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Abstract: Rapid land use changes are substantially altering the global carbon budget, yet 

quantifying the impact of these changes, or assessing efforts to mitigate them, remains 

challenging. Methods for assessing forest carbon range from precise ground surveys to 

remote-sensing approaches that provide proxies for canopy height and structure. 

We introduce a method for extracting a proxy for canopy heights from Interferometric 

Synthetic Aperture Radar (InSAR) data. Our method focuses on short-spatial scale 

differences between forested and cleared regions, reducing the impact of errors from 

variations in atmospheric water vapor or satellite orbital positions. We generate  

time-varying, Landsat-based maps of land use and perform our analysis on the original 

wrapped (modulo-2π) data to avoid errors introduce by phase unwrapping and to allow 

assessment of the confidence of our results (within 3–4 m in many cases). We apply our 

approach to the Pacific Northwest, which contains some of the world’s tallest trees and has 

experienced extensive clearcutting. We use SAR imagery acquired at L-band by the 

PALSAR instrument on the Japanese Aerospace Exploration Agency’s (JAXA) Advanced 

Land Observation Satellite (ALOS). As SAR data archives expand, our approach can 

complement other remote-sensing methods and allow time-variable assessment of forest 

carbon budgets worldwide. 

Keywords: InSAR; forestry; remote sensing 

 

OPEN ACCESS 



Remote Sens. 2014, 6 3211 

 

 

1. Introduction 

The contribution of ongoing global deforestation to climate change has been of increasing concern 

over the past few decades (e.g., [1–3]). An estimated 650 billion metric tons of carbon are stored in 

forests globally, more than is present in the atmosphere [4]. Approximately 12% of anthropogenic 

greenhouse gas emissions can be attributed to CO2 emitted as a result of deforestation [5]. 

Any legislation that seeks to curb deforestation rates must be accompanied by a means for verifying 

compliance and taking inventories of current forest stocks. Such inventories also allow assessment of 

the efficacy of forest management practices and monitoring of overall forest health. 

Currently, many of the statistics on global forests depend on the self-reporting of nations, making 

them subject to the ability and desire of a nation to accurately report on its forest inventory [4]. 

Vegetation structure and canopy height are two parameters of interest when assessing a forest 

inventory, and can be combined with allometric relationships to determine the biomass and, in turn, 

carbon stock of a forested region (e.g., [6–9]). These inventories are typically undertaken through 

comprehensive ground surveys or remote sensing methods that rely on LiDAR (e.g., [10–19]), 

optical or radar imagery (both the amplitude and interferometric products) (e.g., [11,12,15–17,19–25]). 

Ground surveys on a local scale are cost-effective and allow for measurements and observations of 

forest characteristics such as species diversity, overall health, and forest density to be made with 

relative ease; however, surveys with the desired short repeat times would require a great deal of time 

and human labor and, for logistical and political reasons, are difficult to perform in many critical 

forested regions (e.g., [14,26]). In light of these challenges, remote sensing methods that can be 

conducted at a global scale with frequent repeat intervals can serve as a powerful complement to 

ground surveys [9]. 

Numerous studies have investigated the capabilities of Light Detection And Ranging (LiDAR) to 

determine forest characteristics such as vegetation density, structure, and canopy height (e.g., [16,27–29]). 

These studies suggest that, under optimal conditions, canopy height within the footprint of the LiDAR 

beam can be measured with centimeter-scale accuracy, at least in areas where slopes are <5 degrees [18]. 

A global canopy height map produced using Geoscience Laser Altimeter System (GLAS) data 

combined with Moderate Resolution Imaging Spectroradiometer (MODIS) data indicates that canopy 

heights within our study region in the Pacific Northwest (Figure 1) are among the tallest in the world, 

with many regions containing 35–65 m tall trees [16]. Both satellite- and airplane-based platforms  

are capable of frequent repeat LiDAR measurements, potentially on global scales. However, the 

interpretation of LiDAR data is complicated by cloud cover and steep slopes, both of which are 

frequent conditions in many forested regions of interest (e.g., [14,29–32]). 

Satellite-based synthetic aperture radar (SAR) complements the approaches listed above, since 

active imaging at microwave wavelengths is possible at night (when optical imagery is not available) 

and in regions with dense cloud cover (which presents challenges for optical imagery and LiDAR 

systems). SAR systems generate images that are ~100 km × 100 km in scale with pixels on the order of 

a few tens of meters or smaller (e.g., [33]). The repeat intervals for SAR satellites range from days to 

months, potentially allowing for frequent, global repeat observations of forest properties [34]. Previous 

studies have investigated the feasibility of using the backscattered amplitude from SAR as well as  

the coherence information from pairs of images as a proxy for biomass and vegetation structure, 
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particularly when data from multiple polarizations is available (e.g., [20–23,27,32,35–39]). 

Comparisons of bare-earth digital elevation models (DEMs) with the elevation product produced  

by the Shuttle Radar Topography Mission’s (SRTM) or other SAR platforms have also enabled 

determination of canopy heights (e.g., [12,15,28]). The use of interferometric phase values themselves, 

rather than just coherence, has also been explored (e.g., [22,35,36]), particularly for systems where the 

repeat times are short relative to the timescales of temporal decorrelation (e.g., [33]).  

Figure 1. Study region and data coverage. Colored boxes indicate the extent of coverage 

and data density of the five tracks of L-band synthetic aperture radar (SAR) data used in 

this study. A: Olympic Peninsula; B: Tillamook and Clatsop State Forests; C: Willamette 

Valley Basin. Area shown in Figure 2 is shaded gray. 

 

Here, we present an approach that uses the phase information from time series of InSAR data 

acquired on satellite platforms to constrain tree heights over the Pacific Northwest. We focus on a set 

of SAR imagery acquired at L-band by the ALOS satellite, which results in high coherence in forests 

relative to the C-band imagery that dominated the available satellite-based SAR data catalogs before 

the ALOS mission. We focus on differences in interferometric phase averaged between forested and 

cleared regions (e.g., [35]) assimilated with satellite-based maps of land cover that allow us to apply 

the phase differencing over large regions affected by time-varying land use. This method, which does 

not require simultaneous imaging or polarimetric data, capitalizes on the growing sets of SAR time 

series and related optical imagery datasets that are available worldwide, providing a proxy for canopy 

height that differs from the approaches described above. 
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2. Method: Extracting Tree Heights from Short-Spatial Scale InSAR Phase Variations 

Interferometric phase in repeat-track InSAR depends on a combination of the geometry of the 

satellite or airborne platforms at the time of image acquisition, topographic relief, the reflective 

properties of the Earth’s surface, and changes in the travel time of radar waves between the ground and 

the imaging platform (e.g., [33]). The latter can include variations in atmospheric water vapor or the 

ionosphere, as well as deformation of the ground surface due to processes such as earthquakes, 

landslides or anthropogenic activities (e.g., [33,40,41]). Because the contribution from radar path 

delays and errors in our knowledge of satellite locations often dominates interferograms (e.g., [42–44]), 

particularly at longer spatial scales (>10 s of km), the value of the interferometric phase itself (rather 

than just the coherence) has so far been of limited utility in forest studies. In this paper, we present  

an algorithm for determining forest canopy heights that focuses on short-spatial-scale (<few km) 

interferometric phase variations between adjacent cleared and forested regions in the Pacific Northwest. 

Most of the error sources for InSAR that result in coherent biases to the phase (e.g., satellite orbital 

errors, variations in atmospheric water vapor) cancel out over these short distances. 

As described above, interferometric phase is affected by many variables, including errors in the 

digital elevation model (DEM) used to remove the effects of topography (e.g., [45]). Trees present 

within a particular pixel will act as sources of apparent ―DEM error‖, since they raise the height of the 

effective phase scatterers within that pixel above the bare ground surface. Differencing of SAR-based 

DEMs such as SRTM and ―bare-earth‖ DEMs (available throughout much of the United States) have 

resulted in maps of canopy height (e.g., [12,15]). The simultaneous acquisition of images that occurred 

as part of SRTM resulted in negligible contributions from atmospheric noise and temporal decorrelation, 

whereas SAR acquisitions from typical satellite platforms are separated by days to months. 

In the absence of frequent repeats of missions such as SRTM, we present an approach for extracting 

information about tree heights using many interferograms and focusing on short spatial scales. The 

magnitude of the topographic effect on interferometric phase depends linearly on the spatial separation 

between the satellite’s positions at the time of image acquisition (also known as the perpendicular 

baseline, B┴, (e.g., [46]). The contribution from all other factors affecting the interferometric phase is 

expected to be random with respect to B┴. The difference in phase between a cleared region and the 

immediately adjacent forest for sets of interferograms with a range of B┴ has been shown to be directly 

related to the height of the effective scattering phase center for that group of trees (e.g., [35]). 

Differencing over such a short spatial scale cancels out errors from atmospheric effects and orbital 

configurations. There are other significant sources of error, such as temporal decorrelation and changes 

in the dielectric constant of the surface due to factors such as variations in soil moisture within the 

cleared areas, but none of those results in a change in phase that correlates positively with baseline. 

An example interferogram covering a 46-day time interval is shown in Figure 2a. The coherence is 

typical for interferograms of this time span, with most of the decorrelation occurring in regions of open 

water or the higher elevations that sometimes experience snowfall. The signals at large spatial scales 

(10’s of km) in Figure 2 can be attributed to variations in atmospheric water vapor and/or inaccuracies 

in our knowledge of the satellite location at the two acquisition times—the phase value at any 

particular point provides essentially no information about canopy heights. Also apparent are small  

(~1 km
2
 area), quasi-rectangular features with an interferometric phase value that differs abruptly from 
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surrounding pixels. We attribute these features to the differences in phase scattering height relative to 

the bare earth in forested vs. cleared regions. Comparisons with optical imagery verify the relationship 

to logged regions (Figure 2b,c). As expected, the difference in phase between adjacent cleared and 

forested regions increases linearly with B┴ when we examine multiple interferograms covering the 

same area (Figure 3). This result agrees with previous work from [35] using ERS data (C-band) with 

repeat passes between 3–12 days. Note that in Figure 3 we have chosen the location of forested and 

cleared regions by hand for clarity—our automated approach skips this time-consuming step. 

Figure 2. Example wrapped interferogram (a) from our study region (track 222,  

frame 890), spanning 18 July—2 September 2009 with perpendicular baseline, B┴ = 470 m, 

displayed in radar coordinates (Location in Figure 1, distance scale approximate). Phase 

values over water (Pacific Ocean) are decorrelated/random. Box indicates location of 

comparison between phase (b) and optical imagery (c). 

 

Below, we describe the methods we use to estimate heights over large areas (~100 km). The large-scale 

application requires the following steps: 

(a) Generation of all interferograms possible from existing SAR imagery catalog. 

(b) Time-varying classification of forested vs. bare (and ―unclassified‖) regions over the period of 

time covered by the SAR imagery. 

(c) Extraction of phase information and assessment of errors on the estimated difference in 

interferometric phase between forested and cleared regions at individual locations within  

each interferogram. 

(d) Assessment of error on height estimated from full suite of interferograms at each location. 
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Figure 3. Two cleared regions (top and bottom rows, respectively) observed in three 

interferograms. Dates and B┴ for each: (a,e) 14 April—30 May 2008; −139 m (b,f) 

28 November 2007–13 January 2008; 517 m (c,g) 30 November 2008–15 January 2009; 

566 m. Each panel is 3 km × 3 km; (d,h) Phase difference between hand-picked bare 

(dashed box) and forested (solid box) regions for all interferograms (black dots) vs. B┴, 

with the three interferograms shown here highlighted in yellow. Red and blue bars indicate 

the 1σ values of phase for bare and forested pixels, respectively. Note larger errors on 

forested pixels, due to volumetric decorrelation. Solid and dashed lines indicate best-fit 

height and 1σ error bounds, respectively. 

 

2.1. Data 

We use Phased Array type L-band Synthetic Aperture Radar (PALSAR) data acquired by the ALOS 

satellite between January 2007 and March 2011. The number of acquisitions varies across our study 

area (Figure 1). We generate interferograms using the freely available Repeat Orbit Interferometry 

PACkage (ROI_PAC, [47]). Interferograms are downsampled (multilooked) 12 times in the azimuth 

direction and 4 times in the range direction. We remove topography with the 1 arc-second National 

Elevation Dataset (NED) product. For each frame, we generate all interferograms with B┴ < 2500 m 

and temporal baselines <1 year. We rectify all interferograms to a common grid in radar range and 

along-track coordinates. 

2.2. Automated Identification of Cleared Regions 

The first critical step during our analysis is the process of determining where forests exist across the 

entire regions covered by our interferograms. Isolating the cleared regions used in our analysis by hand for 

all interferograms spanning a region as large as the Pacific Northwest would be prohibitively expensive. 

Instead, we use a combination of publicly available remote sensing datasets to automate classification of 

regions within each interferogram as ―forested‖, ―bare‖ or ―unclassified‖. Timber harvesting occurred 
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throughout the timespan of the available SAR data, so we include a time-variable component that ensures 

that we only average tree heights across time interval when no clearcutting occurred. 

As part of our classification, we use the National Land Cover Database 2006 (NLCD2006) land 

cover product [48]. For the purposes of the canopy height estimation, we divided the NLCD2006 data 

into forested (classifications 41, 42 and 43) and bare (31, 52 and 71) pixels. All other classes, including 

water bodies (11, 12), developed regions (21, 22, 23, 24), wetlands (90, 95), and planted/cultivated 

regions (81, 82), are characterized as ―unclassified‖ and are not used in our analysis. 

In order to characterize the temporal variability of land cover in our study area during the  

2007–2011 time frame of our study, we also use yearly Landsat 5 Thematic Mapper (LTM5) 

acquisitions. Cloud cover was restricted to less than 20%, and for each frame we used the least  

cloud- and ice-covered acquisition available for that year. We generate our augmented classification 

map for each year using the ratio of LTM5 band 2 (visible, 0.52–0.60 μm) and band 7 (mid-infrared, 

2.08–2.35 μm). This band ratio allows identification of areas where logging occurs during the time 

span of our interferograms (Figure 4). However, within a few years after logging, some cleared areas 

regrow enough vegetation so that they are no longer flagged as ―bare‖ by this measure. Therefore,  

we discard points within interferograms if they are flagged as ―forested‖ after previously being 

categorized as ―bare‖ and do not use them for the remainder of the time series analysis (black region 

within red box, Figure 4). Visual inspection of the data shows that this approach is very successful at 

identifying the state of, and changes to, the landscape, and that areas where the metric is unreliable are 

marked as ―unclassified‖ (black areas, Figure 4) rather than being incorrectly flagged as forested  

or bare. 

Figure 4. Example of temporal variability of Landsat-based classification as bare (white), 

forested (gray) and unclassified (black). Red box indicates region marked as ―bare‖ at the 

beginning of the time series, but that had grown enough vegetation by the end to be 

classified as ―forested‖. We remove pixels that change from ―bare‖ to ―forested‖ during the 

time series. Yellow box indicates a region that was harvested between 2009 and 2010. 
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2.3. Estimation of Canopy Height and Associated Errors 

We estimate canopy height with a running window of 40 × 40 pixels across each frame. At the 

resolution of the multilooked interferograms used in this study, this box corresponds to an area of 

approximately 1.5 km × 800 m. At each location, we extract the average phase of pixels flagged as 

forested or bare for each interferogram. As described above, this set of pixels is time dependent, 

capturing the progression of logging and regrowth at each site. Any pixels that are flagged differently 

for the two dates spanned by the interferogram are discarded. If the number of either forested or bare 

pixels for a given interferogram within the running window is below a set threshold (50 pixels), that 

particular interferogram will not be included in the height estimation at that location. We only generate 

height estimates at a given location if more than 10 interferograms meet our criteria.  

Phase unwrapping—the process of converting the interferometric observations, which are 

―wrapped‖ from −π to π (Figure 5), to the total amount of range change—carries with it many potential 

sources of error. This is particularly true for clearcut signals, since they have a sharp boundary across 

which it is not clear how many cycles of phase are represented. Therefore, we estimate the average 

phase in the 40 × 40 window at each location within the interferograms using the full complex phase 

values at each pixel. We illustrate the process described below in Figure 6, but focus on the difference 

in phase between two small boxed regions (solid and dashed boxes in Figure 6) for clarity. The phase 

differences calculated using the 40 × 40 window centered on that particular set of boxes are nearly 

identical to those shown in Figure 6, but with smaller error bounds because of the larger number of 

points used. 

Figure 5. (a) Simulated histogram of wrapped phase values in radians, with σ = 0.3π 

(heavy black line). Average value estimated from real-valued phase (gray circle) is offset 

from the true value (black circle); (b) Data from (a) shown on complex plane (rose 

diagram, scaled to max = 1). Amplitude of complex-averaged value (black circle) increases 

as σ approaches 0. Gray circle as in (b); (c) Inferred σ (Equation (1)) using simulated  

noise with a range of input σ, wrapped at −π to π. Inferred σ saturates above a threshold of 

~0.6 × 2π. Black dotted line indicates 1:1 relationship and horizontal gray dashed line 

indicates the cutoff we use in our analysis. 
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Figure 6. Comparison of variance in phase (a,d) between interferograms of varying  

quality (top row, 18 October 2009–18 January 2010, B┴ = 603, bottom row, 30 November 

2008–15 January 2009, B┴ = 566) for the same 2.5 km × 2.5 km region. Note that they 

have similar baselines, so we expect the phase difference between hand-picked bare 

(dashed line) and forested (solid line) regions to be similar. Phase values for all pixels 

within the cleared (b,e) and forested (c,f) regions (dots, rose diagram) on the complex 

plane show different amounts of spread, with cleared regions having less noise on average. 

Yellow stars in each plot indicate the average complex phase, (



), which will have a 

smaller magnitude (closer to origin) if there is a large spread in phase values. 

 

Each pixel in an interferogram is associated with a complex phase value, 



 . Because of phase 

wrapping, we cannot simply average the angular values of 



—a distribution that is truly centered near 

a value of π would result in an average value near zero, since there would be equal numbers of values 

near π and −π (Figure 5a,b, gray circle). However, if we treat each phase value as a complex unit 

vector, their average is an output vector that does capture the true mean phase of the distribution 

(Figure 5a,b, black circle). Conveniently, if all pixels within the averaging region have approximately 

the same phase value, the magnitude of 



 will be near unity. If the phase values are random, this 

magnitude will approach zero. For a wrapped Gaussian circular distribution of unit vectors, the 

variance of the mean, σ
2
, is given by (e.g., [49,50]): 



2  2(ln) (1) 

At each location, we find the mean complex phase (



) of all pixels within the averaging region.  

We estimate the mean phase for both forested (



f), and bare (



b) regions and take their difference,  



 d, also in the complex plane. We determine 



 f

2
 and 



b
2  for forested and bare pixel groups, 

respectively, with the total variance for the phase difference, 



d, being the sum of the two variances. 

The variance of each estimate is limited by the fact that phase values are restricted to the range −π to π. 
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Above a level of σ
2
 ≈ 0.6 × 2π, the phase values are essentially random (Figure 5c). We use a more 

conservative threshold and remove all phase values for interferograms where σ
2
 ≥ 0.45 × 2π from our 

analysis at each location. 

The relationship between scattering phase center height and the slope, m, of the line (which goes 

through zero) relating phase change 



d to B┴ is related to scattering phase center height, z, as follows: 



z 
mRsin

4
 (2) 

where R is range between the satellite and ground, θ is the satellite look angle and λ is the wavelength 

of the sensor (e.g., [42]). Since 



 d is ―wrapped‖ and can only take values between −π and π,  

the predicted dependence of inferred phase on baseline takes a sawtooth form. Therefore, the 

determination of canopy height at each location is nonlinear. 

To address this nonlinearity, we perform a grid search through heights ranging from 0 to 100 m.  

At each height we compute the weighted root-mean-square error between the predicted and observed 

complex phase differences using the data variances described above, and select the height associated 

with lowest error at each location (Figure 7). By using the complex phase values, we avoid issues  

with unwrapping. 

Figure 7. Study region and inferred phase center heights. Black boxes indicate the five 

tracks of L-band SAR data used in this study. A: Olympic Peninsula; B: Tillamook and 

Clatsop State Forests; C: Willamette Valley Basin. Colored dots indicate the inferred 

height of the L-band phase scattering center at each location. 
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3. Results and Discussion 

Our map of inferred height of the L-band phase scattering centers determined for the Pacific 

Northwest (Figure 7) contains several key features. The Olympic Peninsula, a region known for dense 

forests and tall trees, is associated with a low density of observations. This is due to forest conservation 

efforts over much of the Olympic Peninsula. Without cleared areas to use as a local reference for the 

Earth’s surface beneath the forests, height estimates cannot be made using our method. The Tillamook 

and Clatsop state forests in NW Oregon are similarly associated with low densities of observations. In 

general, our height estimates are largest within the mountain ranges, and decrease towards the eastern 

part of Washington and Oregon. This is not surprising, as the eastern parts of Oregon and Washington 

are very arid compared to the coasts. The Willamette Valley Basin, home to approximately 70% of 

Oregon’s population and a great deal of its agricultural production, is associated with relatively low 

estimated heights. 

We validate our results in two ways—through comparison of adjacent satellite paths and with 

LiDAR data. The adjacent satellite paths used in this study overlap by ~30 km, allowing us to assess 

the consistency of our results between independent sets of SAR imagery (Figure 8). The 1σ error 

bounds for nearby height estimates from different tracks overlap in most instances. In Figure 8, we 

illustrate the errors on height for both a pixel where the estimates from overlapping tracks agree well 

(point B) and where they differ by a significant amount (point C). Examination of the error bounds 

show that the discrepancy at point C results from a larger uncertainty on the heights at that location. 

This could be due to several factors—the two tracks will likely contain a different number of 

interferograms that sample different dates, and one set may have experienced more decorrelation or 

changes in land use than the other. 

Figure 8. Comparison of inferred phase scattering center height (a) between two 

overlapping tracks, T221 (circles) and T222 (stars), overlain on digital orthophoto quad 

(grayscale). Color indicates height in meters; The error bounds (shaded) on heights  

(solid red, black lines) for two points where nearby estimates are similar (b) and dissimilar 

(c) overlap at the 1σ level. 

 



Remote Sens. 2014, 6 3221 

 

 

The L-band (λ = 23.6 cm) radar data provided by ALOS does not interact with the very top of the 

canopy, so we expect the apparent heights to be lower than those obtained in the field, from LiDAR 

data, or by using C- or X-band SAR sensors [28]. The scattering phase center for a given sensor and 

location will vary depending on factors such as forest density, canopy morphology, wavelength, and 

incident angle of the sensor (e.g., [51–53]). We find that our inferred canopy heights are consistently 

~50% smaller than LiDAR-based height estimates using data obtained by the Oregon Department of 

Geology and Mineral Industries (DOGAMI), available online through the NSF OpenTopography 

Facility (Figure 9), a result that is consistent with the expected depth of interaction for L-band  

SAR [28]. Application of our approach to global climate studies would require further calibration of 

the relationship between estimates of the L-band based phase scattering height and stored biomass, as 

is necessary for most metrics. 

Figure 9. Comparison of InSAR- and LiDAR-based results. (a,b) LiDAR-based canopy 

height map (difference between first and ground return) covering two different areas 

(color) and location of profiles X-X’ (white dashed lines, box shows total area sampled) 

used in (c,d). Profiles show elevation of ground return (red), individual first returns (trees, 

green dots) from the LiDAR data. Blue curve indicates the InSAR-based height, offset 

from the LiDAR-based ground surface. Note that the InSAR height is an average estimated 

over the entire area shown in panels (a,b). 

 

While our approach compares pixels using a binary ―cleared‖ or ―forested‖ approach, many regions 

in the Pacific Northwest have been harvested sequentially at different times in the past decades. 

Adjacent plots of land often contain trees with substantially different heights (Figure 9), resulting in 

sharp phase boundaries between regions that are all treated as ―forested‖ by our algorithm. Currently, 

our method extracts an average height for these regions of multi-stage regrowth. As data quality 

improves and the number of available SAR acquisitions in the archive increases, it may be possible to 

assess these effects by examining the confidence intervals on our height estimates. Given a sufficiently 

long time span of SAR acquisitions, determination of changing canopy height as trees regrow after 

clearcutting should be possible. 
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4. Conclusions 

Monitoring of forest stock globally and at frequent time intervals is critical to efforts to study and 

mitigate anthropogenic effects on climate change. We have presented a method for determining 

regional the height of the L-band phase scattering center using phase differences between adjacent 

cleared and forested regions observed in L-band interferograms. Our method is restricted to regions 

that have undergone clearing within the past few years, providing no canopy height estimates in  

other regions of importance, such as protected forests. We combine the available SAR imagery with 

time-variable maps of landcover, allowing us to automatically extract differences in phase over large 

areas without the time-consuming process of hand-picking targets. As described above, in cases where 

we benchmark the automated approach against hand-chosen forested and cleared regions, the results 

are indistinguishable.  

Our approach also uses the full complex interferometric phase values (instead of unwrapped values) 

to estimate the error on the average phase estimates in each region. This avoids phase-unwrapping 

errors that would occur frequently due to the high phase gradient that occurs between forested and 

clearcut areas. The errors on our height estimates depend on the data coverage at each location, but are 

typically around 5 m. We compare our results between overlapping InSAR tracks with completely 

independent sets of SAR imagery and demonstrate that the inferred heights are consistent within our 

stated errors. Comparisons with LiDAR-based tree heights (difference between first and ground 

returns) suggest that the L-band height is ~50% of the total height, a result that is consistent with 

previous work. Further calibration work would be needed before this method could be used to estimate 

characteristics of carbon stocks, including examination of the effects of tree spacing, species, and 

identification of any seasonal variation. The existing data catalog is not optimized for this sort of  

work—unfortunately, areas dominated by different tree species, such as the eastern United States, were 

only observed by the ALOS satellite around 5 times. We anticipate that the upcoming ALOS-2 

mission, set to launch in early 2014, will extend this catalog. A strength of this approach is that it can 

be applied at any time of day or under any cloud cover conditions, and in regions with high biomass or 

steep slopes, where application of other approaches that rely on remote sensing can be challenging. 

The steadily growing catalog of publicly available SAR imagery will allow further improvement  

to this and other SAR-based approaches. The assimilation of C- or X-band data would allow better 

constraints on canopy height than would be possible using L-band-based proxies alone. Shorter repeat 

intervals such as those proposed for satellites set to launch in upcoming years will result in improved 

coherence and time series that can better identify changes in forest coverage and heights. 
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