meteorological data for the lowest atmospheric layer, which together with 

the newer MODTRAN version (5 vs. 4) marks the difference with the RTE-ACPC procedure. To 

simulate the reference LSTs, the profiles are inserted into MODTRAN input file. Then the first 

MODTRAN run is performed with 0% surface albedo; atmospheric transmissivity (τ) and upwelling 

radiance (Lu) are extracted from the MODTRAN output files and integrated over the Landsat-5 TM 

thermal band using the sensor filter function. To calculate downwelling radiance (Ld) MODTRAN 5 is 

run for the second time with 100% surface albedo. Next, the obtained atmospheric correction 

parameters τ, Lu and Ld together with previously estimated emissivity ε are substituted into RTE 

(Equation (1)) to calculate the radiance from the target (LTs). The final step consists in transformation 

of the calculated target radiance into LST (LSTref) by inversion of the Planck’s law. 

3.2. Emissivity Estimation 

Most of the emissivity retrieval methods from remotely sensed data, such as TES [52] or TISI [53] 

cannot be used with Landsat images because there is only one thermal band. The possible solution is to 

apply one of the methods based on the normalized difference vegetation index (NDVI) [22]. Among 

the advantages of these methods is that they rely on the information from the image used for the LST 

retrieval [22]. The NDVI thresholds method (NDVI
THM

) [25,54] based on the findings of Valor and 

Caselles [26] was applied to estimate surface emissivity in this study. The emissivity of the pixel is 

determined based on its NDVI. Different functions are applied to calculate emissivity depending on the 

NDVI range (Table 4). 

In case of the mixed pixels category the NDVI values (thresholds) selection is based on an analysis 

of the images histograms. The soil emissivity εs  value of 0.984 is based on in situ field measurements 

using box method [24] with an estimated error of 0.003 [24], and is similar to the values reported by 

previous research [34,55]. The vegetation emissivity v  is assigned the value of 0.990 [34]; εd  = 0.01 

is the term accounting for surface roughness different from zero for heterogeneous covers [3];  
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and VP  is the vegetation fraction estimated from a scaled NDVI, according to Choudhury et al. [56] 

and Gutman and Ignatov [57]:  

sV

s
V

NDVINDVI

NDVINDVI
P




  (7) 

Table 4. Emissivity values assigned to ranges of the normalized difference vegetation 

index (NDVI) [26,34]. 

NDVI Cover Type Emissivity (ε) 

NDVI < 0 Water 0.985 

0 ≤ NDVI ≤ 0.1 Bare soil f (red reflectivity) 

0.1 ≤ NDVI ≤ 0.7 Vegetation mixed with soil 0.990 VP  + 0.984(1 − VP ) + 0.04 VP (1 − VP ) 

NDVI > 0.7 Vegetation 0.99 

The validation of NDVI
THM

 method performed by Sobrino et al. [34] gets the error of less  

than 0.01, which in terms of LST would mean the error below 0.5 °C [26]. Of the three dehesa 

landcover components, soil emissivities show the greatest variation in the thermal region of the 

spectrum [24,34]. As the soil emissivity measured in situ is high in present study, the related error 

should be smaller. 

4. Results and Discussion 

We present and discuss below the results of LST estimation in heterogeneous Mediterranean  

tree-grass (dehesa) ecosystem with the RTE-ACPC, MW and SC procedures described in Section 3.1. 

Emissivity ε is calculated using the NDVI Thresholds method presented in Section 3.2. Section 4.1 

compares three sources of the atmospheric water vapor (w) and explains the choice of the NCEP 

REANALYSIS for this study. Section 4.2 analyses the differences between the LSTref and LST 

generated by the tested procedures. Next, Section 4.3 discusses the relationship between Landsat LST 

and MODIS LST product. Both LST comparisons (LSTref and MODIS) include the use of the in situ 

values of grass temperature measured in 2011 to assess the implications of time mismatch on the  

LST differences.  

4.1. Atmospheric Water Vapor Content 

Atmospheric conditions on the images acquisition dates are shown in Table 5. The registered  

mean w values were relatively low (1.292 g∙cm
−2

, 1.515 g∙cm
−2

, and 1.600 g∙cm
−2

 for REANALYSIS, 

AERONET, and MODIS, respectively), and the maximum values were close to 2.5 g∙cm
−2

. Therefore, 

the data were considered adequate as inputs to the MW and SC methods. The average difference 

between w sources was around 0.3 g∙cm
−2

.  

A detailed case-by-case analysis revealed important differences among databases on some dates. 

For example, the difference between MODIS and other sources was greater than 0.7 g∙cm
−2

  

for 4 August 2011, while AERONET exceeded w values from REANALYSIS in more than half a 

gram per square centimeter on 30 June 2010, and 17 October 2009. Although a clear pattern of 

differences among the data sources was not observed, the REANALYSIS water vapor values were 
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lower than those of the other two databases; only once the w value from this source was marginally 

greater than the value from MODIS (11 April 2010) and in two cases the w levels were greater than 

those of the AERONET database (1 August 2010, and 4 August 2011). The comparison of three 

different atmospheric water vapor (w) sources did not reveal statistically significant differences 

between them (F-Test = 1.16; p-value > 0.05). Hence, the REANALYSIS w values were used in 

atmospheric correction since this database is the result of modeling which assimilates data from 

multiple sources and is continuously updated. We did not use the MODIS product as a w source, 

because one of the objectives of the study is the comparison of the Landsat-retrieved LSTs with those 

from MODIS LST product, which employs MOD05 w values in the algorithm. 

Table 5. Atmospheric water vapor content values (g∙cm
−2

) obtained from the 

REANALYSIS and AERONET databases, and MODIS MOD05 product, as well as the air 

temperature Tair (°C) and relative humidity RH (%) for each date. 

Date 
Atmospheric Water Vapor Content Values (g∙cm

−2
) 

Tair (°C) RH (%) 
REANALYSIS AERONET MODIS 

27/06/2009 1.770 1.796 1.791 26.80 31.59 

29/07/2009 0.771 0.861 1.146 29.72 19.06 

30/08/2009 2.060 2.373 2.088 31.52 32.73 

15/09/2009 1.050 1.443 1.302 20.32 37.76 

17/10/2009 0.390 0.967 1.080 16.34 48.66 

06/02/2010 0.980 1.230 1.415 12.58 75.28 

11/04/2010 0.580 0.781 0.569 17.87 41.94 

30/06/2010 1.810 2.438 2.146 32.43 40.99 

01/08/2010 1.590 1.410 1.674 33.51 28.1 

05/11/2010 1.120 1.538 1.175 17.25 66.2 

01/06/2011 1.410 1.551 1.887 20.73 43.16 

04/08/2011 1.930 1.854 2.639 31.32 33.87 

05/09/2011 1.330 1.448 1.887 24.78 42.43 

Mean 1.292 1.515 1.600 24.24 41.67 

Max 2.060 2.438 2.639 33.51 75.28 

Min 0.390 0.781 0.569 12.58 19.06 

St. Dev. 0.530 0.513 0.553 7.12 15.10 

4.2. Landsat-5 TM Retrievals vs. Reference Land Surface Temperature (LST) 

The LSTs retrieved from each Landsat-5 TM image and LSTref are shown in Table 6. Among the 

Landsat LSTs the lowest average value of 31.36 °C is obtained using MW algorithm, followed by 

RTE-ACPC (32.98 °C) and SC (33.33 °C) procedures, which present the values very close to the 

LSTref average of 33.17 °C. Minimum (around 12 °C) and maximum (around 45 °C) LSTs from  

RTE-ACPC and SC algorithms are also similar to the LSTref; while for the MW method these  

statistics are lower (11.27 and 43.95 °C respectively). MW also shows standard deviations lower than 

other procedures. 

There were no statistically significant differences between the values obtained using tested 

procedures (F-Test = 0.111; p-value > 0.05) and the degree of correlation between the values  
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obtained by different methods is very high (R
2
 > 0.986). It is not strange considering that all the four 

algorithms are based on successive versions of the same radiative transfer code: LOWTRAN 7  

(Mono-Window (MW)), MODTRAN 4 (RTE-ACPC and SC) and MODTRAN 5 (LSTref), developed 

in 1988 [58], 1999 [59] and 2011 [9] respectively. Moreover, all of them employ the fewest (although 

different) possible number of parameters for atmospheric correction (w for SC; Ta and w for MW; 

profiles of RH, Ta and atmospheric pressure for RTE-ACPC and LSTref ) and the same emissivity. 

Table 6. LST values retrieved from Landsat-5 TM images using Mono-Window (MW), 

Single-Channel (SC), Radiative Transfer Equation Atmospheric Correction Parameters 

Calculator (RTE-ACPC, procedure based on the online ACPC), LSTref and LST from 

MODIS MOD11_L2 product used for comparison, as well as LSTin_situ (grass surface 

temperature at 10:50 a.m. GMT). 

Date 
LST (°C) Landsat LST (°C) 

MODIS 
LSTref (°C) LSTin_situ (°C) 

MW SC RTE-ACPC 

27/06/2009 41.92 43.79 44.91 39.87 43.55 -- 

29/07/2009 43.95 45.32 45.36 39.21 45.11 -- 

30/08/2009 41.11 45.44 42.15 38.87 45.00 -- 

15/09/2009 29.78 30.75 31.25 28.03 30.68 -- 

17/10/2009 21.85 22.59 21.33 22.23 22.32 -- 

06/02/2010 11.27 12.04 11.99 11.99 12.01 -- 

11/04/2010 21.61 22.45 22.17 22.35 22.09 -- 

30/06/2010 36.23 40.14 41.40 34.17 40.40 -- 

01/08/2010 41.49 44.76 42.96 39.51 43.82 -- 

05/11/2010 17.49 18.25 17.78 18.41 17.59 -- 

01/06/2011 27.76 29.09 27.97 25.27 28.52 33.01 

04/08/2011 40.39 44.27 44.85 38.55 45.04 45.71 

05/09/2011 32.79 34.38 34.57 29.29 35.03 38.11 

Mean 31.36 33.33 32.98 29.83 33.17 -- 

Min. 11.27 12.04 11.99 11.99 12.01 -- 

Max. 43.95 45.44 45.36 39.87 45.11 -- 

St. dev. 10.69 11.68 11.71 9.34 11.76 -- 

When compared to LSTref, the RMSDs are within 2.4 °C (Table 7): SC and RTE-ACPC present 

RMSDs lower than 1 °C, while the MW shows the highest RMSD (2.34 °C) with systematical LST 

underestimation (bias = −1.81 °C). SC values are the closest to the LSTref with the RMSD of 0.50 °C 

(bias = 0.16); RTE-ACPC shows similar RMSD (0.85 °C) and a slight underestimation of the LST 

(bias = −0.19 °C). 

Differences between LSTref and Landsat LSTs depend on the ―age‖ of the code version used in 

procedure development: greater differences with LSTref correspond to procedures based on the older 

code version, i.e., MW-LSTref > SC-LSTref. They are also consistent with the results of LST 

simulations using LOWTRAN 7 and MODTRAN 4 performed by Jiménez-Muñoz et al. [19], which 

show that MODTRAN 4 generates greater w values (around 1 g·cm
−2

 for high w values) resulting in 

higher LSTs. At the same time, the SC and RTE-ACPC (methods based on MODTRAN4) are closer to 

the in situ data: (averages of 5.46, 3.19, and 3.31 °C for LSTin_situ-LSTMW, LSTin_situ-LSTSC, and 
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LSTin_situ-LSTRTE-ACPC, respectively), although this comparison is not fully accurate since LSTin_situ 

corresponds only to grass component of the landcover.  

Table 7. Root mean square deviation (RMSD) of the comparison between the LSTref, 

MODIS product and LSTs obtained from Landsat-5 TM by MW, SC and RTE-ACPC (°C). 

RMSD MW SC RTE-ACPC MODIS 

MW -- -- -- -- 

SC 2.37 -- -- -- 

RTE-ACPC 2.28 1.26 -- -- 

MODIS 2.27 4.29 4.16 -- 

LSTref 2.34 0.50 0.85 4.27 

Even though MW systematically underestimates LST, the size of the differences varies from 0.11 to 

4.66 °C depending on the date (Table 8); the range of variations for SC and RTE-ACPC is much 

smaller (below 1 °C and 3 °C for SC and RTE-ACPC, respectively). Considering that both procedures 

use the same emissivity, explanation of the anomalies lies in different sensitivity of the algorithms to 

atmospheric variables. Good correlation of the differences between LSTref and MW with w and air 

temperature (R = 0.8) can be appreciated in Figures 2 and 3; high atmospheric water vapor 

concentration and high temperatures in summer time explaining the biggest LST deviations. The same 

graphics reveal that there is no relationship between atmospheric parameters and the differences 

between SC and LSTref (R < 0.2). Bigger errors in hot and wet conditions have already been detected in 

other studies [19,50]. Modeling [60] shows that a typical w error of 10% [61] may lead to LST error of 

0.4 K and 0.2 K for SC and MW algorithms respectively for summer atmosphere [60]. For MW it is 

also necessary to consider the 0.2 °C error due to the air temperature [21]. Because in MW algorithm 

coefficients are developed only for two air temperature values and a reduced number of standard 

atmospheres, the algorithm fails to represent real atmospheric conditions in the study area correctly, 

especially on in summer. However, SC incorporates atmospheric functions based on extensive 

atmospheric profile databases allowing more precise representation of atmospheric conditions over the 

study site at the moment of satellite pass [19,50].  

Based on statistical analysis we can conclude that SC and RTE-ACPC procedures are capable of 

retrieving LSTs in the study area of Mediterranean tree-grass ecosystem with an error below 1 °C, 

which is similar to the results of the previous studies conducted in the homogeneous areas [34,62]. 

Thus, Sobrino et al. [34] compared LSTs from MW and SC methods applied to Landsat images with 

LSTs simulated using radiative transfer code and in situ emissivity in agricultural area obtaining the 

errors of around 0.9 °C for SC and around 2 °C for MW procedures; similar errors were reported by 

Copertino et al. [33] who applied the same methods for estimating LST over different landcover types 

in Southern Italy, in this case retrieved LSTs were compared to the soil temperatures. Limin et al. [60] 

compared LST estimated from HJ-1B satellite by MW and SC with MODTRAN 4 simulations of LST 

registering errors below 1 °C in summer for nadiral view of the sensor. 
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Table 8. Differences between the LST retrieved from Landsat-5 TM using RTE-ACPC, 

MW and SC procedures and LST simulated using MODTRAN5 (LSTref).  

Date LSTref (°C) 
LSTLandsat–LSTref (°C) 

MW SC RTE−ACPC 

27/06/2009 43.55 −1.63 0.24 1.36 

29/07/2009 45.11 −1.16 0.21 0.25 

30/08/2009 45.00 −3.89 0.43 −2.85 

15/09/2009 30.68 −0.9 0.07 0.57 

17/10/2009 22.32 −0.47 0.27 −0.99 

06/02/2010 12.01 −0.74 0.03 −0.02 

11/04/2010 22.09 −0.48 0.36 0.08 

30/06/2010 40.40 −4.17 −0.27 1.00 

01/08/2010 43.82 −2.34 0.94 −0.86 

05/11/2010 17.59 −0.11 0.65 0.19 

01/06/2011 28.52 −0.76 0.58 −0.55 

04/08/2011 45.04 −4.66 −0.77 −0.19 

05/09/2011 35.03 −2.24 −0.65 −0.46 

Bias  −1.81 0.16 −0.19 

St. Dev  1.54 0.49 1.05 

Figure 2. Relationship between w and LSTLandsat–LSTref. 
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Figure 3. Relationship between near surface air temperature Tair and LSTLandsat–LSTref. 

 

4.3. Landsat LST vs. MODIS Land Surface Temperature (LST) 

We now present the comparison of Landsat LSTs and LSTs from MODIS LST product. Before the 

comparison some adjustment was performed to account for differences in data format and spatial 

resolution between Landsat and MODIS. MODIS LST images (MOD11_L2 product) were reprojected 

to match spatial reference of Landsat. Since the study site is in the middle of the much more extensive 

tree-grass ecosystem area with similar LST variability at the MODIS scale, the average LST value of 

the Landsat pixels inside the MODIS pixel covering the center of the study area is calculated for each 

date and method and is used for the comparison.  

The results of the comparison with MODIS product LST and the intercomparison of the LST values 

retrieved by the tested methods (Table 7) show that SC and RTE-ACPC are more similar to each other 

than to the LSTs from MODIS product (RMSD of 4.16 and 4.29 °C for RTE-ACPC and SC 

respectively). On the contrary, the MW-estimated LST values are much closer to MODIS LSTs 

(RMSD of 2.27 °C).  

Compared to Landsat-estimated values MODIS product underestimates LST, the bias is 1.5 °C for 

MW and 3.5 °C for SC procedures. This is in agreement with the results reported in previous  

studies [40,63,64], which mention that LST values from MODIS product are lower than those obtained 

from other sensors or in situ measurements. Thus, Trigo et al. [65] observed a negative bias of 2.6 °C 

in MODIS LST compared with ground values, especially at night. The underestimation also occurs 

when comparing MODIS with other sensors, such as SEVIRI [65] and AATSR [40]. In case of 

AATSR sensor, which is the most accurate infrared radiometer currently being flown in space 

according to [40], the biases of −0.5 and −1.2 °C were observed both during day and night 

respectively. So, it is evident that there is a problem related to spatial scale differences, which makes 
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complicated the comparison of satellite and in situ data [17,48,49,66], although the differences are also 

affected by other factors. One of the most important is the impact of the observation angles on the 

measurements: while Landsat angles of observation are almost nadiral, MODIS views the study area at 

an angle of 60°, i.e., the sensor observes the surface from the west, detecting higher fraction of shadow 

and vegetation surfaces considerably decreasing LST. Previous studies show that the differences in the 

LST measured in nadir and off-nadir observations can be as large as 5 °C depending on the angle and 

cover type [17,67].  

On the other hand, the 21 min time mismatch in the study area overpass between the sensors 

(ranging from 7 min to 38 min, see Table 1) also operates in the same direction. The analysis of the 

time differences between Landsat and MODIS is performed using data from thermal sensor installed in 

the study area. The average temperature increment between 10:30 and 10:50 GMT for the three dates 

in 2011, all of them in summer, is around 1.5 °C (Table 2). These coincide with [66] who indicate that 

LST difference between the LSTs at the moments of Landsat and MODIS Terra overpasses can range 

from 0.8 to 2 K, depending on the vegetation cover. If this time mismatch and the corresponding 

surface temperature increase were taken into account the gap between Landsat and MODIS would be 

reduced. The LSTs were not adjusted because only grass temperatures are available, not so the 

temperatures of tree canopies and shadows. However, even though tree canopies cover only about 20% 

of the area, we would expect significant decrease of the LST due to their presence within the MODIS 

pixel, since some studies [68] indicate that the difference between the grass and tree canopy 

temperatures in summer can be around 6–15 °C depending on the species and time of the day.  

Although MW apparently generates LST values, which are closer to those from MODIS, they may 

not be more accurate than LSTs estimated by other procedures. The similarity between MW and 

MODIS LSTs results from two trends acting in the same direction: one is the underestimation of the 

LST by MW algorithm due to the use of the older radiative transfer code version (LOWTRAN) and 

another is the underestimation of the LSTs by MODIS due to the differences in time and observation 

angles between MODIS and Landsat and implications of these differences on the emissivity. 

When SC results (the closest to the LSTref) are compared to MODIS LST, a seasonal bias is observed: 

the greatest variances (above 6 °C) occur in summer (Table 9) and the lowest (0.00–0.38 °C) in winter 

and autumn. This fact was already mentioned in other studies [51]. Trigo et al. [65] observed that 

greater LST dispersion in summer can be related to the great thermal contrasts between landcover 

components (bareground, grass, tree canopy) taking place during this season. Because of higher spatial 

resolution and higher variability in emissivity, Landsat is more sensitive to this dispersion. Greater 

thermal range of around 8 °C on summer dates can be appreciated in Figure 4 showing Landsat LST 

variability within MODIS pixel. We should also consider that MODIS surface emissivity estimation is 

based on landcover types from the map updated annually [69], while NDVI Thresholds emissivity 

algorithm used in this study is based on NDVI (see Section 2.4).  
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Table 9. Differences between LST retrieved from Landsat using MW and SC methods and 

LST from MODIS MOD11_L2 product. 

Date LSTMODIS (°C) 
LSTLandsat–LSTMODIS (°C) 

MW SC RTE−ACPC 

27/06/2009 39.87 2.05 3.92 5.04 

29/07/2009 39.21 4.74 6.11 6.15 

30/08/2009 38.87 2.24 6.57 3.28 

15/09/2009 28.03 1.75 2.72 3.22 

17/10/2009 22.23 −0.38 0.36 −0.90 

06/02/2010 11.99 −0.72 0.05 0.00 

11/04/2010 22.35 −0.74 0.10 −0.18 

30/06/2010 34.17 2.06 5.97 7.23 

01/08/2010 39.51 1.98 5.25 3.45 

05/11/2010 18.41 −0.92 −0.16 −0.63 

01/06/2011 25.27 2.49 3.82 2.70 

04/08/2011 38.55 1.84 5.72 6.30 

05/09/2011 29.29 3.50 5.09 5.28 

Bias  1.53 3.50 3.15 

St. Dev  1.74 2.59 2.82 

Figure 4. Box plot showing variability of Landsat LST estimated from Landsat-5 TM 

images using MW (in red) and SC (in blue) within MODIS pixel.  
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Another explanation for the magnitude of LSTLandsat–LSTMODIS is the greater spatial and temporal 

variability of emissivity values estimated from Landsat-5 TM NDVI. This wider range is caused by the 
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higher spatial resolution of the Landsat-5 TM, different algorithms used for emissivity estimation for 

two sensors and differences in viewing angles between Landsat and MODIS Terra (almost nadiral for 

Landsat vs. around 60° viewing angles for MODIS Terra) resulting in greater sensitivity of Landsat to 

an increase in the soil component and greater temperature contrasts between areas with and without 

vegetation, characteristic to summer as a consequence of grass senescence.  

5. Conclusions 

The study demonstrates that LST of dehesa ecosystem can be estimated from Landsat-5 TM 

thermal band using SC and RTE-ACPC procedures with RMSDs lower than 1 °C and the RMSD  

of 2.3 °C using MW algorithm, with expected uncertainties in energy fluxes modeling of  

around 10–30 W∙m
2
 for SC and RTE-ACPC [17]. The differences with the reference LSTs (LSTref) are 

due to the fact that the tested methods are based on the different versions of the radiative transfer code: 

LOWTRAN 7 for MW and MODTRAN 4 for SC and RTE-ACPC. Moreover, there is a seasonal bias 

in the MW results, as evident from the correlations between MW-LSTref and near-surface air 

temperature and atmospheric water vapor w (R = 0.8), explained by the worse fit of MW coefficients 

to real atmospheric conditions in the study area compared to other procedures. This dependence is not 

evident in the LSTs obtained by the SC and RTE-ACPC procedures.  

On the other hand, the existing LST mismatch between Landsat and MODIS is due mainly  

to (1) the time differences in the satellites overpasses and (2) the differences in the viewing angles 

which make Landsat much more sensitive to changes in the proportion of different landcover 

components with high thermal contrasts (soil and vegetation) and decrease of emissivity, especially 

during hot summer months.  

Considering the generally-accepted error at the level of 1–2 K [70,71], the three tested procedures 

(SC, RTE-ACPC, and MW) can be used for LST estimation from Landsat-5 TM thermal data. RMSDs 

obtained for SC and RTE-ACPC procedures are below 1 °C, with the best results for SC (RMSD = 0.5 °C). 

This algorithm, which does not require radiosounding data, is considered the most adequate for 

integration with LST from MODIS MOD11_L2 product. However, the between-sensors differences 

due to time mismatch and observation angles should be taken into account. It was not possible to 

estimate the precise magnitude of Landsat-MODIS LST differences due to the lack of information on 

the contribution of each of the landcover components to ensemble radiance from heterogeneous and 

non-isothermal pixel characteristic for dehesa ecosystem.  
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