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Abstract: This paper presents a new approach for roof facet segmentation based on ridge 

detection and hierarchical decomposition along ridges. The proposed approach exploits the 

fact that every roof can be composed of a set of gabled roofs and single facets which are 

separated by the gabled roofs. In this work, firstly, building footprints stored in 

OpenStreetMap are used to extract 3D points on roofs. Then, roofs are segmented into roof 

facets. The algorithm starts with detecting roof ridges using RANSAC since they are 

parallel to the horizon and situated on the top of the roof. The roof ridges are utilized to 

indicate the location and direction of the gabled roof. Thus, points on the two roof facets 

along a roof ridge can be identified based on their connectivity and coplanarity. The results 

of the segmentation benefit the further process of roof reconstruction because many 

parameters, including the position, angle and size of the gabled roof can be calculated and 

used as priori knowledge for the model-driven approach, and topologies among the point 

segments are made known for the data-driven approach. The algorithm has been validated 

in the test sites of two towns next to Bavaria Forest national park. The experimental results 

show that building roofs can be segmented with both high correctness and  

completeness simultaneously.  
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1. Introduction 

Recent technological advances such as aerial photogrammetry, laser scanning measurement,  

3D computer graphics, etc., have greatly eased data acquisition, construction and visualization of 

detailed 3D building models. Hence, 3D building reconstruction has been an active research topic for 

almost two decades. 

In general, 3D building reconstruction can be distinguished between image-based and point  

cloud based approach. Most image-based approaches have focused on the reconstruction of  

specific building models: rectilinear shapes [1–3], flat roofs [4–8] or parametric models [9–11]. The 

image-based approach has the advantage of extracting outlines of roofs. It is hence suitable for detection 

roofs with simple shape or structure, e.g., flat roof, shed roof and simply gabled or hipped roof. However, 

it can fragment or miss the line segments inside of the outlines, due to low contrast, occlusions and bad 

perspectives. Therefore, it is not appropriate for roofs with complicated shape and structure,  

e.g., multi-gabled or hipped roof, or complicated roofs of building group. To overcome this limitation, 

many researchers used stereo images to generate a Digital Surface Model (DSM) to remove  

non-building structure using height information at first. Then, they focused on building shape and 

rooftop contours. For instance, Brunn and Weidner [12] separated buildings and vegetation areas using 

height and geometric information on DSM data, and extracted rooftop geometries using surface normal. 

Sirmacek et al. [13] proposed a two-step approach using DSM: (i) detecting building ground floor 

shapes using an active shape detection approach; and (ii) extract roof structure by derivative filters. 

Galvanin and Poz [14] extracted rooftop by segmentation of DSM with a recursive splitting technique 

and region merging process. In fact, methods using DSM data can be regarded as point cloud based 

approaches, although 3D points are acquired by dense matching of stereo aerial images.  

In other point cloud based approaches, buildings are measured by LiAR (Liht Detecting and Ranging) 

with 3D geometries directly and represented as a number of 3D points. Building detection and 

reconstruction from LiAR data has been an active research topic in recent years. Comprehensive 

literature reviews about various approaches in this field have been made available in [15–17]. 

Most methods start by converting the LIDAR point cloud to a depth image [18–22] and then use 

well known image segmentation techniques to detect buildings as rectilinear shapes. A detailed 

literature review about the various approaches to extract buildings using imagery and LIDAR data can 

be found in [23,24]. On the other hand, several approaches are raised for 3D roof reconstruction by 

operating LIDAR data directly. The process contains two steps. Firstly, points are grouped together 

when they have similar properties, e.g., heights or normal vectors. For this process, various methods 

have been borrowed from the field of image processing or statistical learning, for instance, region 

growing [25,26], Hough transformation [20,27] and RANSAC (RANdom Sample Consensus) [28,29]. 

After building roofs are extracted from 3D point clouds, roofs are reconstructed by using either a 

model-driven or data-driven approach. In a model-driven approach [27,29–36], a model library of roof 

forms is required and a roof model is found out based on determination of model primitives that will fit 
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a dense and detailed 3D roof point clouds best. The advantage of this kind of approach is that it can 

always reconstruct a topologically consistent model. However, the process may often fail when a roof 

falls beyond the predefined models, since building roofs reveal a hug variety in structure and shape.  

In a data-driven approach [37–40], polyhedral model is extracted and calculated from the segmented 

point cloud for individual roof plane. The challenge of this kind of approach is to determine the 

topologic relations among detected roof segments in the first step and to adjust and to modify the 

extracted polygons accordingly. Furthermore, roof facets constructed by data-driven approaches might 

be incomplete due to the obstacle of trees. 

In comparison to the previous approaches, the work presented in this paper can be regarded as a 

combination of model-driven and data-driven approaches. The segmentation is achieved according to 

the knowledge how a roof is normally decomposed. To the date, the density of laser foot points is 

getting higher and higher (up to more than 10 points per square meter). This makes it possible that roof 

ridges are detected from the laser point cloud. In the process of segmentation, the search area and the 

resulted computation cost are reduced substantially because a detected roof ridge indicates the location 

and direction of a gabled roof. In addition, for the roof reconstruction it provides parameters,  

for instance, the position, angle, and size of the gabled roof, as priori knowledge for the model-driven 

approach; and topologies among the point segments for the data-driven approach. Another novelty in 

this work is that building footprints data in OpenStreetMap is used to extract building objects in a  

pre-process step. This enables the automated extracting and segmenting building of roofs directly from 

raw LiDAR point clouds with high efficiency and accuracy. 

The segmentation approach is proposed based on roof ridge detection, since a simple (gabled) roof 

can be divided into two planar facets along the roof ridge. In general, every non-flat-roof can be 

decomposed of several (symmetric or asymmetric) gabled roof parts and a set of single roof facets 

which are normally of triangle or rectangular shape, whereby a shed roof is regarded as an asymmetric 

gabled roof with only one roof side. The presented work utilizes the advantage of the regulation of this 

kind of decomposition. The process starts with detecting 3D points of local maximum of height as roof 

ridges. For each detected roof ridge, seed points are selected along the roof ridge. Then, 3D points are 

segmented to their corresponding roof facets because they are located on the same plane as the seed 

points. In the next step, roof ridges at second high level are detected. Then, 3D points are segmented to 

their corresponding roof facets using seed points along roof ridges. The process terminates when no 

roof ridge can be detected. 

The remainder of this paper is structured as follows. Section 2 describes the proposed methodology 

including roof ridge detection and point segmentation. Section 3 introduces the experimental data and 

presents the pre-processing of OpenStreetMap (OSM) aided roof extraction from LiDAR point clouds. 

Section 4 presents evaluates the experiment results. Finally, Section 5 concludes the whole work and 

gives some remarks on the future work. 

2. Methodology 

The overall approach is based on a process of twofold roof decomposition: (i) hierarchical 

decomposition of roof into several gabled roofs; and (ii) decomposition of gabled roof into two plane 
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facets along roof ridge. Hence, the process starts with the detection of roof ridges (Subsection 2.1) and 

then points can be segmented along roof ridges (Subsection 2.2). 

2.1. Detection of Roof Ridges 

In this subsection the process of detecting roof ridges is described by taking a complicated house 

(Figure 1a) as an example. Prior to the ridge detection, the point cloud of a roof is divided into  

20 layers along the height (Figure 1b), whereas every layer has the equal interval of height. Then, the 

layers of points are selected from top to down until the number of points in the selected layers is larger 

than 50 which is set empirically to avoid that only points of chimney are selected in case the top of 

chimney is higher than roof ridges. The selected points are unorganized. In this work, linear 

components are detected from these points using the RANdom Sample Consensus (RANSAC) [41]. 

The process initiates with two random points and calculates Euclidean distances of all the points to the 

line through these two points. If there are enough points which are closely located to the line,  

a candidate line component is found initially. In the next step, the parameters and inliers of this line 

component are iteratively estimated. The inliers are then 3D points on a line component. This linear 

component is regarded as a roof ridge. Then, points are assigned to this roof ridge when they are close 

to a line component. The points have to connected to each other with a maximal neighboring point 

distance smaller than twice the average laser point spacing. These points are removed. The remaining 

points are used for the detection of the next roof ridge. The process terminates when there are fewer 

points left. The detection process is robust against noise points such as chimneys and other small 

objects on the roof or trees near a building, because no line component can be detected by using 

RANSAC due to the low number of points. In the example of Figure 1, three linear components 

(Figure 1c) were detected and dotted by red, green and magenta respectively. As a result, the 3D points 

of roof ridges are identified as three ridges (Figure 1d). 

It should be pointed out that the ridges detected in Figure 1 are called ridges at the first level in our 

work. In some cases, there are building parts with lower gabled roofs, for instance, roofs of side 

houses. This kind of ridge is then a ridge at the second level, or even third level. They can be detected 

using the same algorithm, after the points on the gabled roofs of the first layer ridges are identified and 

segmented. The process of the segmentation is described in the next subsection. 

2.2. Segmentation of Points along Hierarchical Decomposition of Roof Structure 

The process of the segmentation is to calculate the vectors of facet planes and find points on their 

corresponding facets. Figure 2a shows a hipped roof which is treated as a special case of gabled roof in 

our work. After its roof ridge is detected, a plane is constructed so that it contains the adjusted line of 

the roof ridge and is perpendicular to the horizon. Then, points on the roof are divided by this plane 

into two groups (Figure 2b). For each point group, a set of points are found which have perpendicular 

distances to the line of the roof ridge shorter than a threshold and dropped perpendicular feet located 

on the line segment of the roof ridge. Figure 2c shows the two sets of points highlighted with blue and 

yellow, respectively. 

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=perpendicular&trestr=0x801
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Figure 1. Detection of roof ridges using RANdom Sample Consensus (RANSAC) line 

detection. (a) Aerial photo from Google Map. (b) point clouds of building sorted by height. 

(c) linear component detected by RANSAC. (d) detected roof ridges. 

  

(a) (b) 

  

(c) (d) 

Figure 2. Segmentation of a simple gabled roof (hipped roof as a special case).  

(a) Aerial photo from Google Map. (b) divided by ridge plane into two groups. (c) Seed 

planes along the roof ridge. (d) segmentation along roof ridge. (e) Segmentation of rest 

points. (f) final result. 

 
  

(a) (b) (c) 

   

(d) (e) (f) 

In the proposed approach, the threshold is set for two meters which is shorter than the width of the 

most of roof facets. In fact, these two sets of points are taken as seed points for the two roof facets. 
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Aiming at finding all the points of a roof facet, an adjust plane          is fitted using the seed points. 

The plane can be defined by using the equation: 

             (1) 

where             is the normal vector of the plane and   is the closest distance of the plane to the 

origin of the coordinate system. The parameters of plane          are solved by an iterative process. 

Assuming the point            is located on the plane, the plane of Equation (1) can be reformed for 

all the points of this plane as follows: 

                          (2) 

For the roof facet, the point            can be taken as the centroid of the seed points. Equation (2) 

can be represented as: 

 

               
               

   
               

   
 
 
 
          (3) 

where           ,           , …, and            are seed points. 

The normal vector             can be obtained by calculating the normalized eigenvectors of N, 

whereby      
   . Finally, the parameter   in Equation (2) can be calculated by: 

                 (4) 

The residuals of the seed points can be calculated by          (V is the eigenvector of matrix N). 

The parameters obtained from Equations (3) and (4) are taken as initial result for the iterative process. 

In each iteration, (i) those points are neglected if their residuals falls beyond the tolerant interval of a 

given a-priori standard deviation   , (ii) and the centroid point            is updated. The iteration 

terminates when 

               n is the number of the remaining points) (5) 

Then the points on the roof facet can be extracted when their distances to the above calculated plane 

equal to zero in ideal case. In the reality, roofs undulate normally about 10 cm due to the form of tiles. 

Considering the accuracy of the measurement, the tolerance is defined as 20 cm in our work. 

Therefore, the point segment of a roof facet is defined as: 

                        (6) 

where        is distance function of point          to plane         . 

Sometimes there are trees, or some other building roofs nearby, the points of which or some error 

measurements could be coplanar with the roof plane. These points can be separated by based on the 

concept of density clustering and connectivity analysis [42–44]. The corresponding threshold in this 

work is chosen as two times of the average distance between neighboring laser points. That means that 

the maxima distance between neighboring points in a cluster should be smaller than two times the 

average laser spacing. The cluster of points is then the roof facet if this cluster contains points of the 

roof ridge. As a result, the points on the two roof facets along the roof ridge are clustered. As shown in 

Figure 2d, red and green points are located on two roof facets, respectively, while blue points remained 
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un-segmented. The remaining points mainly belong to the two side roof facets (Figure 2e). They are 

disconnected after the points of the gabled roof between them are segmented. They can be easily 

clustered using connectivity analysis. Then, two adjusted planes are fitted to respective point clusters. 

Finally, the points on a roof facet are identified (Figure 2f) using Equation (6). 

Figure 3. Segmentation of a complicated roof: (a) aerial photo from Google Map. (b) the 

roof point cloud sorted by height. (c) seed points (yellow and magenta dotes) of roof facets 

along roof ridges at first level. (d) segmentation of roof facets (red and green dotes) along 

roof ridges at first level, the blue dotes are the rest points. (e) clustering of the remaning 

points (Upper) and segmenation along the ridge at the second level (Lower). (f) final 

result, black dots are the noises. 

   

(a) (b) (c) 

   

(d) (e) (f) 

For a complicated structured roof, taking roof in Figure 3 as an example, their roof ridges at the first 

level are detected at first. For every roof ridge, points are identified associated to the two roof facets 

along the ridge. The remaining points are clustered based on the connectivity analysis. If the amount of 

the points in a cluster is fewer than 50 which might construct the smallest roof facet, the points are 

regarded as noise points. Otherwise, an adjusted plane will be calculated at first. If more than 80% of 

the points are located on the plane with a certain tolerance (20 cm in our work), the points should 

belong to a flat roof facet, or a shed roof facet, or a side triangle of a hipped roof, and they can be 
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segmented together. If most of the points distance themselves from the adjusted plane, the point cluster 

may contain one or several gabled roofs at the second level. The process restarts with the detection of 

roof ridge(s) at the second level, and segmentation is conducted along the roof ridge. The process 

terminates when there are only noise points in the point cluster. Figure 3 demonstrates the 

aforementioned process of segmentation of a complicated roof with two levels of ridges. 

3. Dataset and Pre-Processing 

3.1. Experimental Data 

The proposed approach is applied to the dataset Regen (Figure 4a) and the dataset Kirchdorf  

(Figure 4b), respectively. Regen and Kirchdorf are situated in the Bavaria Forest. They are typical 

German towns: (i) almost all (over 95%) the buildings are structured with sloped-roofs; (ii) more than 

60% of buildings are structured with simple gabled roofs; (iii) about 20% of buildings are cross-gabled 

which can be decomposed of two gabled roofs; (iv) about 10% of buildings are actually building 

groups consists of more than two buildings with simple gabled roofs; (v) fewer than 10% of buildings 

are complicated structured with three or four levels of roof ridges. The technical details of the two data 

sets are summarized in Table 1. 

Figure 4. Experimental data sets: (a) Regen and (b) Kirchhof. 

 

 

(a) (b) 

Table 1. Property summary of the two data sets. 

Location Equipment Date of Acquisition Average Point Density Scan Angle 

Regen Riegl LMS-Q560 2007 May 6 +30° 

Kirchdorf Riegl LMS-Q560 2007 May 9 +30° 
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3.2. OSM Aided Extraction of Building Roofs 

Prior to the segmentation of roof structure, point clouds of buildings (including roofs) are extracted 

by means of an OSM (OpenStreetMap) aided approach in a pre-processing step, whereby building 

footprints stored in OSM are used. 

Figure 5. Extracting roof points aided by OpenStreetMap (OSM) footprints data. (a) LAS 

point clouds overlapped with OSM footprints. (b) offset between building points and OSM 

footprint. (c) building points extracted with help of OSM building footprint. (d) histogram 

analysis ofextracted building points along height. (e) final result of extracted roof points. 

 

As demonstrated in Figure 5, 3D laser scanning points are overlapped by OSM footprints data at 

first (Figure 5a). Since building footprints in OSM are mostly acquired by directly digitalizing outlines 

of roofs on aerial (or satellite) imagery, there are normally offsets to the true position due to the 

oblique perspective of used sensors. For this reason, OSM building footprints cannot be well matched 

with LiDAR point clouds directly, as shown in Figure 5b. In the presented work, a buffer zone  

is generated for the area covered by a building footprint, whereby the width of buffer zone is set as  

5 m according to a statistic about the offsets of building footprints in OSM [45]. The points that fall in 
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the footprint and its buffer zone are considered as candidate points for the roof. However, points on the 

ground surface and on walls are also selected (Figure 5c). In order to remove these points, the 

histogram of heights of all the candidate points is analyzed to detect local valleys (green dots on  

Figure 5d) and peaks (red stars in Figure 5d). The valley before the last peak on histogram indicates 

the disconnection of facades and roof, because building facades are only partly scanned on the one 

hand. On the other hand, the number of points at the same high level is low due to the vertical structure 

of the walls. Hence, the corresponding height value is selected as the threshold for roof points. That 

means that all the points which are located higher than this threshold are viewed as points on the roof 

(Figure 5e). 

4. Experimental Analysis 

4.1. Evaluation of Segmented Roofs 

The results of Subsection 3.2 show that 243 buildings are extracted in Regen and 136 buildings  

are extracted in Kirchhof. These buildings are categorized into five classes: 9 buildings with flat roof, 

35 buildings with complicated roof (more than one roof ridges), 15 buildings with hipped roof,  

4 buildings with pinnacle roof, and 316 buildings with simple gabled roof. 

Figure 6. Segmented roof, from left to right: aerial photo, roof point cloud sorted by height, 

and segmented roof (noise points with black dotes). 

 

 

 
  

1 

2 

3 
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Figure 6. Cont. 

 

 

 

 

These building roofs except the 9 flat roofs are segmented using the proposed approach. Similar to the 

evaluation of segmented roof facets presented in [37], the results are compared to aerial image of Google 

map in a manner of visual inspection. It shows that (i) all the simple gabled roofs and hipped roofs are 

correctly segmented; (ii) 29 complicated roofs are correctly segmented; while (iii) there are missing 

segmentations on 6 complicated roofs; and (iv) the 4 pinnacle roofs are incorrectly segmented. Then, an 

overall correctness could be calculated as 360/370 = 97%. Figure 6 presents a selection of examples, 

where the buildings are structured with two or more roof ridges in order to show the capability of the 

presented algorithm. Despite the segmentation results, the aerial photos (from GoogleMap) and roof 

point clouds are also displayed to show the overall roof structure as well as roof ridges. 

Through a visual comparison of the segmented roof facets with original LiDAR data, Table 2 gives 

the completeness of segmentation of the building roof in Figure 4 and the seven building roofs in 

4 

5 

6 

7 
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Figure 6. In Figure 5b, there is a small gabled roof attached with the main building (the upper left 

corner of Figure 5b.). In the experiment, the points on one of its side are segmented together with the 

neighboring large roof facet, because they are geometrically belonging to one object, although they are 

two roof facets semantically. Building (#5) in Figure 6 demonstrates a similar example. Semantically, 

there are two gabled roofs in the upper right part of the building. The ridge of the wide roof is situated 

a little bit higher than its neighbor. However, their roof facets on the right side of the ridges have 

almost the same slope. Therefore, they are segmented as one roof facet. On the left side, the wide roof 

facet (green dote between the blue and yellow parts) has a little bit gradual slope than its neighboring 

narrow roof facet (magenta dotes). Most points of these two roof facets are differentiated. Still, there 

are some errors in matching near the connection edges. 

Table 2. Completeness of the segmentation. 

Figure # #Building  
# Segmented 

Roof Facets 

# Roof Facets 

in Data 

Completeness 

(%) 

Geometric Accuracy 

(RMSd-m) 

3 1 12 13 92.3 0.17 

6 

1 4 4 100 0.24 

2 6 6 100 0.31 

3 5 5 100 0.37 

4 8 8 100 1.09 

5 9.7 11 88.2 0.35 

6 8 8 100 0.46 

7 28 34 82.4 0.45 

Mean 95.4 0.43 

The geometrical accuracy of the boundary for segmented roof facets is also evaluated and displayed 

in Table 2. The vertices of a roof facet are manually selected and located in 3D point clouds. For each 

vertex of a segmented roof facet, the nearest boundary point of the corresponding roof plane in the 

reference is searched. This point does not necessarily correspond to a vertex of that polygon. The (3D) 

Euclidean distance d between the corresponding vertex points is calculated. If this distance is larger 

than a threshold (3 m in the example below), it is discarded. Finally, the RMS error of the distances 

RMSd is computed in Equation (7) 

2
2 22 (( ) ( ) ( ) )resj resj resjrefi refi refi

d

d x x y y z z

N N
RMS

    
    (7) 

In the equation, xrefi, yrefi, zrefi and xresj, yresj, zresj are two coordinate values of vertex points of 

corresponding roof facets, being situated in the reference and the results, respectively. In both cases,  

N is the number of points for which a correspondence has been found within a predefined search 

buffer. While the numbers are given for ―segmented roof facets‖, the nearest point on the reference 

roof facet was determined for each vertex in the segmentation results. 

Points are segmented on two types of roof facets, namely, gabled roof facets and roof facets 

connected by the gabled roofs. For the first type of roof facet, the minimum gabled roof facet that can 

be detected in our work is of 2 × 2 square meters, because we set two meters for the minimum length 

in the process of detecting ridge and searching for seed points. Therefore, point cloud of a smaller 
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gabled roof upon a dormer window cannot be segmented and are treated as noise points, as shown in 

building #3 in Figure 6. After the gabled roofs are segmented, the remaining points are separated into 

several clusters. In each cluster, an adjusted plane is firstly fitted for the points in order to check if they 

belong to the same facet. Therefore, even smaller facet can be detected for the second type of roof 

facet. Such roof facets can be found in the building of Figure 3 and buildings (#3 and 6). 

The building (#6) in Figure 6 has more than eight roof facets, because the connection part of the 

two gabled roofs is actually a special case of cross gabled roof. However, the ups and downs are not 

significant enough, so that they can be differentiated in the point cloud. Therefore, the points on this 

roof part are segmented as a flat roof facet (magenta dotes) with many noise points (black dotes). 

A complicated structured industrial building (#7) in Regen challenges the presented approach. The 

average density of the building is six points per square meter. But the points are very unevenly 

distributed. The point density of the right building part is about 2–4 points/m
2
. On the dormer roofs 

upon the two roof windows, the average distance of neighboring points is 0.5 m along the fight path 

and 1.4 m in the across-track direction. Therefore, these two dormer roofs are not segmented, because 

no roof ridges can be detected from the point cloud. In addition, only one facet of the hipped roof 

(lower right of #7) can be segmented. The other three sides cannot be segmented due to the low density 

of the point clouds. 

4.2. Computational Performance 

This subsection studies the time efficiency of the proposed approach. The algorithm is implemented 

in Matlab 2009a. The program is carried on a PC with Intel(R) Xeon(R) CPU 3.3 GHz. Table 3 shows 

the computational performance of individual building roofs. It is obvious that the computational time 

depends strongly on the number of laser points. The iterations needed for plane fitting also affects the 

computation time, but not significantly. It can be used to evaluate the quality of the inputting data. In 

general, the proposed approach is very efficient. 

Table 3. Computational performance of individual building. 

Figure # Building # Number of Points 
# Average Iterations 

of Plane Fitting 
Computation Time (s) 

4 1 13,362 7.3 8.49 

5 

1 5952 3.8 1.89 

2 4697 4.0 1.21 

3 4554 4.0 1.05 

4 1551 5.9 0.66 

5 17,788 5.3 9.51 

6 8522 7.4 7.91 

7 15,426 10.3 17.44 

Mean 6.02 

5. Conclusions and Outlook 

A simply gabled roof has two roof facets with a shared roof ridge which is situated on the top of the 

roof and parallel to the horizon. A simply hipped roof consists of a gabled roof and two disconnected 
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roof facets (separated by the gabled roof). In this way, any arbitrarily complicated roof can be 

decomposed in a set of gabled roofs and a set of single roof facets. In this work we exploit this kind of 

decomposition for two reasons. Firstly, it can describe almost all kinds of roofs except pyramid shaped 

roofs and roofs with strongly curved shape. Secondly, it benefits the process of point segmentation and 

the further roof reconstruction from laser scanning point cloud. The proposed approach is tailored for 

sloped roofs. In the first step, roof ridges are detected easily from the point cloud, since they are 

situated in the highest level in their locality. Concerning the segmentation, a detected roof ridge 

indicates the location and direction of a gabled roof. Hence, the search area and the resulted 

computation cost are reduced substantially. The reconstruction in the further step becomes less 

effortless, because many parameters, for instance, the position, angle, and size of the gabled roof can 

be calculated and used as priori knowledge for the model-driven approach; and topologies among the 

point segments are known for the data-driven approach. It should be noted that the detected roof ridges 

do not geometrically correspond to the exact roof ridges, because laser points may not exactly hit the 

ridges. To this end, roof ridges can be represented approximately, and this kind of inaccuracy does not 

have any influence on the further process of the segmentation. 

In terms of segmentation accuracy, our experiments show good results. However, ambiguous 

segmentation exists where two roof facets are immediately adjacent to each other. Error segmentation 

occurs for some cross gabled roofs when the eaves of two gabled roofs are not at the same high level 

but the side gabled roof is lower than the main roof. In this case (building #1 and #2 in Figure 6), some 

points of the side gabled roof are segmented into the main roof, as the main roof is processed in 

advance. This problem cannot be solved by a recursive process, because those points are actually the 

intersections of the two fitted planes and connected closely to both of the roofs. However, it can be 

solved when reconstructing the roof polygons by using the rules that all the polygons on roofs are 

structured with straight line-segments and homogenous polygons which do not contain long and 

narrow extrusions. 

In the presented work, building footprints data in OpenStreetMap is used to extract 3D points on 

individual roofs. However, the building footprints could not be used for polygonal modeling of roof 

structure in the further step, because on the one hand there are offset between OSM building footprint 

and the outline of buildings in reality; on the other hand OSM building footprints normally correspond 

to simplified version of the outline of building. The limitation of the proposed approach is that it has 

strict requirement for the density of LiDAR point clouds. It means that the point density of the input 

LiDAR data has to be high enough so that roof ridges can be detected. Otherwise, the method may fail. 

In the future, the proposed approach will be applied to ISPRS benchmark datasets [46] in order to 

evaluate the method within the international community. Additionally, the approach will  

be adapted for big cities in line with a cooperative project at our department. Both model-driven and 

data-driven approaches are going to be deployed in order to evaluate advantages of the proposed 

algorithm to these two approaches. 
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