
 

 

Remote Sens. 2014, 6, 4289-4304; doi:10.3390/rs6054289 

 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Quantifying Responses of Spectral Vegetation Indices to 

Dead Materials in Mixed Grasslands 

Xiaohui Yang 
1
 and Xulin Guo 

2,
* 

1
 Alberta Terrestrial Imaging Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;  

E-Mail: Xiaohui.Yang@uleth.ca 
2
 Department of Geography and Planning, University of Saskatchewan, Saskatoon,  

SK S7N 5C8, Canada 

* Author to whom correspondence should be addressed; E-Mail: xulin.guo@usask.ca;  

Tel.: +1-306-966-5663; Fax: +1-306-966-5680. 

Received: 5 December 2013; in revised form: 29 April 2014 / Accepted: 4 May 2014 /  

Published: 8 May 2014 

 

Abstract: Spectral vegetation indices have been the primary resources for characterizing 

grassland vegetation based on remotely sensed data. However, the use of spectral indices 

for vegetation characterization in grasslands has been challenged by the confounding 

effects from external factors, such as soil properties, dead materials, and shadowing of 

vegetation canopies. Dead materials refer to the dead component of vegetation, including 

fallen litter and standing dead grasses accumulated from previous years. The abundant 

dead materials have been presenting challenges to accurately estimate green vegetation 

using spectral vegetation indices (VIs) derived from remote sensing data in mixed 

grasslands. Therefore, a close investigation of the relationship between VIs and dead 

materials is needed. The identified relationships could provide better insight into not only 

using remote sensing data for quantitative estimation of dead materials, but also the 

improvement of green vegetation estimation in the mixed grassland that has a high 

proportion of dead materials. In this article, the spectral reflectance of dead materials and 

green vegetation mixtures and dead material cover were measured in mixed grasslands 

located in Grassland National Park (GNP), Saskatchewan, Canada. Nine VIs were derived 

from the measured spectral reflectance. The relationship between dead material cover and 

VIs was quantified using the regression model and sensitivity analysis. Results indicated 

that the relationship between dead material cover and VIs is a function of the amount of 

dead material cover. Weak positive relationship was found between VIs and dead materials 

where the cover was less than 50%, and a significant high negative relationship was 
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evident when cover was greater than 50%. When the combined exponential and linear 

model was applied to fit the negative relationships, more than 90% variation in dead 

material cover could be explained by VIs. Sensitivity analysis was further applied to the 

developed models, indicating that sensitivities of all VIs were significant over the entire 

range of dead material cover except for the triangular vegetation index (TVI), which has 

insignificant sensitivity when dead material cover was greater than 94%. Among all VIs, 

the weighted difference vegetation index (WDVI) had the highest sensitivity to changes in 

dead material cover higher than 50%. The results from this study indicated that vegetation 

indices based on combination of reflectance in red and NIR bands can be used to estimate 

dead material cover that is greater than 50%. 

Keywords: dead material cover; sensitivity analysis; regression model; remote sensing 

 

1. Introduction 

Remote spectral observations have been a vital primary source of information for the monitoring of 

vegetation characteristics. Numerous spectral vegetation indices (VIs) have been put forward to 

characterize green vegetation properties over the past few decades. These indices are primarily based 

on algebraic combinations of reflectance in the red and near-infrared spectral bands, and are found  

to be well correlated with green vegetation variables such as leaf area index [1], biomass [2],  

canopy cover [3], and the fraction of absorbed photosynthetically active radiation [4]. Limitations, 

however, have existed due to influence of external factors: solar and viewing geometry, soil and dead 

material background, and atmospheric condition [5], which confounded their performance for 

monitoring vegetation. 

The effects of bare soil have been given the full consideration in estimation of green vegetation in 

grasslands using VIs in previous research, especially in an arid or semi-arid ecosystem where 

vegetation is sparse [6]. Dead materials in grasslands refer to the dead component of grasslands, 

including fallen litter and standing dead grasses accumulated from previous years. Dead materials are 

composed of the major component of vegetation canopy in some grassland resulting from long-term 

conservation practices, which occurs, for example, in the mixed grasslands located in Grassland 

National Park (GNP), Saskatchewan, Canada. In this area in the early grazing season (end of May to 

early June), Guo et al. [7] estimated that standing dead grass, moss, lichen, rock, fallen litter and bare 

soil constitute 84.6% of ground cover, with 66.6% made up of standing dead grasses alone. Even in the 

maximum growing season (June to July) dead materials constitute 47.0% of the total biomass [7]. 

In addition to bare soil, dead materials present a potential challenge in the development of remotely 

sensed vegetation indices to determine canopy properties of green vegetation in this area. 

Previous research from this area [1,7–9] have examined the effect of dead material on estimating 

green vegetation properties, such as biomass, leaf area index, cover, using VIs. The poor performance 

of those commonly used VIs (for example, normalized difference vegetation index (NDVI) and  

soil-adjusted vegetation index (SAVI)) in this area were attributed to the fact that dead materials in 

vegetation canopy tended to decrease the contrast between red and near-infrared bands by lowering the 
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reflectance in near-infrared and increasing the reflectance in red band [8]. A study conducted in the 

grasslands of the Northern Great Plains reported that lower ratio vegetation index (Red/NIR) and 

NDVI were found in treatment with 100% dead grass residue on the ground surface, and higher values 

were found in treatment with less dead grass residue [10]. Daughtry et al. [11] found that dead 

materials have the ability to absorb a significant amount of photosynthetically active radiation  

(PAR, 0.4–0.7 µM) and thus influence the estimation of biomass and productivity of green vegetation. 

Although the influence of dead materials on vegetation index performance has been addressed in 

some studies, this issue has not been fully recognized in canopy spectral measurements [12], largely 

due to the fact that it is difficult to classify the dead material because there is no particular point in 

time where it shifts from one state of organic matter to another. In addition, the similar spectral 

reflectance of dead materials and soil makes this more complex. As a result, the impact of  

dead material reflectance is often neglected in spectral models used to estimate vegetation canopy 

properties [13]. Recently, a new index developed by He et al. [1] has taken dead materials into 

consideration by incorporating a dead material-adjusted factor into the adjusted transformed soil-adjusted 

vegetation index (ATSAVI) and has found that it improved the LAI estimation in the mixed grasslands 

by about 10% compared with other commonly used vegetation indices, such as ATSAVI, NDVI, 

triangular vegetation index (TVI), and modified SAVI (MSAVI). Nevertheless, this index is specific to 

the mixed grasslands. Thus, the task remains to develop a more robust vegetation index meant for 

measuring vegetation canopy characteristics in systems where dead materials are dominant. 

With consideration for current limitations on VI performances in a dead material-dominant system, 

the aim of this work was to investigate how VIs responds to a mixture of vegetation canopies with 

various amounts of dead materials. This was achieved through analyzing the relationship of VIs with 

dead materials and, furthermore, investigating the sensitivity of VIs to changes in dead materials. This 

paper will provide primary insight for future studies aimed at developing a more robust dead material 

resistant vegetation index. 

2. Materials and Methods 

2.1. Study Area 

The study was conducted in GNP and the surrounding provincial community pastures in 

Saskatchewan, Canada (49°N, 107°W) (Figure 1). This area, located along the border with the United 

States of America, represents the northern extent of mixed grasslands. The park spans approximately 

906 km
2
 in area and incorporates two discontinuous blocks, the West Block and East Block (not shown 

in Figure 1). The climate of the region is semi-arid with approximately 350 mm of annual precipitation 

and 347 mm of annual evapotranspiration [14]. Three broad vegetation landscape units occur in the 

park: riparian shrubland, upland grassland, and valley grassland [15]. Upland grassland covers 

approximately two thirds of the park area. The dominant plant community in the uplands is needle and 

thread (Stipa comate Trin. and Rupr.), blue grama grass (Bouteloua gracilis (HBK) Lang. ex Steud.) 

and western wheatgrass (Pascopyrum smithii Rydb.). Valley grasslands are dominated by western 

wheatgrass and northern wheatgrass (Agropyron dasystachyum (Hook.) Scribn.) along with higher 

densities of shrubs and occasional trees. Common soil types in the park area are chernozemic (dark 
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brown soil) and solonetzic soils (brown soil) [16]. Chernozemic soil is the most common in grassland 

communities with a dark color and high amount of organic content, and solonetzic soil has higher 

salinity and lighter color [8,17]. 

Figure 1. West Block of Grasslands National Park and Dixon Community Pasture. 

 

The park was established in 1984 and it was excluded from human disturbances, such as livestock 

grazing and prescribed burning, until 2005. Over nearly 30 years’ conservation, a large amount of 

senescence grasses have been accumulated. Although the surrounding pastures have been grazed, the 

grazing intensity was low and did not cause too much variation in terms of the percentage of dead 

material cover to the total land surface cover. 

2.2. Sampling Design 

The study was conducted in the West Block, including the southern portion of the Larson Block, the 

Larson and North Gillespie Blocks of GNP, and Dixon Provincial Community Pasture in 2008 

(Figure 1). Among these regions, the southern portion of the Larson Block is excluded from grazing; 

the remaining three regions are grazed by large herbivores (bison and cattle). Grazing intensities in 

these sites are considered light to moderate. In each region, three long transects were established, 

formed by 128 quadrats, each 50 × 50 cm in size, and separated by a 3-m fixed interval. The location 

for each transect was predetermined by locating the study area with the Satellite Pour l’Observation de 

la Terre (SPOT) imagery acquired in June 2007 and a digital elevation model to make sure the transect 

was located in the upland grasslands to avoid the background variation caused by different soil types 

between upland and valley grasslands. In total, 12 transects were laid out. Each transect extended 

South portion of 

Larson Block  

Larson Block  

North Gillespie  
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across the grazing pressure gradient from a water point to the upland, thus sampling areas of low and 

high dead materials, respectively. 

2.3. Biophysical Data 

Field work was conducted during the early growing season in 2008 from 20 May to 10 June. Within 

each quadrat, the percent cover of the following land-cover types were assessed visually: green grass, 

standing dead grasses, fallen litter, live forbs, live shrub, lichen, moss, bare ground and rock. After 

Daubenmire [18], the percentage of each quadrat covered by each land-cover type was first assigned to 

one of the six cover-classes: 0%–5%, 5%–25%, 25%–50%, 50%–75%, 75%–95%, and 95%–100%, 

then plant cover was further refined to the nearest 5% for cover values from 5% to 95% and to the 

nearest 1% for cover less than 5% and greater than 90%. The summed cover of standing dead grasses 

and fallen vegetation litter in each quadrat was used to represent the cover of dead material for  

that quadrat. 

2.4. Remote Sensing Data 

An ASD FieldSpec FR spectroradiometer (ASD, Boulder, CO, USA) was used to collect canopy 

reflectance data within each quadrat. The wavelength range is 350 nm to 2500 nm, with a spectral 

resolution of 1 nm. The canopy reflectance was collected with a fibre-optic tube having a 25° field of 

view (FOV) which corresponds to a FOV of approximately 1.5 m
2
 with the spectroradiometer lens 

held approximately 1 m above the ground. All hyperspectral data were collected under clear-sky 

conditions within two hours of local solar noon. To reduce the atmospheric condition changes, the 

spectroradiometer was calibrated using a white spectral reference panel (Labsphere, Inc., North Sutton, 

NH, USA) at approximately 10-min intervals. 

2.5. Vegetation Indices 

Vegetation indices based on a combination of red and near-infrared wavelengths, or green, red, and 

near-infrared wavelengths were tested in this study (Table 1). The ratio-based indices of red and  

near-infrared bands [19–22], such as NDVI are some of the most widely used VIs available from 

different sensors with different spatial and temporal resolutions, such as the advanced very high 

resolution radiometer (AVHRR), moderate-resolution imaging spectroradiometer (MODIS), Landsat 

thematic mapper (TM) and Satellite Pour l’Observation de la Terre (SPOT) [23]. Soil-adjusted indices 

such as SAVI, TVI, MSAVI, and ATSAVI have been developed to minimize the soil background 

influence by using a soil line to characterize the soil spectra, and are useful in vegetation estimation in 

semi-arid systems where bare soil is exposed due to sparse vegetation [24–27]. L-ATSAVI was 

specifically designed for this study area; however, this index can be applied to other vegetated regions 

of a similar landscape. This index incorporates both the soil and dead material-adjusted factor in its 

definition. It is intended to perform well at estimating the green vegetation in a dead material dominant 

system [1]. 
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Table 1. Vegetation indices tested in this study. The coefficients a (gain) and b (offset) in the equations for ATSAVI and L-ATSAVI are 

derived from the near-infrared vs. red rock–soil base line. In this study area a = 1.22 and b = 0.03 (X. Guo, unpublished data). 

Vegetation Indices Equation Reference 

SR (Simple Ratio Index)  [19] 

NDVI (Normalized Difference Vegetation Index)  [20] 

MSAVI (Modified Soil-Adjusted Vegetation Index)  [26] 

SAVI (Soil-Adjusted Vegetation Index) 
 

L = 0.5 

[24] 

ATSAVI (Adjusted Transformed Soil-Adjusted 

Vegetation Index)  

where X = 0.08 

[25] 

L-ATSAVI (Litter-Adjusted ATSAVI) 
 

where X = 0.08 and L = 10 

[1] 

EVI (Enhanced Vegetation Index) 
 

L = 1,C1 = 6.0,C2 = 7.5 

[21] 

WDVI (Weighted Difference Vegetation Index)  [22] 

TVI (Triangular Vegetation Index)  [27] 
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2.6. Data Analysis 

To test how the performance of vegetation indices was affected by various dead materials, the 

relationship between these two variables was examined using univariate regression analysis. Both 

linear and nonlinear models were applied in the regression analysis to fit the relationship. The model 

with high coefficient of determination (r
2
) was applied to describe the relationship between the dead 

material cover and VIs. Before conducting the regression analysis, all VIs and dead material cover data 

were pooled together. Vegetation indices were averaged for the quadrat with the same dead material 

cover. Dead material cover from different quadrats with same value was also averaged. On the basis of 

regression analysis, the sensitivities of the VIs to dead material cover were investigated using a 

sensitivity parameter(s) developed by Ji and Peters [28], which is defined as the ratio of the first 

derivative to the standard error of the regression function. Compared with current parameters for 

sensitivity analysis including goodness-of-fit measures (such as coefficient of determination (R
2
) and 

root mean squared error (RMSE) [29], relative equivalent noise (REN) [20], vegetation equivalent 

noise (VEN) [30,31], and relative sensitivity (Sr) [32], this new parameter not only indicates the 

sensitivity of the vegetation indices as a function of biophysical variables but also takes the estimation 

error of the regression function into account. Thus, it could express the sensitivity of the VIs 

comprehensively. The function of the parameter is defined as: 

ˆ

ˆ

y

y
s


  (1) 

where ŷ is a first derivative of the bivariate regression model using biophysical variables as 

independent variables (x) and each VI as the dependent variable (y). The fitted regression model is 

given by:  

 (2) 

and ŷ is expressed as: 
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In linear and curvilinear regression function, σŷ is given by: 
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and for nonlinear regression function, σŷ is given by: 
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where σ
2
 is the mean square error, X is the matrix of independent variables, and Xi is the ith row of X, 

F is the matrix of derivatives for approximating least squares estimations and Fi denotes the ith row of 

F matrix [33]. Student’s t-test was applied to test the significance of ŷ, and p < 0.05 was used to 

determine the significance. 
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3. Results 

3.1. Mixed Grassland Biophysical Characteristics 

In the study area, dead materials were a major component of the vegetation canopy while green 

grass, which ranked second, provided a relatively small proportion (Table 2). Dead materials covered 

about of 69% of ground surface. The cover of green grass was 8%. Dead materials together with green 

grass constituted almost 77% of the canopy cover. Unlike most of the semi-arid grassland ecosystems, 

the bare ground and rock in the study area were relatively small with the median value of 0%. 

Table 2. Descriptive statistics of biophysical variables of mixed grasslands. STD stands for 

standard deviation; CV stands for coefficient of Variance and N stands for sample size. 

Value 
Canopy Cover (%) 

Green Grass Forb Shrub Dead Materials Moss Lichen Bare Ground Rock 

Mean 8.8 2.4 2.8 66.7 8.1 5.7 2.9 2.7 

Median 8 1 0 69 8 2 0 0 

Min 0 0 0 4.0 0 0 0 0 

Max 50 30 35 100 35 60 70 74 

STD 5.7 3.5 5.2 15.9 8.1 8.0 7.9 6.7 

CV 1.5 0.7 0.5 4.2 1.0 0.7 0.4 0.4 

N 1536 1536 1536 1536 1536 1536 1536 1536 

3.2. Spectral Features of Mixed Grasslands 

The characteristics of vegetation composition affect its spectral response. Figure 2 showed the 

reflectance spectra of mixed grasslands in the study area. The spectral curve was the average of 

reflectance from all quadrats. The spectral reflectance curve showed an increasing trend from the blue 

to the green wavelength region, relatively stable between the green and red wavelength regions and 

high reflectance in the near-infrared and mid-infrared regions. 

Figure 2. Spectral responses curve of the grasslands in GNP. Three primary water 

absorption (noisy) regions (1361–1395, 1811–1925, and 2475–2500 nm) from the field 

measurements were deleted. 
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3.3. Relationship between Dead Material Cover and Vegetation Indices 

The quadratic model was found best fitting the relationship between dead material cover and VIs 

(Figure 3 and Table 3). According to the r
2
 values (Table 3), NDVI, SR and TVI showed a slightly 

higher correlation with dead material cover, and the performances of soil-adjusted indices (ATSAVI, 

SAVI, MSAVI) and WDVI were all similar. Among all VIs, L-ATSAVI had the lowest correlation 

with dead material cover. Overall, the quadratic model indicated that at lower level of dead material 

cover (<30%), positive relationships were evident between VIs and the dead material cover. At mid 

dead material cover levels (30%–60%), the VIs were not sensitive to changes in dead material cover; 

and where the dead material cover exceeds 60%, negative relationships were evident (Figure 3). 

Figure 3. Scatter plot of Y (VIs) vs. X (dead material cover) and the curvilinear model fit 

(thick line) (a–i). 

 

The quadratic relationship (Figure 3) cannot be applied to estimate the cover of dead materials from 

VIs. Therefore, we split the dataset into two groups to fit linear regressions. For each VI tested, the 

breakpoint of the dataset was determined as the graph (Figure 3) where slope was zero. The changes in 

slopes of the developed models reflect the changes in relationships between VIs and dead material 

cover. The corresponding dead material cover where the slope of the model developed for each VI 

turns to zero was used as the breakpoint. The breakpoints for most VIs were 50% and the rest were 

around 50% (Table 3). Applying different breakpoints to VIs caused different dataset size among VIs. 

To avoid the effect of different dataset sizes on model fit and sensitivity among VIs, 50% dead material 

cover was used as the breakpoint of dataset for all VIs to make sure that they all had the same dataset size. 
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After the dataset was divided into two groups, regression analysis was applied to each of them 

separately to re-evaluate the relationship between VIs and dead material cover. Using this segmented 

regression analysis, we found that the relationship was positive (but weak) with less than 50% cover of 

dead material (Figure 4) but negative where the cover was greater than 50% (Figure 5). A combined 

exponential and linear model best fitted the relationship between VIs and dead material cover that was 

greater than 50%, with r
2
 higher than 0.90 (Figure 5). 

Table 3. Summary statistics for the relationships between VIs and dead material cover. 

Vegetation Indices Equation R
2 df(y)/df(x) 

Dead Material Cover 

with df(y)/df(x) = 0 

SR Y = −1.85x
2
 + 1.92x + 1.17 0.56 0 50% 

NDVI Y = −0.59x
2
 + 0.61x + 0.09 0.56 0 50% 

ATSAVI Y = −0.46x
2
 + 0.47x − 0.08 0.54 0 48% 

L-ATSAVI Y = −0.39x
2
 + 0.43x − 0.09 0.40 0 56% 

SAVI Y = −0.32x
2
 + 0.33x + 0.05 0.53 0 55% 

EVI Y = −0.38x
2
 + 0.4x + 0.06 0.53 0 50% 

WDVI Y = −0.19x
2
 + 0.2x − 0.002 0.54 0 50% 

MSAVI Y = −0.27x
2
 + 0.28x + 0.04 0.53 0 45% 

TVI Y = −11.13x
2
 + 11.13 + 0.38 0.56 0 50% 

Figure 4. Relationships between VIs and dead material cover with cover less than 50% of 

total land cover (a–i). 

 



Remote Sens. 2014, 6 4299 

 

 

Figure 5. Relationships between VIs and dead material cover with cover higher than 50% 

of total land cover (a–i). 

 

3.4. Sensitivity of the Vegetation Indices 

A sensitivity analysis was conducted to further investigate how sensitive each VI is to a change in 

dead material cover higher than 50% as shown in Figure 6. A relatively high sensitivity was found for 

VIs when dead material cover was >60% and <90% except TVI and SR which had higher sensitivity 

when dead material cover was >60% and <70%. Among the nine VIs, WDVI had the highest 

sensitivity over the entire range of dead material cover. The sensitivities of TVI and SR were relatively 

low compared to the remaining VIs. T-statistics indicated that the t-scores (same as s values) were all 

greater than 1.98 for the nine VIs, except TVI, which had an s-value less than 1.98 when dead material 

cover was >94%. In this analysis, 1.98 is the critical value in a two-tailed t-test (α = 0.05, degree of 

freedom (df) = 48) for rejecting the null hypothesis. Thus we concluded that all VIs were significantly 

sensitive to dead material cover, except TVI, which was not significant when dead material cover was 

greater than 94%. 
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Figure 6. Sensitivity analysis for VIs with different level of dead material cover. S is the 

sensitivity parameter and X is the dead material cover. The sensitivity of a VI to dead 

material is significant when s > 1.98. 

 

4. Discussion 

Changes in the condition and composition of vegetation lead to changes in the spectral signature of 

the land surface. Dead materials are a major component of the study area. With the amount of dead 

materials accumulated, the vegetation spectral curve of the study area showed increasing reflectance in 

blue, red and mid-infrared wavelength regions and decreasing reflectance in the near-infrared 

wavelength region, compared to the abundant closed green vegetation canopies. The reflectance in the 

visible region of the spectrum (0.35–0.7 µm) is primarily a function of vegetation density (for 

example, biomass per unit) and of the chlorophyll content of the leaves [34]. For our case, the 

increases of reflectance in blue and red regions were more likely due to the reduced chlorophyll 

content of dead materials. The decrease in reflectance of near-infrared and increase in mid-infrared 

were potentially attributed to the larger intercellular space and less water content of dead materials 

when compared with green vegetation [35]. The spectral signature of the study area illustrated that 

dead materials were one of the major surface components controlling the spectral behavior of 

vegetation canopies. 

The linear relationship between VIs and vegetation properties has been reported in previous  

studies [8,9,36]; however, we found the responses of VIs were not consistent along the whole range of 

dead material cover. As indicated by Van Leeuwen and Huete [31] the variability among, and the 

differences between, the spectral properties of dead materials, green vegetation and soil determined 

whether the vegetation index response increases or decreases. The weak relationships between VIs and 

dead material cover that is less than 50% may be attributed to the confounding effects of soil background. 

Previous studies [11,37] have indicated the poor performance of Red-NIR based vegetation indices for 

discriminating dead materials due to the similar spectral features of dead materials and soil at VIS-NIR 

wavelength ranges [38]. As dead materials increase and cover the majority of land surface, the effects 

of soil are much less than at low dead material covers. Significant relationships between VIs and dead 
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material cover were found when dead material cover was higher than 50%, which suggested their 

suitability for estimating the cover of dead material. 

The sensitivity analysis which tracks the sensitivities of VIs through the range of dead material 

cover provides more detailed information on VIs’s performance. Although VIs have similar r
2
, their 

sensitivity varied with the WDVI having the highest sensitivity over the entire range of dead material 

cover. The insignificant sensitivity of TVI in dead material cover higher than 94% implied that  

TVI was not suitable for predicting dead material cover with high density (for example >94%). By  

just focusing on the dead material cover with high density (>50%), the performance of VIs on 

estimation of dead material cover in terms of r
2
 (>0.9) was dramatically improved compared to 

previous studies [8,38]. For example, Zhang et al. [8] reported the correlation coefficients (r) between 

dead grass cover with VIs derived from SPOT 5 images including NDVI, AISAVI, normalized cover 

index (NDCI) and ratio cover index (RCI) ranged from 0.47 to 0.56, which equal to r
2
 of 0.22 to 0.30. 

Daughtry et al. [37] reported an r
2
 of 0.89 when relating crop residue to the cellulose absorption index 

(CAI), an index based on narrow bands, which was designed for quantification of senescent grass 

cover [13]. 

5. Conclusions 

Understanding the responses of commonly used VIs to dead material cover in mixed grassland is 

essential for quantifying green vegetation biophysical properties as the dead material is one of the 

major vegetation components in this area which confounds the spectral feature of green vegetation. 

Results from this study indicated that the responses of VIs tested in this study were not consistent 

along the whole range of dead material cover. VIs tested in this study could be used for estimating 

dead material cover that is greater than 50% in mixed grasslands. WDVI, which has the highest 

sensitivity and similar r
2
 to the remaining Vis, provided the best performance for estimation of dead 

materials cover higher than 50%, among VIs tested in this study. The VIs selected for this study were 

primarily based on red and near-infrared bands and limited for estimation of dead material cover with 

high density (>50%). VIs based on other wavelength regions (for example, mid-infrared wavelength) 

are worthy of being tested using the methods applied in this study in future work. 
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