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Abstract: Point-like targets are useful in providing surface deformation with the time 

series of synthetic aperture radar (SAR) images using the multi-temporal interferometric 

synthetic aperture radar (MTInSAR) methodology. However, the spatial density of 

point-like targets is low, especially in non-urban areas. In this paper, a hierarchical 

MTInSAR method is proposed to increase the spatial density of deformation measurements 

by tracking both the point-like targets and the distributed targets with the temporal 

steadiness of radar backscattering. To efficiently reduce error propagation, the deformation 

rates on point-like targets with lower amplitude dispersion index values are first estimated 

using a least squared estimator and a region growing method. Afterwards, the distributed 

targets are identified using the amplitude dispersion index and a Pearson correlation 

coefficient through a multi-level processing strategy. Meanwhile, the deformation rates on 

distributed targets are estimated during the multi-level processing. The proposed MTInSAR 

method has been tested for subsidence detection over a suburban area located in Tianjin, 

China using 40 high-resolution TerraSAR-X images acquired between 2009 and 2010, and 

validated using the ground-based leveling measurements. The experiment results indicate 

that the spatial density of deformation measurements can be increased by about 250% and 
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that subsidence accuracy can reach to the millimeter level by using the hierarchical 

MTInSAR method. 

Keywords: hierarchical processing strategy; distributed target; multi-temporal InSAR; 

Pearson correlation coefficient  

 

1. Introduction 

The multi-temporal interferometric synthetic aperture radar (MTInSAR) methodology detects 

point-like targets (PTs) from SAR image time series to provide surface deformation information [1–7]. 

In recent years, it has been widely applied to investigate various deformation events related to volcano, 

earthquake, glacier, landslide, mining, groundwater exploitation, and so forth [3,8–13]. For MTInSAR 

analysis, the time series of satellite SAR images collected over a study area are used to analyze the 

spatiotemporal behavior of surface deformation in order to mitigate the negative effects of both temporal 

decorrelation [14] and atmospheric delay [15,16]. 

Several MTInSAR methods have been proposed by various research groups to overcome the 

technical limitations of the conventional InSAR [1–4,6,7,10,11,17]. Some methods, termed persistent 

scatterer (PS) InSAR, detect deformation only for point-like targets (PTs), such as rocks and man-made 

structures with the temporal steadiness of radar backscattering [3,9,13,18]. Some methods, termed the 

small baseline subset, detect deformation by using interferometric pairs with short spatial baselines to 

maximize interferometric coherence in the case of more distributed targets (DTs) available in a study 

area [1,11]. In addition, other methods can be applied to detect deformation for the specific study areas, 

including phase stability analysis [4], PS networking analysis [5,6], coherent pixels technique [2] and 

temporarily coherent point InSAR [17]. 

Previous studies demonstrated that all PTs and some DTs can remain temporally steady in radar 

backscatter [1,3,4,19], which can be used for deformation time series analysis. Ferretti et al. [3] reported 

that a PS corresponding to a PT can be identified by using the thresholding of the amplitude dispersion 

index (ADI), which can be derived by the statistical calculation of the time series of amplitude values at 

a pixel. However, the ADI analysis may result in the failure to identify a useful DT with the temporal 

steadiness of radar reflectivity [4,9]. Hooper [4] proposed analyzing the spatial correlation of phase data 

for raising reliability in PS solutions. The combined analysis of both PTs and DTs for deformation 

extraction is rarely considered in the literature. The spatial resolution of deformation measurements 

derived from MTInSAR processing is therefore not satisfactory for some study areas.  

To increase spatial resolution and the coverage of deformation information, this paper presents an 

improved MTInSAR method by tracking both PTs and DTs with the temporal steadiness of radar 

reflectivity. As the Pearson correlation coefficient (PCC) works well for measuring the data correlation 

in time and space [20], we use the thresholding of both ADI and PCC for selecting the useful pixels 

corresponding to the PTs or DTs. To control error propagation, a hierarchical analysis strategy is applied 

to extract deformation rates at the useful pixels. For the pixels with lower ADI values, the deformation 

rates are first derived on an optimized network by a least squared (LS) estimator and a region growing 
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method. For the pixels with higher ADI values, they are classified into several groups by the ADI 

intervals, and the deformation rates are then estimated through the multi-levels of processing.  

For validation purpose, we test the proposed MTInSAR algorithm for subsidence detection over 

Tianjin in China using the 40 high resolution TerraSAR-X (TSX) images acquired between March 2009 

and December 2010. For accuracy analysis, the ground truth data collected by precise leveling will be 

used to compare with the subsidence measurements derived from the MTInSAR solution.  

This paper is organized as follows. Section 2 will present the modeling and hierarchical processing 

for the extraction of the deformation information. The experimental results and discussion will be given 

in Section 3. Some conclusions will be addressed in Section 4. 

2. Hierarchical Processing for Deformation Extraction 

Suppose that N differential interferograms can be generated from M SAR images available for a 

study area. We extract deformation rates at all the useful pixels by using a hierarchical processing 

approach. Different from the existing methods [1–3,18], we select the valid pixels with the temporal 

steadiness of radar reflectivity by using both ADI and PCC, taking into account both the temporal and 

spatial correlation of phase data used for deformation analysis. The PCC used to identify DTs will be 

addressed in this Section. It should be noted that the hierarchical processing strategy means that the 

pixels with lower ADI values are first treated, and the pixels with higher ADI values are then processed. 

In addition, the deformation time series at each useful pixel are derived by adding the linear motion 

component into the nonlinear motion components. The nonlinear motion components are estimated by 

using the spatiotemporal filtering method [21]. The primary phase models and procedures for extracting 

deformation information will be presented in this section. 

2.1. Estimating Differential Deformation Rate between Two Valid Pixels  

As a differential operation can be used to cancel out some spatially correlated errors [6,10,11], the 

basic phase modeling is performed along a link between two adjacent pixels. The differential phase 

between two pixels, x and y, in the k-th interferogram can be represented by: 
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consisting of increments of nonlinear deformation, the atmospheric phase and decorrelation noise. 

If there are no phase ambiguities between two pixels, the least squared estimation can be applied to 

estimate Δv and Δε using N interferograms generated from N + 1 images through [17]: 
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The most probable values of ∆v and ∆ε are, 
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where 
^ 

·  denotes the estimated value. The vector of residual phases estimated can be represented by:  
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According to Zhang et al. [17], an easy and efficient outlier detection algorithm is used to reject the 

links with the effect of phase ambiguities,  
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where Max(·), E(·) and ζ(·) are the maximum value, expected value and standard deviation (SD) of a 

vector or matrix, respectively. When the Equation (6) is satisfied, the arc connecting two valid pixels is 

considered containing an outlier at the 95% confidence level. This arc is not used for further analyses. 

2.2. Pearson Correlation Coefficient (PCC) 

PCC was reported as a good indicator for measuring the data correlation in temporal and spatial 

domains [20]. A high PCC value assures the high spatial phase correlation between two points of a link. 

Besides, in the MTInSAR analysis, a high PCC value indicates that the dominant information in the 

phases of two points are spatially correlated, while the spatially uncorrelated terms, such as noise and 

part of the elevation errors [22], are considered as insignificant. To validate this, the modeling and 

simulation experiments will be carried out as follows. 

For a link between two adjacent pixels, the PCC can be empirically estimated using the phase values 

obtained from N interferograms by: 
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where φ
k 

x and φ
k 

y denote the phase values at the two pixels, respectively, obtained from the k-th 

interferogram; 
__ 

 x and 
__ 

 y are the mean phase values at the two pixels, respectively, derived from the N 
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interferograms. The PCC varies within [0, 1], and a greater PCC means a higher spatiotemporal 

correlation between the phase of two adjacent pixels.  

To check the usefulness of PCC, a simulation experiment was performed by using the temporal and 

geometric baselines given in Table 1. For simulation purpose, we set ∆v and ∆ε between two adjacent 

pixels to be −3.5 mm/yr and 6.7 m, respectively. A pixel with an ADI value of 0.25 was chosen as a 

reference pixel located at x, from the real data used in Section 4, thus obtaining a sequence of phase 

values for all the interferograms. The sequence of phase values at the adjacent pixel, y, was obtained by 

adding the relevant phase increments calculated using the given ∆v and ∆ε by Equation (1) into the 

sequence of phase values at the reference pixel.  

Table 1. The 40 TerraSAR-X (TSX) images and the interferometric parameters used in this study.  

No. of Images Imaging Dates 

kT   

(days) 

kB  

(m) 
No. of Images Imaging Dates 

kT   

(days) 

kB  

(m) 

1 20090327 * −231 42 21 20091205 22 127 

2 20090407 −220 69 22 20091227 44 134 

3 20090418 −209 −23 23 20100107 55 −25 

4 20090429 −198 13 24 20100118 66 −27 

5 20090510 −187 31 25 20100129 77 −7 

6 20090521 −176 65 26 20100209 88 −383 

7 20090623 −143 −76 27 20100220 99 −156 

8 20090704 −132 −17 28 20100303 110 −152 

9 20090715 −121 −33 29 20100314 121 −105 

10 20090726 −110 −113 30 20100325 132 9 

11 20090806 −99 139 31 20100405 143 −93 

12 20090828 −77 −102 32 20100416 154 −127 

13 20090908 −66 37 33 20100427 165 −36 

14 20090919 −55 −64 34 20100621 220 19 

15 20090930 −44 −182 35 20100702 231 −78 

16 20091011 −33 −39 36 20100804 264 82 

17 20091022 −22 −66 37 20100906 297 1 

18 20091102 −11 120 38 20101009 330 158 

19 20091113 0 0 39 20101111 363 −23 

20 20091124 11 47 40 20101214 396 −93 

* For example, one can read 20090327 as 27 March 2009. 

We added the normally distributed noises into the phase data. Four noise levels with an SD (ζx) of 

0.3, 0.5, 0.7 and 0.9 radians were considered for the phase values at the reference pixel, and the noise 

levels with SDs of 0–1 radians were considered for the phase values at the adjacent pixel. Five-thousand 

simulations were made for each case of noise levels and, thus, calculating the mean and SD of PCC. The 

statistical results for PCCs derived from the simulation experiment are shown in Figure 1a–d for the four 

cases of ζx. For each case, the PCCs are represented as a function of ζy. The solid curves in Figure 1 

depict the mean values of PCCs, while the error bars denote the SDs of PCCs. 
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Figure 1. The variation of Pearson correlation coefficients (PCCs) represented as SDs in the 

simulated phase data at the two adjacent pixels. The solid curves depict the mean values of 

PCCs, while the error bars denote the SDs of PCCs. Noise SDs of the reference pixel’s 

phase values are 0.3, 0.5, 0.7, and 0.9 radians in (a–d), respectively. 

 

It can be seen from Figure 1 that the PCC values nonlinearly decrease with the increasing of ζy. A 

comparison between four cases of ζx of 0.3, 0.5, 0.7 and 0.9 radians (depicted by Figure 1a–d, 

respectively) at the reference pixel, x, indicates that the PCCs drop more significantly if the SD in the 

phase data at x is greater. The simulation results indicate that the PCC can be used to reflect the level 

of spatially uncorrelated noises and to assess the quality of phase values in the time domain. Besides, it 

is also visible that the uncertainties of PCCs increase with the increasing of SDs in the phase data at 

the two adjacent pixels. The uncertainties are mainly due to the phase ambiguities at the two pixels. 

2.3. Estimating Deformation Rates at the Pixels with Lower ADI Values 

To provide a reliable basis for the subsequent analysis, we first concentrate on estimating 

deformation rates in the LOS direction at the pixels with a higher signal-to-noise ratio (SNR) in phase 

data. As suggested by Hooper [4], we select the pixels with lower ADI values of ≤0.4 as the candidates 

for estimating deformation rates, thus obtaining a subset of potential pixels (SPP). As done by  

Liu et al. [6], any two adjacent pixels in the SPP are connected if their geometric distance is smaller than a 

given threshold, and the PCC between two pixels calculated using (7) is greater than a given threshold, 

thus forming a freely connected network (FCN) of the SPP. If a pixel in the SPP cannot be connected with 

any neighboring pixels, it is an isolated pixel and discarded for further processing. The estimation of LOS 

deformation rates is performed on the basis of the FCN using the LS solution and the region growing.  

For each link of the FCN, the differential deformation rate between two pixels related to the link is 

estimated using the LS solution method, as described in Section 2.1, thus obtaining the relative 
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deformation rates along all the links of the FCN. The subsequent processing is to estimate the absolute 

LOS deformation rates at the valid pixels in the FCN. Although Liu et al. [6] applied a LS solution for 

the entire FCN to estimate the absolute deformation rates, the computation cost is usually not acceptable, 

particularly for the processing of the high resolution SAR images. For example, in our experiment, 

which will be shown in Section 3, 91,610 PTs are maintained and 2,265,989 links are included in the 

FCN network. A design matrix for the LS solution by the method proposed by Liu et al. [6] requires the 

support of 773 GB of computer memory. Such a computation burden makes it impractical to apply the 

LS solution in high resolution MTInSAR processing. Although the LS estimation on the divided image 

blocks is possible [23], new problem arises, such as block-result mosaicking. We therefore propose to 

estimate the absolute LOS deformation rates through a region growing method to decrease the memory cost. 

Starting from a reference pixel with known deformation information, the region growing is actually 

an operation of spatially integrating the relative deformation rates along the optimized paths of the FCN. 

It should be noted that the key to the region growing method is to search for the integral paths, thus 

ensuring the quality of such an integration solution. We take three constraints to find the nodes for the 

integral paths. If and only if a pixel meets the three constraints simultaneously, it can be accepted as a 

node of the integral paths. The first constraint is that the PCC between two adjacent pixels’ phase should 

be greater than a given threshold. The remaining two constraints are chosen to measure the spatial 

autocorrelation of the deformation rates and the elevation errors between the adjacent pixels, which are 

denoted by their localized root-mean-squared error (RMSE, i.e., δv and δε), 
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where x is the coordinate of the pixel to be assessed; yj are the adjacent pixels that have already been 

assessed and accepted; and L denotes the number of valid adjacent pixels in a window centered on x; 

Δv(x,yj)
 = vx – vy; Δε(x,yj)

 = εx – εy; Δ  (x,yj)
 and Δ  (x,yj)

 are the same as in Equation (4). According to the 

previous studies [6], δv and δε should not be greater than 5 mm/yr and 10 m, respectively, for optimizing 

the integral paths. The three aforementioned assessments are essentially indicators of phase quality. No 

matter how different the deformation patterns are, the high phase quality always ensures high values for 

the PCC and low values for the two localized RMSE indicators. Upon completion of region growing for 

the entire FCN, the valid PT pixels, their connectivity, deformation rates, as well as elevation error are 

determined, thus providing a basis for the subsequent hierarchical analysis.  

2.4. Estimating Deformation Rates at the Pixels with Higher ADI Values 

Different from the existing methods that concentrate on processing the PT candidates [10,21], the 

pixels that do not consist of dominant scatterers are also taken into account in our MTInSAR method. 

Therefore, we further treat the pixels with higher ADI values (˃0.4) through the multi-levels of 

processing. It was demonstrated that some pixels with higher ADI values possess satisfactory SNR in the 

time series of phase values, which most likely correspond to the DTs with the temporal steadiness of 
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radar reflectivity [4,19]. Some good examples of DTs include asphalt roads, concrete roads, roofs, 

non-cultivated lands and dessert areas with sufficient roughness [19]. Such kinds of targets can still be 

used for deformation extraction. We identify the useful pixels by mainly applying the spatiotemporal 

correlation analysis with the PCC thresholding, as discussed in Section 2.2. 

To reduce the possibility of error propagation and to reduce the memory cost, all the pixels with ADI 

values ˃0.4 are processed hierarchically for the extraction of deformation rates. The mean ADI (mADI) 

and the SD of ADI (ζADI) are first calculated. Therefore, the upper bound of the ADI values is  

(mADI + 3ζADI) at a confidence level of 99.7%. According to the upper bound, all the pixels are 

classified into Q groups by the ADI intervals. The LOS deformation rates are estimated group-by-group 

using the procedures described in Section 2.3. The PTs belong to Group 0. To estimate the LOS 

deformation rates for the pixels in Group i, the valid results derived from the previous groups are used as 

the reference data. 

For any pixel of interest (POI) in Group i, we first select the best neighboring pixel (BNP) from the 

valid pixels of the previous groups using two criteria, thus forming a link for estimating the deformation 

rate at the POI. The first criterion is that the geometric distance between the BNP and the POI should be 

shortest and at least less than a given threshold. The second criterion is that the PCC between the BNP 

and the POI should be greater than a given threshold. If the criteria cannot be met, the POI is discarded 

for further analysis. Otherwise, we then estimate ∆v and ∆ε between the BNP and the POI using the LS 

solution method, as described in Section 2.1. The LOS deformation rate and the elevation error at the 

POI are derived by adding ∆v and ∆ε into those at the BNP, respectively. The quality check is finally 

performed using the three constraints, as described in Section 2.3. If the quality check cannot be passed, 

the POI is viewed as an invalid pixel. In the same way, all the pixels in Group i are analyzed on a 

pixel-by-pixel basis, thus selecting the valid pixels and determining the deformation rates and the 

elevation errors at these pixels. After treating Group i, the same procedure are applied to Group i + 1, 

thus completing the analysis of all the Q groups.  

For better understanding, Figure 2 shows the flowchart of the hierarchical processing procedures. 

2.5. Extracting Nonlinear Deformation Components at the Useful Pixels 

The nonlinear deformation components are extracted by using spatiotemporal filtering [21] at all 

the useful pixels, including both PTs and DTs. Previous studies indicate that the atmospheric 

perturbation and the nonlinear motion exhibits correlation in the space domain, and the former generally 

possesses a longer correlation distance than the latter [1,21]. In the time domain, the former is usually 

uncorrelated, due to different meteorological conditions on different SAR acquisition dates, while the 

latter is generally correlated due to temporal motion evolution [21,24]. As the nonlinear motion and the 

atmospheric artifact have different frequencies in time and space domain, the two components can be 

separated by spatiotemporal filtering [21]. 

Finally, for the given pixel of the k-th image, the full resolution deformation value, S
k 

full, is the sum 

of the linear deformation components, S
k 

l , and the nonlinear deformation component, S
k 

nl: 

k

nl

k

l

k

full SSS   (9) 
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Figure 2. Flow chart of hierarchical processing. ADI, amplitude dispersion index; DT, 

distributed target; PT, point-like target; FCN, freely connected network; POI, pixel of 

interest; BNP, best neighboring pixel. 
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3. Experimental Results and Discussion 

3.1. Study Area and Data Source 

As shown in Figure 3, we selected the northwestern part of Tianjin in China as the area of 

investigation, which possesses complex hydrological settings and poor engineering geological 

properties [25–28]. It is reported that the land subsidence around Tianjin is ongoing, due to the overuse 
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of groundwater [29]. In this study, we utilize 40 TSX images acquired between 27 March 2009, and  

14 December 2010, over Tianjin for the detection of land subsidence. All the images were collected 

with an incidence angle of 41 degrees in HH polarization mode. Table 1 lists the acquisition dates of all 

the TSX images and the interferometric parameters used in this study. The original datasets were 

provided by Infoterra as single look complex images with pixel a spacing of 1.36 m in the slant range 

(2.07 m in the ground range) and 1.90 m in the azimuth.  

Figure 3a shows that Tianjin is located in the eastern coastal region of the North China Plain, 

bordering with Beijing, Hebei and Bohai Bay. The entire coverage of the TSX scenes used for 

subsidence detection is marked by a larger filled rectangle in Figure 3a. We will conduct subsidence 

analysis in the typical area as marked by a small filled rectangle in Figure 3a. The amplitude image 

(5000 × 6200 pixels, equivalent to 10.4 × 11.7 km
2
) averaged from 40 TSX images of the selected 

study area is shown in Figure 3b with the annotation of seven leveling benchmarks (BM1–BM7) and 

the five man-made corner reflectors (CR1–CR5). It can be seen from Figure 3b that residential areas, 

cultivated lands, fishponds, rivers, railways and highways appear in the study area. The four epochs of 

the leveling campaigns (with an accuracy of 2 mm/km in height difference) were carried out for the 

BMs and CRs during the period of the 40 TSX acquisitions. The leveling dates of the four epochs are 

around 20 April 2009, 5 September 2009, 15 April 2010, and 30 October 2010, respectively. The 

leveling data will be used to validate the subsidence results derived from the MTInSAR processing. 

Figure 3. The location map and the study area around Tianjin in China. The coverage of the 

TSX scenes and the study area selected are marked in (a) by a larger and smaller filled 

rectangle, respectively. The amplitude image averaged from 40 TSX images of the study area 

is shown in (b) with the annotation of seven benchmarks (BMs) by red triangles and five 

corner reflectors (CRs) by green squares. 
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The TSX image acquired on 13 November 2009, is selected as the unique master image for the 

interferometric combinations. The remaining 39 TSX images are used as the slave images, thus forming 

39 interferometric pairs for subsidence analysis. Table 1 lists all the TSX images and the interferometric 

parameters (i.e., temporal and geometric baselines) used in this study for the MTInSAR processing. 

The 39 full-resolution differential interferograms were generated using the GAMMA DIFF processor 

through the two-pass differential processing approach. The digital elevation model (DEM, with a spatial 

resolution of 90 meters) derived from the Shuttle Radar Topography Mission (SRTM) is used to remove 

the topographic phases from the interferograms. 

3.2. Subsidence Results and Analysis 

Using 40 coregistered TSX images, the ADI values at all the pixels in the study area, as shown in 

Figure 3b, were first calculated by following the method by Ferretti et al. [3]. The statistical analysis 

indicates that the mean and SD of all the ADI values are 0.65 and 0.19, respectively, and an ADI value 

belongs to [0.08, 1.22] at a confidence level of 99.7%. We then extracted the deformation rates at the 

valid pixels through the hierarchical analysis by using the 39 TSX differential interferograms. A total 

of nine groups of pixels with ADI values of (0, 0.4], (0.4, 0.5], …, and (1.1, 1.2], respectively, were 

processed on a group-by-group basis. For the pixels in Group 0 with ADI values <0.4, the procedures 

as presented in Section 2.3, including the formation of FCN, LS-based estimation at each link, region 

growing and quality assessment, were applied to estimate the LOS deformation rates at the valid 

pixels. As the rigorous quality control was performed during the solution, the 91,601 pixels were 

actually determined as the valid pixels from all the 137,698 pixels in Group 0. The deformation rates 

can be easily converted to the subsidence rates by following the method by Liu et al. [29]. Figure 4 

shows the subsidence rates estimated by the MTInSAR method at the 91,601 valid pixels, which 

mainly correspond to PTs with the temporal steadiness of radar backscattering [22]. It should be noted 

that all the subsidence results are referenced to CR5, and the spatial density of the deformation 

measurements is 753 km
−2

. 

As shown in Figure 4, most of the PTs are located in the built-up areas and along the road network, 

due to the availability of many natural and artificial hard objects, such as rocks in parks, buildings, 

bridges, iron fences and concrete bodies associated with urban infrastructures. These objects have less 

temporal variability of the radiometric property compared to incident radar echoes. However, very 

sparse PTs appear in farming lands and vegetated areas due to the temporal variability of radar 

reflectivity (e.g., caused by tilling, crop or vegetation growth and leaf fluttering related to wind 

effects). No PTs are available in fishponds, lakes and rivers, as expected, due to its specular behavior. 

The subsidence rates in the study area range between zero and 72 mm/yr. A subsiding trough with the 

maximum subsidence rate of 65 mm/yr is marked by an oval labeled by S1 in the upper-left corner of 

Figure 4. According to our field investigation, the subsiding trough corresponds to a thermal power plant 

where groundwater has been over-pumped for electricity production in recent years. 
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Figure 4. Distribution of subsidence rates estimated at 91,601 valid pixels identified from 

Group 0 with ADI values <0.4. An oval labeled by S1 is marked for a subsidence trough that 

corresponds to a thermal power plant according to our field investigation.  

 

As mentioned earlier, our region growing method is implemented through spatial integration by 

following the optimized paths to obtain the absolute subsidence rates, thus balancing between the 

solution reliability and the computation cost. The integral paths optimized using the three constraints 

(see Section 2.3) are crucial for the determination of the absolute subsidence rates at the valid pixels. As 

examples, four integral paths labeled by A, B, C and D are shown in Figure 5, which are used to calculate 

the subsidence rates at four PTs. Being close to the four integral paths, the four ovals labeled by S2–S5 

are coincident with the rural areas where few PTs are available. Some fishponds around S3 and S4 cannot 

provide any PTs for subsidence tracking. It can be seen that the four integral paths go around the areas 

with very low radar coherence, without passing through them. It demonstrates that the integral paths 

selected by our method are reasonable and efficient for the determination of the absolute subsidence at 

the valid pixels. 

To expand the subsidence information in the study area, we continued to estimate the subsidence 

rates at the valid pixels from Group 1 to Group 8 by the hierarchical processing discussed in  

Section 2.4. Table 2 lists the number of valid pixels obtained for each of Groups 0–8, at which the 

subsidence information have been extracted. The expansion situation of subsidence rates from Group 0 

to 8 is shown in Figure 6a–i for the study area. It should be noted that each sub-figure depicts the 
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combined subsidence rates obtained from the previous and current groups. For example, the results in 

Figure 6a are obtained from Group 0, while the results in Figure 6i are from Groups 0–8.  

Figure 5. Examples of the optimized integral paths labeled by A, B, C and D for calculating 

the subsidence rates at four PTs, respectively. 

 

As shown in Table 2, the total number of the valid pixels obtained from Groups 0–8 reaches up to 

321,189; the corresponding spatial density is 2640 km
−2

. While the number of valid pixels obtained 

from Groups 1–8 is 229,588, being 251% more than that (91,601) obtained from Group 0. The greatest 

contribution is provided by Group 1 with ADI values of (0.4, 0.5], resulting in the largest number 

(i.e., 177,805) of valid pixels. Group 2 with ADI values of (0.5, 0.6] provides the second contribution, 

resulting in 40,551 valid pixels. For Groups 3–8, the numbers of valid pixels range between 563 and 

3364. Groups 0–2 provide a contribution of 96.5% to the total valid pixels in this study area. As shown in 

Figure 6, the spatial resolution and coverage of subsidence data are significantly enhanced by a 

combination of results derived from the various groups. Although the overall subsidence-rate pattern 

derived from Group 0 (Figure 4) is very consistent with those derived from the multiple groups (Figure 6), 

the point density of Group 0 is less than that of the multiple groups, according to the aforementioned 

data. In particular, some valid pixels in rural areas cannot be identified from Group 0, but can be detected 

from other Groups, which are crucial for revealing the subsidence evolution in the areas with low radar 

coherence. In addition, a closer inspection with Figure 4 and 6 indicates that the integrity and margin of 

the subsidence trough marked by S1 have been improved through the multi-level processing. 



Remote Sens. 2014, 6 3362 

 

Figure 6. The subsidence rates expanded for the study area. (a–i) depicts the combined 

subsidence rates obtained from the previous and current groups, respectively. For example, 

(a) is obtained from Groups 0–1, and (i) from Groups 0–8.  

 

For a better visualization, Figure 7a shows the enlarged map of Figure 6i, and Figure 7b shows 

comparisons between Figure 6a and Figure 6i in the four selected areas labeled by S6, S7, S8 and S9, 

respectively. The number of the valid points in the four areas is increased from [545, 321, 1,386, 454] 

to [8,972, 2,460, 5,449, 1,426], respectively. Our field investigation for the areas indicates that some 

valid pixels increased from the multi-level processing are coincident with the DTs along the asphalt 

road (S6), on the building tops (S7, S8), in bare lands (S8) and around the overhead-bridge system.  
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Table 2. The number of valid pixels in nine groups obtained by the hierarchical processing. 

Group No. 
Number of 

Valid Pixels 
Group No. 

Number of 

Valid Pixels 
Group No. 

Number of 

Valid Pixels 

0 91,601 3 2707 6 3364 

1 177,805 4 1149 7 2196 

2 40,551 5 1253 8 563 

Figure 7. (a) The distribution of subsidence rates at all the valid pixels; and (b) comparisons 

between subsidence rates derived from Group 0 and Groups 0–8 in four areas labeled by S6, 

S7, S8 and S9, respectively. The cyan rectangle is marked in (a) for further analysis. 

 

As the typical DTs, like asphalt roads, roofs and non-cultivated lands, can be seen in the cyan 

rectangle area marked in Figure 7a, we also utilized the Stanford Method for PS (StaMPS) to calculate 

the subsidence rates in this area for comparison purposes. By following the standard PS processing 

chains, we have identified a total number of 4909 valid points for the selected area, which is less than 

that (5395) from our MTInSAR method. Figure 8 shows the detailed comparison between the two 

types of subsidence rates derived from our method and the StaMPS for the selected area. Figure 8a–c 

depicts the subsidence rates by our method and the StaMPS and their comparison at the common 

points, respectively. The colorbar in Figure 8c indicates the discrepancies between the two types of 

subsidence rates at the common points. From Figure 8c, it can be seen that the subsidence rates by our 

method are in good agreement with those by the StaMPS. The statistical analysis indicates that the 

correlation of the two types of results is 0.83, thus meaning a strong consistency between our method 

and the StaMPS [30]. 
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Figure 8. A comparison of the subsidence rates in the rectangle area marked in Figure 7a  

(a) for subsidence rates by our MTInSAR method; (b) for subsidence rates by the Stanford 

Method for persistent scatterer (StaMPS); and (c) for the comparison between the two 

types of subsidence rates at the common points. 

 

The nonlinear subsidence values at all the valid pixels are finally estimated using the spatiotemporal 

filtering method presented in Section 2.5. As examples, Figure 9 shows the time series of subsidence 

values (by red dots) at BM6, CR2, CR3 and CR4 derived from the MTInSAR solution. The subsidence 

values (denoted by green squares) obtained by leveling agree well with the results derived from the 

MTInSAR solution.  

Figure 9. Time series of subsidence values (by red dots) derived from the MTInSAR 

solution at BM6, CR2, CR3 and CR4 (a–d). The subsidence values obtained by leveling are 

indicated by green squares. 

 

Previous studies reported that the covering layer on the bed rock in the study area belongs to the 

Neogene and quaternary sedimentary formation [25,27]. This layer mainly consists of grits and loose or 

semi-loose argillaceous sediments. Such strata possess high a compression ratio and are very suitable for 

the evolution of land subsidence, due to autologous gravity, surface loading and groundwater 
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exploitation. Our field investigation indicates that a huge amount of groundwater has been pumped from 

the deep wells in the study area. We believe that this might be the primary cause for land sinking. Some 

efficient measures should be taken to optimize the groundwater use planning and decrease the 

groundwater use in the study area.  

To assess the quality of the subsidence measurements, we compared the subsidence results derived 

from the MTInSAR solution with the ground truth data, i.e., subsidence data obtained at BM1–BM7 and 

CR1–CR5 by precise leveling (see Figure 10). For better analysis, the subsidence results derived from 

the MTInSAR solution were interpolated for the dates of leveling campaigns if necessary. Figure 10a 

shows the two types of subsidence rates derived from leveling and the MTInSAR solution, respectively, 

at the BMs and the CRs, while Figure 10b–d shows the two types of subsidence values over three 

successive time spans derived from leveling and the MTInSAR solution, respectively, at the BMs and 

the CRs. The statistical calculation indicates that the RMSE between two types of subsidence rates is  

2.5 mm/yr, and the RMSEs between two types of subsidence values are 1.8, 3.6 and 3.8 mm over the 

three time spans, respectively. This indicates that the accuracy in subsidence values derived from the 

MTInSAR solution can reach up to the millimeter level. 

Figure 10. Comparison between subsidence results derived from leveling and from the 

MTInSAR solution at seven BMs and five CRs (a) for subsidence rates; and (b–d) for 

subsidence values over three successive time spans (i.e., April to September 2009, 

September 2009 to April 2010 and April to October 2010), respectively. 

 

4. Conclusions 

A hierarchical MTInSAR method is presented in this paper to provide the high spatial density of 

subsidence measurements for a suburban area in Tianjin, China. Different from our previous studies 
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presented in [6] and [29], we have proposed the improved MTInSAR for processing both the PTs and 

DTs in the study area, thus resulting in more details of the subsidence measurements. In the improved 

MTInSAR method, two important parameters, including ADI and PCC, are used to identify all the 

useful pixels from SAR image time series. All the image pixels are classified into several groups by 

thresholding the ADI values and processed group-by-group using the hierarchical processing strategy. 

The method was tested using 40 TSX images collected between 2009 and 2010 over Tianjin. Seven 

BMs and five CRs were used to validate the subsidence measurements. 

In our experiment, nine groups of image pixels are considered. Group zero is PTs, which are 

expected to have a dominant scatterer within the pixels. Its number is 91,601. The corresponding 

spatial density is 753 km
−2

. After the hierarchical processing, the spatial density is dramatically 

increased to 2640 km
−2

. The density of valid pixels obtained from Groups 1–8 is 251% higher than that 

obtained from Group 0. Groups 0–2 provide a contribution of 96.5% to the total valid pixels in this study 

area. The valid pixels increased from Groups 1–8 are coincident with the DTs along the asphalt road, on 

the building tops, in bare lands and around the overhead-bridge system. The subsidence rate map derived 

from all the valid pixels reveals a tiny subsidence center with a subsidence rate of about 72 mm/yr. The 

validation has been carried out using 12 leveling points. The RMSEs of the subsidence values and the 

subsidence rates derived from the proposed MTInSAR method are 2–4 mm and 2.5 mm/yr, respectively.  

Our experiments show that the proposed MTInSAR method is applicable in the areas with the 

availability of PTs. The typical areas include the urban areas, suburban districts, rocky areas, and so 

forth. For some areas, like vegetated or cultivated lands with a scarcity of PTs, our method may fail in 

detecting surface deformation. In addition, the comparison analysis indicates a strong consistency 

between our method and the StaMPS. By providing the high spatial density of the deformation data,  

the proposed MTInSAR method is useful for detecting the minor deformation bowls and assessing 

land deformation. 
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