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Abstract: Speckle noise (salt and pepper) is inherent to synthetic aperture radar (SAR), 

which causes a usual noise-like granular aspect and complicates the image classification. 

In SAR image analysis, the spatial information might be a particular benefit for denoising 

and mapping classes characterized by a statistical distribution of the pixel intensities from a 

complex and heterogeneous spectral response. This paper proposes the Probability Density 

Components Analysis (PDCA), a new alternative that combines filtering and frequency 

histogram to improve the classification procedure for the single-channel synthetic aperture 

radar (SAR) images. This method was tested on L-band SAR data from the Advanced 

Land Observation System (ALOS) Phased-Array Synthetic-Aperture Radar (PALSAR) 

sensor. The study area is localized in the Brazilian Amazon rainforest, northern Rondônia 

State (municipality of Candeias do Jamari), containing forest and land use patterns. The 

proposed algorithm uses a moving window over the image, estimating the probability 

density curve in different image components. Therefore, a single input image generates an 

output with multi-components. Initially the multi-components should be treated by  
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noise-reduction methods, such as maximum noise fraction (MNF) or noise-adjusted 

principal components (NAPCs). Both methods enable reducing noise as well as the 

ordering of multi-component data in terms of the image quality. In this paper, the NAPC 

applied to multi-components provided large reductions in the noise levels, and the color 

composites considering the first NAPC enhance the classification of different surface 

features. In the spectral classification, the Spectral Correlation Mapper and Minimum 

Distance were used. The results obtained presented as similar to the visual interpretation of 

optical images from TM-Landsat and Google Maps. 

Keywords: Amazon forest; ALOS; PALSAR; frequency histogram 

 

1. Introduction 

The presence of speckle noise (salt and pepper) in synthetic aperture radar (SAR) images causes a 

usual noise-like granular aspect, which complicates the direct image classification. Thus, a basic 

problem in SAR image analysis is to develop accurate models for the statistics of the pixel intensities 

in order to obtain procedures for denoising and classification. Several techniques intend to acquire a 

stationary model for distinct land cover typologies of image data, eliminating the variations in the 

scene caused by the presence of surface roughness, topography and the dielectric constant, among 

others. The stationary assumption is most feasible from a set of pixels of the same land cover class.  

One of the main strategies used in SAR image classification is to apply a preprocessing  

step by speckle filtering, such as the median filter [1,2], the Lee Sigma filter [3–5], and the  

minimum-mean-square-error (MMSE) filter [6,7], among others. Thus, different filters for SAR 

images calculate a specific estimator that describes the data distribution pattern of different classes [8]. 

Another approach is the use of the Probability Density Function (PDF) for the discrimination of 

different types of distributed scatters [9]. PDF models consider either parametric or nonparametric 

estimation. Examples of the parametric methods are lognormal [10], Weibull [11], Fisher [12,13], 

maximum likelihood (ML) [14,15], method of moments (MoM) [13,14] and the generalized Gaussian 

model [16]. As nonparametric methods, the following can be cited: standard Parzen window  

estimators [17], artificial neural networks (ANNs) [18], and support vector machines (SVMs) [19]. 

Different models may be used jointly, considering dictionary-based stochastic expectation 

maximization (DSEM), particularly necessary in the case of heterogeneous images [20]. However, 

several parametric families are effective only for specific types of land cover and the search for the 

best PDF model has a high computational cost. Furthermore, the research that usually adopts the PDF 

model considers very large regions containing different targets. 

This paper aims to propose a method that combines filtering and probability density to improve the 

classification procedure for single-channel SAR image. In particular, we focus on the frequency 

histogram, which is the most basic spatial information to describe the distributed SAR scattering. The 

area occupied by the vertical bars of a histogram gives an idea of the probability, since the sum of the 

areas of all the bars represents 100% of the data. Therefore, the division of the histogram classes by the 

total number of samples used provides a probability density concerning the distribution of radar data 
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for the target. The proposed algorithm uses a moving window method, which calculates the probability 

density curve and records each histogram category on a specific image component. Thus, a single input 

image generates different output image components. Each output component represents a determinate 

category of the histogram, so the spectrum (the z component of the image) shows the data distribution 

curve for the central pixel of the window. This histogram curve can be classified according to the 

methods of a spectral classifier, such as the Spectral Angle Mapper (SAM) [21], the Spectral 

Correlation Mapper (SCM) [22] or the minimum distance. Therefore, this article uses a direct 

comparison of probability density curves between the reference and image data instead of determining 

the best PDF model for single-channel SAR.  

The study area is located in the Amazon rainforest, where the acquisition of optical images without 

cloud cover and adequate sunlight is very difficult. This restriction is the main incentive for the use  

of synthetic aperture radar (SAR) images for the Amazon rainforest, which can be acquired 

independently of sunlight or cloud cover. Thus, SAR images offer the potential for continuous 

monitoring of the Amazon forest cover. 

2. Study Area 

The study area is located in the northern Rondônia State, in the municipality of Candeias do Jamari, 

20 km from the capital Porto Velho, (8°29′′06′′S–9°26′85′′S latitudes and 63°42′59′′W–63°48′15′′W 

longitudes) (Figure 1). Rondônia State has had a recent history of high rates of deforestation. This area 

was chosen because of its typical features, such as primary forest and land use patterns.  

The area has a tropical rainforest climate, with a dry season from June to August, and a wet season from 

December to March [23]. The temperature oscillates between 21 °C and 32 °C, with an annual average of 

25.5 °C. The relative humidity varies from 74% to 90.8%, with an annual average of 82% [24]. 

The study area shows both large and continuous forest as regions that were deforested over the 

years, mostly because of the occupation of subsistence agriculture and livestock. Therefore, the area 

has pasture, agriculture, secondary vegetation and regeneration in the pasture. Furthermore, the study 

site is bounded to the west by the reservoir of Samuel Hydroelectric, which is the largest artificial lake 

in the state with a flooded area of 584.6 km
2
 and a mean depth of around 6 m. The altitude in the dam 

center is 87 m above sea level. Occupation occurred around the center of the municipality, accessible 

areas using the road, as well as along the Samuel Reservoir. The rapid conversion of forests causes 

generalized habitat fragmentation [25,26]. 

3. Methodology 

3.1. Datasets for Experiments 

In 2006, the Japan Aerospace Exploration Agency (JAXA) launched the Advanced Land Observing 

Satellite (ALOS), carrying the Phased Array L-Band Synthetic Aperture Radar (PALSAR). In this 

study, L-band SAR data were acquired from the ALOS-PALSAR sensor over the test site on 19 June 

2009 in Fine Beam Dual polarization (FBS; look angle: 34.3°, HV and HH polarization) and 

processing level 1.5 (the image, including the geo-reference and geo-code) with pixel spacing of  

12.5 m. The output image was in Geographic Tagged Image File Format (GeoTIFF) format projected 
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to the Universal Transverse Mercator (UTM) coordinate system and World Geodetic System 84 

(WGS84) datum. 

The PALSAR instrument provides enhanced sensor characteristics, including full polarimetry, 

variable off-nadir viewing, and Scan SAR operations, as well as significantly improved radiometric 

and geometric performance. It is a fully polarimetric instrument, which operates in the L-band with  

1270-MHz (23.6 cm) center frequency and 14- and 28-MHz bandwidths [27]. PALSAR images are 

widely used in studies of the Amazon forest [28,29]. 

Figure 1. Study location in the municipality of Candeias do Jamari, RO.  
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3.2. Probability Density Components Analysis 

The histogram is a graphical representation of the frequency distribution, showing the number of 

observations present in a given category (known as bins). The division of the total number of samples 

in each bin generates a probability density graph. The sum of all the bins becomes equal to one. 

This paper introduces the probability density component analysis (PDCA) method, which calculates 

the frequency histogram for a moving window and distributes the value of each category in a specific 

image. Thus, a sequence of images is generated, where the total number of images is equal to the 

number of histogram bins (Figure 2). 

Figure 2. Procedures to generate the Probability Density Components: establishment of a 

moving window (for example, with a dimension of 5 × 5), calculating the frequency 

histogram, and the establishment of images of the probability density components. 
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The proposed methodology considers the following input variables: (a) the number of histogram 

bins (i.e., the number of probability density components); and (b) the window size. The number of 

histogram bins for the SAR image must be compatible with the window size in order to allow an 

accumulation of pixels in the discrete intervals, forming a distribution curve. If the number of bins is 

overestimated, the data distribution is very sparse, not generating a curve. The number of histogram 

bins can be defined from linear stretches of the number of levels. In this method, a reduction in the 

radiometric resolution must be performed in order to obtain the probability density curves for moving 

windows. Thus, the number of grey levels present in an image should be around 16 levels or four bits. 

Normally, the histogram shows a density estimate, where the speckles are positioned on the tails of 

distributed radar reflectivity. Therefore, the interference from noisy values (with very high or low) can 

be avoided by considering linear stretches with a 2% clip on both of the histogram tails.  

The window size is the total number of data present in the probability density curve. The best 

window size should be evaluated according to the data in the study. The increase in the window size 

causes a decrease in spatial resolution. In contrast, the decrease of the window size can cause a sparse 

data distribution in the probability density curve. 

Similarly, for the design of a hyperspectral cube [30], it is possible to describe a PDCA cube, where 

instead of the spectral signature, a density of probabilities signature is shown (Figure 3). The 

probability density may have a treatment for the noise, similar to the spectral data. In the hyperspectral 
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data, linear transformation techniques are often used to eliminate noise, such as Maximum Noise 

Fraction (MNF) [31] and Noise-Adjusted Principal Components (NAPCs) [32]. However, these 

methods are also adequate to eliminate noise interferences of a larger amount of data, such as an aerial 

gamma-ray survey [33,34] and a time series of remote sensing data [35–37]. 

Figure 3. The concept of probability density component analysis is shown with a spectrum 

calculated for each spatial element in an image. The curve describe different targets. 

 

The MNF transform adopts similar arguments to the PCA to derivate its components. This method 

is a linear transformation that uses a signal-to-noise ratio to sort images, i.e., considering the  

image quality [31]. MNF calculates a signal-to-noise index, differently from PCA, which uses a 

variance-covariance matrix of the dataset. Consequently, MNF components will show steadily 

increasing image quality, unlike the usual ordering of principal components. 

NAPC transform is mathematically equivalent to MNF transform, but the former transform can be 

implemented using standard principal components algorithm, without the need for matrix inversion 

and eigenanalysis of a nonsymmetric matrix [32]. The application of the NAPC transform requires 

knowledge of the noise covariance matrix of the data. The noise reference can be obtained from the 

images by using the Maximum Autocorrelation Factor (MAF) [38]. Spatial covariance (SCD) is 

defined as the covariance matrix between the original image, represented by I(x), and the same image, 

I(x + D), shifted by an mount ―D‖.The noise covariance matrix (NCMN) can be estimated using the 

following equation: 

NCMN = 1/2SCD (1) 

where  

SCD = (I(x) − I(x + D)) (I(x) − I(x + D))
−1

 (2) 
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In this algorithm, a ―D‖ equal to 1 was used. The SCD can be calculated considering shifts from one 

of eight neighbor directions or by the average of two to eight directions given by the user, according to 

Equation (3), 

SCD = MNCM = (     )/n (3) 

where, MNCM is an average spatial covariance of the directions selected; ―i‖ is the direction of nearest 

neighbors (1–8), and ―n‖ is the number of directions chosen by the user. Thus, the SCD matrix is 

obtained and applied in the steps of the NAPC transform. However, noise removal is only performed 

with the inversing NAPC transform. During the inversion, the elimination of noisy bands is required 

using only signal bands. This procedure reduces noise in the original data space. 

3.3. Endmember Identification 

The endmembers consist of pure elements in the image that, by mixing, form all other spectra 

present. The techniques for endmember detection were developed for hyperspectral sensors, but have 

been employed for multispectral sensors and are used in this study on the PDCs. The algorithms used 

to detect the endmembers implicitly or explicitly assume the convex geometry and the linear mixing 

model [39–43]. Endmembers present in the scene should be found at the corners of the simplex. 

The most widely used algorithm is the method proposed by Boardman and Kruse [44] implemented 

in the Environment for Visualizing Images (ENVI) [45]. This method has three steps: (a) spectral data 

reduction, (b) spatial data reduction, and (c) manual identification. This methodology eliminates the 

redundant factors, such as spatial and spectral, that do not change the set of feasible solutions for the 

endmembers. In the present study, we performed a spectral reduction data by NAPC and a manual 

identification using the n-dimensional scatter plot. 

3.4. Spectral Classifier 

The spectral classifiers compare image spectra to a reference spectrum from spectral libraries or to 

spectral endmembers [46]. In this paper, we used the following methods: Minimum Distance and  

SCM [22]. SCM is an improvement of the SAM [21]. SAM has the following problems: it is unable to 

detect anti-correlated data, and correlation is sensitive to offset factors. The SCM method corrects this 

limitation because it adopts the Pearson’s correlation. The SCM value varies between −1 and 1, with 1 

meaning that the two series are identical, 0 meaning they are completely uncorrelated, and −1 meaning 

they are perfect opposites. The major difference between the correlation methods is that SAM uses 

integral values for X and Y, while SCM uses centered data (X – X mean) and (Y – Y mean). Thus, the 

cosine correlation is equivalent to the uncentered version of Pearson correlation assuming that the 

mean of the population is zero. This normalization makes the SCM better than SAM for detecting 

spectral shapes, because of its invariance under linear transformation of the data. That is, if you change 

the spectra by a gain (multiplicative factor) or by an additive factor, the correlation between X and Y 

remains unchanged. Thus, two curves that have an identical shape, but a different magnitude and 

offset, will still have a correlation of 1 for the SCM method. Furthermore, the method is able to detect 

anti-correlated objects, in contrast to SAM.  
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3.5. Accuracy Analysis 

The classification obtained by the proposed method was compared to a classification by visual 

interpretation of Landsat-TM images on 15 July 2009 (Figure 4a). In addition, high-resolution images 

from Google Earth (Figure 4b) and fieldworks were used to assist in visual classification. The accuracy 

assessment used were the kappa coefficient and overall accuracy [47,48]. The overall accuracy is 

calculated by summing the number of pixels classified correctly and dividing by the total number  

of pixels. The kappa coefficient (K) is an accuracy measure of the classification described by the 

following equation: 
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where ―r” is the number of rows in the error matrix, ―sii‖ is the number of observation on row ―i‖ and 

column ―i‖, ―si+‖ and ―s+i‖ are thus the marginal totals on row ―i‖ and column ―i‖, respectively, and 

―m‖ is the total number of observations.  

Figure 4. (A) TM/Landsat-5 image on 15 July 2009, color composite 345 (RGB)  

and (B) high-resolution imagery archives from Google Earth.  
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3.6. Comparison with Other Traditional Methods 

Radar imaging systems are based on backscattering from land cover, which generates a textural 

pattern characterized by different proportions of dark and light pixels, which prevent the direct use of 

classical techniques applicable to optical images. Thus, SAR images have specific characteristics that 

are quite different from optical remote sensing, depending on the scatter of ground objects and textural 

patterns, which vary with different targets. Normally, the traditional procedures for the classification of 

radar images are preceded by a step of filtering or texture analysis. Therefore, several texture 

descriptors have been adopted for SAR image classification. 

A comparison of the proposed method should consider other methods that have univariate data as 

the input and multivariate data as the output, which generates multi-channels of textural attributes to 

describe a particular pixel. Thus, the multi-channel filtering approach decomposes the image into a number 

of filtered images, each of which contains intensity variations over a frequency and orientation [49,50]. 

In this approach, textural classification depends profoundly on the appropriate selection of the most 

promising attributes.  

Thus, the proposed method is compared with traditional methods: the gray-level co-occurrence 

matrix (GLCM) and Gabor filters. The multi-channel methods allow the use of spectral classifiers 

(e.g., SCM and SAM) from a single image. In these studies, the local spectrum is established through 

features that are obtained by filtering the input image with a set of textural operators. 

3.6.1. Gray-Level Co-Occurrence Matrices 

The gray level co-occurrence matrix (GLCM) [51,52] is a traditional method for texture analysis 

based on second-order statistics, and its descriptors are the most commonly used for texture 

classification in a number of applications, for example, biomedical [53–55], textile industry [56,57], 

papermaking industry [58], and radar image processing [59,60], among others. The co-occurrence 

probabilities ―C(i,j)‖ describe the relative frequencies of all pairwise combinations of grey levels (i,j) in 

the spatial window given an interpixel distance ―d‖ and a specified orientation ―θ‖:  

    
   

    
 
     

  
(5) 

where Pij represents the number of occurrence of grey levels pair (i,j), and G is the quantized number 

of grey levels. Co-occurrence matrix is a bi-dimensional histogram of the number of times that pairs of 

grey levels occur in a given spatial relationship [61].  

Therefore, a singular GLCM is required for each parameter combination (d; θ; G; window size). 

Thus, many studies have focused on the extraction of the optimal values for the different parameters of 

the GLCM. Usually, interpixel distances is short (1 or 2) when applied to remotely-sensed  

imagery [62–67]. Direction is especially important when there is anisotropy behavior; in this case, 

these are advocated individual orientations (0°, 45°, 90°, and 135°). However, the usual approach for 

remote sensing imagery is to combine multiple directions considering a mean [68]. The optimal  

grey-level quantization combines the acceleration of the statistical calculations, reduced noise and less 

loss of information. Typically, the most widely used quantization levels are 8, 16 and 32 [62,64,68,69].  
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A co-occurrence window width is an important parameter for classification purposes, relating to the 

target dimension in the studied image [70,71]. Each environment has its own optimal scale that may be 

different from image to image because of the noise or image orientation [72]. The window size should 

not take insufficient spatial information or the overlapping of two types of land cover classes [73]. 

Normally, the narrower windows size shows better results, mostly because larger window sizes cause 

problems at the boundaries between the classes [74,75]. However, Karathanassi et al. [70] using  

co-occurrence matrices in the panchromatic remote sensing images from the Satellite Pour 

l’Observation de la Terre (SPOT) sensor, have proven it to be more appropriate to use large window 

sizes (31 × 31, 41 × 41 and 51 × 51). Dell’Acqua and Gamba [63] use multiple scale co-occurrence 

textural features to discriminate among different urban environments in SAR images. A method for 

determining the optimal window size is given by the smallest value of the coefficient of variation that 

starts to have a stable value [76].  

Originally, 14 statistical parameters were extracted from GLCM [1]. However, these statistical 

descriptors show a redundancy of information, requiring a prior selection before classification in order to 

obtain measures that tend to be independent compared to other co-occurrence statistics [62,68,77–79]. 

According to Clausi and Zhao [80], five features are most used in practice: contrast, correlation, 

dissimilarity, entropy and uniformity. Baraldi and Parmiggiani [77] considered energy and contrast as 

the most useful for discriminating different textural patterns. The homogeneity (or inverse difference 

moment) and contrast have strong negative correlation, as well as entropy and energy [77]. However, 

the definition of texture features depends on the type of target investigated. For example, the best 

texture features for oil spill monitoring are contrast, correlation, dissimilarity and variance [81], while 

for urban land cover classification, they are angular second moment, contrast, homogeneity  

and entropy [82]. 

In this paper, we used a ―d‖ value equal to one, a single horizontal direction, a ―G‖ value equal to 

16 and a window size of 11 pixels. The choice of the last two parameters was to be compatible with the 

proposed method (PDC). Furthermore, the classification can use a number of possible combinations 

among the textural descriptors. The problem is to choose the best combination of variables to obtain a 

classification with the lowest error. In this work, a technique of sequential search was adopted to  

select the best set of textural descriptors. The sequential search method aims to maximize the  

textural-descriptor prediction while employing the smallest number of combination. The method starts 

with a classification including all textural descriptors, and the calculation of its respective kappa index, 

in relation to manual classification. In the next step, the set of descriptors is subdivided into new 

subsets with one variable less, performing new classifications. For example, a model with five 

variables is subdivided into five new subsets with four variables. The greatest kappa index determines 

the best model, which is again subdivided eliminating a textural descriptor. The procedure continues, 

eliminating descriptors, until there is an improvement in predictive accuracy. The process stops, if the 

kappa index of the best model of n-elements was less than the best model of n − 1 elements. This 

procedure was used for the combinations of the seven main GLCM descriptors: dissimilarity (Dis), 

contrast (Cont), entropy (En), variance (Var), second-moment (SM), homogeneity (Hom), and 

correlation (Cor). 
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3.6.2. Gabor Filters  

A Gabor function is a Gaussian modulated complex sinusoid in the spatial domain, which is widely 

applied to image processing, computer vision and pattern recognition [83,84]. Gabor filter formulation 

represented as a two-dimensional impulse response is described as [85–87]: 

                
 

      
         

  
 

   
 
  
 

   
       

    

 
    (6) 

where 

                 (7) 

                  (8) 

   
  
 

 (9) 

where the arguments ―x‖ and ―y‖ are the position in the window filter; ―θ‖ specifies the orientation of 

the normal to the parallel stripes of the Gabor function; ―λ‖ specifies the wavelength that is given in 

pixels; ―σx‖ and ―σy‖ specify the standard deviations of the Gaussian factors determining the size of the 

receptive field; ―γ‖ is the spatial aspect ratio that determines the ellipticity of the receptive field; and 

―ψ‖ is the phase offset of the cosine factor of the Gabor function expressed in degrees. Thus, the Gabor 

filter depends on a number of parameters that need to be set appropriately.  

The spatial frequency bandwidth (σ/λ), considering the value of 0.56, is widely used in the textural 

analysis [86–89]. In this case, the parameters, σ and λ, are not independents and only one of them is a 

free parameter. In this paper, we used σ/λ = 0.56, γ = 1 and ψ = 0.  

A multi-channel filtering approach can be implemented, where an image is filtered by a set of suitable 

Gabor filters at different orientations and spatial frequencies, resulting in a filter bank design used for 

analysis, classification or segmentation [90,91]. Several authors proposed filter bank designs for various 

applications [50,92–96]. In this paper, we use a filter bank, with four values of orientation (0°, 45°, 90° 

and 135°) and three spatial frequencies   .5  , 1  , and     cycles per image-width) [50]. Thus, 

twelve even-symmetric Gabor filters are used in the study. The values of spatial frequency (f) are 

determined considering the following equation [50]: 

  
    

 
 (10) 

where, ―Nc” varies in a value range expressed as a power of two (between two and the window size). 

Normally, the window size coincides with a value of a power of two. In this paper, we adopted a window 

size equal to 11, but a maximum value of Nc equal to 8 (the closest value of the window size) that 

establishes a wavelength of 11.31, 5.66 and 2.83 ppc. These wavelength values were also used by [92,97]. 
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4. Experimental Results 

4.1. Probability Density Components 

For the use of the PDCA method in ALOS-PALSAR images, we considered a window size of 11 × 11 

and the number of bins to be 16. Figure 5 shows the 3D cube image with a cube face formed by an 

RGB color composite (1PDC/8PDC/16PDC).  

Figure 5. 3D image cube composed of probability density components (PDCs), where a 

cube face is an RGB color composition (1PDC, 8PDC and 16PDC). 

 

Figure 6 shows the probability density components relating to the 16 bins. The first component 

shows high intensity areas related to water bodies. The other bands reflect a gradation that shows the 

distributions of the backscattered field amplitude for the different classes. Thus, the images show the 

increased radar reflectivities, where the first bands highlight the pasture and agricultural area, while the 

latter bands shows the secondary vegetation and forest. 

The PDC images were subjected to NAPC transformation. PDC-NAPCs show an increasing noise 

fraction from the first toward the last. The signal fraction is grouped into the first five components 

(Figure 7A–E), while the remaining bands represent the noise components (Figure 7F–G). The high 

performance of the NAPC transform in ordering the components by image ―quality‖ is readily 

apparent in Figure 7. 
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Figure 6. Probability density components from a window size of 11 × 11 and 16 bins:  

(A) 1PDC; (B) 2PDC; (C) 3PDC; (D) 4PDC; (E) 5PDC; (F) 6PDC; (G) 7PDC;  

(H) 8PDC; (I) 9PDC; (J) 10PDC; (K) 11PDC; (L) 12PDC; (M) 13PDC; (N) 14PDC;  

(O) 15PDC; and (P) 16PDC.  

 



Remote Sens. 2014, 6 3002 

 

 

Figure 7. Noise-adjusted principal component (NAPC) transform of the probability density 

components: (A) 1PDC-NAPC; (B) 2PDC-NAPC; (C) 3PDC-NAPC; (D) 4PDC-NAPC; 

(E) 5PDC-NAPC; (F) 6PDC-NAPC; (G) 14PDC-NAPC; (H) 15PDC-NAPC; 

and (I) 16PDC-NAPC. 
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The color composites considering the first NAPCs enhance the reservoir, land use areas and forest 

(Figure 8A). This simple procedure already provides a significant contrast between the targets, 

evidencing the different patterns from original radar image (Figure 8B). Moreover, NAPC signal 

components eliminate the granular aspect of the radar image. The NAPC application performs an 

optimal smoothing in the spectral domain without affecting the spatial resolution. Thus, the 

deconvolution of a single image in various components with different spatial frequencies and the 

subsequent information concentration by NAPC transformation enable one to obtain a high quality and 

colorful result that differentiates it from all other methods developed for radar images. 

Figure 8. (A) RGB Color Composite: 2PDC-NAPC (red), 3PDC-NAPC (green) and  

1PDC-NAPC (blue); and (B) HV PALSAR-ALOS image. 

 

In order to eliminate noisy features in the probability density curve, the inverse NAPC rotation was 

performed, considering the six signal components. This procedure allows an intense smoothing of the 

probability density curve, without serious signal degradation (Figure 9). The amount of noise reduction 

is dependent on the correlation among components.  
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Figure 9. Noise treatment of the PDC by the use of inverse NAPC rotation: (A) original 

data and (B) result after denoise processing. 

 

4.2. Classification of the Probability Density Components 

The endmembers were identified by visualization in the n-dimensional scatter plot of the first three 

NAPCs. The point distribution shows a configuration in the shape of an ―S‖ (Figure 10). The 

endmembers are positioned in the inflection and extremes. The five endmember have an arrangement 

with a gradual increase in the values of the bins and the dispersion of the data, which corresponds to a 

gradient from a specular reflector (water, bare soil, margin of the reservoir) to a diffuse reflector 

(secondary forest, forest). 

Figure 10. Endmember identification using the n-dimensional scatter plot. 
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The water curve has a frequency accumulated in the first bin, because when the pulse hits the flat 

surface, most of the energy is directed outwards away from the surface at a right angle away from the 

receiver; so, little energy is recorded (Figure 11, Curve ―A‖). The spectra with high frequency in the 

second bin represent exposed soil present on the margins of reservoirs and degraded pastures  

(Figure 11, Curve ―B‖). Pasture and agricultural areas show the highest density of probability in Bin 4 

(Figure 11, Curve ―C‖). The secondary forest as a result of human activity disruption, such as logging 

and abandoned pastures, show a spectrum with higher amplitude and the highest probability density for 

Bin 7 (Figure 11—Curve ―D‖). The forest curve has the highest dispersion. In this environment, the 

radar pulse is scattered at different angles because of the contribution of backscattering from the various 

structures, such as stems, leaves, trunks and branches (Figure 11, Curve ―E‖). 

Figure 11. Probability density signatures in the study area (A, B, C, D and E curves). 

 

The images were classified using the spectral measures: SCM and Euclidian distance. Classes 

related to B and C endmembers represent the same group, when compared with the optical images 

(Figure 4). Thus, the final classification received only four classes that are most significant to the 

studied area (Figure 12A). The classes from the proposed method are homogeneous without 

anomalous points and do not require the use of post-classification methods, which are commonly 

found in radar image classification. These classes have a high correlation with the features highlighted 

in the RGB color composite of PDC-NAPCs (Figure 8). 

The accuracy indices are slightly higher for the SCM classification (kappa coefficient = 0.8137 and 

overall accuracy = 87.08%) in relation to the Minimum Distance (kappa coefficient = 0.8035 and 

overall accuracy = 86.4302%). Therefore, the resulting image classification shows great similarity to 

visual image interpretation (Figure 12). Table 1 shows the confusion matrix for the SCM classification. 

The largest error occurs in the class of secondary forest and disturbed forest, because of its 

heterogeneous behavior. In this class, a wide variety of anthropogenic disturbances is agglutinated, 

such as selective logging by hand, silvicultural measures that kill non-commercial species in support of 

trade, and abandoned pastures, among others. In addition, secondary growth includes a wide 

distribution of weedy herbaceous plants and fast-growing vines, forming a dense canopy of forest that 

varies with age. All these variations hinder the accurate detection of this class. 
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Figure 12. Classified maps using (A) the Spectral Correlation Mapper from the probability 

density curves; and (B) visual interpretation from high-resolution optical images. 

 

Table 1. Confusion or error matrix for four classes. 

Image Classification 
Ground Truth (Percent) 

Pasture and Agriculture Secondary Forest Forest Water 

Pasture and agriculture 87.33 19.43 4.78 3.38 

Secondary Forest 8.61 66.78 18.54 0.45 

Forest 1.27 13.38 75.62 0.14 

Water 2.79 0.42 1.06 96.04 

Total 100.00 100.00 100.00 100.00 

Furthermore, along the boundaries between the pasture and forest classes, the presence of narrow 

strip of secondary forest and disturbed forest was erroneously detected. This error is due to the 

interference of two classes in the moving window, generating an intermediate curve similar to 

secondary forest.  
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Figure 13 shows the rule images of the SCM classification. These images show the probability that 

a pixel corresponds to a specific endmember. In the case of the SCM classifier, the higher intensity 

corresponds to a greater probability of the pixel belonging to the class. Figure 13A shows the rule 

image from probability density curve ―A‖, which highlights the reservoir area with the presence of 

small islands. Figure 13B–D shows human activity areas with a gradual increase of biomass and 

dispersion. Figure 13E highlights areas of forest present in the radar image.  

Figure 13. Rule images of the Spectral Correlation Mapper (SCM) method, considering 

the endmembers of Figure 10: (A) Curve A; (B) Curve B; (C) Curve C; (D) Curve D; 

and (E) Curve E. 
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4.3. Results of the Comparison with Other Traditional Methods  

The textural classifications (GLCM and Gabor Filter) were tested with the same window size  

(11 × 11), endmembers and spectral classifiers (similarity and distance measures) in order to limit the 

comparison to only the textural descriptors. The comparison among the methods considered the 

accuracy indices (kappa coefficient and the overall coefficient) between the textural classification and 

the visual interpretation from high-resolution optical images. 

4.3.1. Gray-Level Co-Occurrence Matrices 

Co-occurrence images present a high correlation, particularly with respect to Dis and Con (Table 2). 

The SCM classification shows bad results because of high similarity among the endmembers. Figure 14 

shows the endmember curves, containing all the GLCM-descriptor values. These endmembers display 

the same shape of curves, differing only in the intensity values. Thus, SCM classification using all 

descriptors obtained lower values for the kappa coefficient (0.4099) and overall accuracy (55.0313%). 

In contrast, the minimum distance classification from all descriptors showed better results (kappa 

coefficient = 0.6438 and overall accuracy = 74.6121%). 

Table 2. Correlation matrix among the gray-level co-occurrence matrix (GLCM) 

descriptors. Dis, dissimilarity; Con, contrast; Ent, entropy; Var, variance; SM, second 

moment; Hom, homogeneity; Cor, correlation. 

 Dis Con Ent Var SM Hom Cor 

Dis 1.00 0.97 0.89 0.85 −0.76 −0.84 −0.88 

Con 0.97 1.00 0.78 0.86 −0.66 −0.79 −0.83 

Ent 0.89 0.78 1.00 0.74 −0.80 −0.73 −0.81 

Var 0.85 0.86 0.74 1.00 −0.63 −0.71 −0.64 

SM −0.76 −0.66 −0.80 −0.63 1.00 0.92 0.77 

Hom −0.84 −0.79 −0.73 −0.71 0.92 1.00 0.83 

Cor −0.88 −0.83 −0.81 −0.64 0.77 0.83 1.00 

Figure 14. GLCM-descriptor signatures for the study area: (A) Curve A; (B) Curve B;  

(C) Curve C; (D) Curve D; and (E) Curve E. 
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The sequential search method for the selection of the best textural descriptors was applied to the 

classified images by Euclidian distance. Figure 15 schematically shows the subsets of descriptors and 

their respective accuracy indices. 

Figure 15. Sequential search scheme for the selection of the best GLCM descriptors. 
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In the scheme shown in Figure 15, the best subset of each stage (highest value of the kappa 

coefficient) is marked in red. The best subset of a stage is subdivided into subsets with one descriptor 

less in the next stage, i.e., eliminating the descriptor that does not belong to the winner subset. The kappa 

coefficients have changed little among the different subsets, ranging between 0.64 and 0.67. This is due 

to the high correlation among the GLCM descriptors. The best configuration (Kappa Coefficient = 0.6781 

and Overall Accuracy = 77.29%) was composed of the following descriptors: dissimilarity (Dis), 

contrast (Cont), and homogeneity (Hom). These accuracy values were lower than the PDC-NAPC method.  

4.3.2. Gabor Filter 

The classifications from all spatial frequencies (  .5  , 1  , and     cycles per image-width) 

presented results with low accuracy values. The classification using the SCM method has accuracy 

indices that are extremely low, demonstrating its inadequacy in dealing with this type of data. 

However, the Minimum Distance method shows reasonable results (kappa coefficient = 0.6467 and 

Overall Accuracy = 75.8391%). 

The successive elimination of higher frequencies caused an improvement in classification accuracy. 

As might be expected, the higher frequency images highlighted the edge detection, but contributed 

little to distinguishing the land-cover classes. The higher the filter frequency, the greater the 

interference of impulse noise in the image [92]. Therefore, image classification using the two lowest 

spatial frequencies presented an improved in the Kappa Coefficient (0.6822) and Overall Accuracy 

(77.9726%). The best result was obtained using only the images of the lowest spatial frequency (Kappa 

coefficient = 0.7234 and Overall Accuracy = 80.6727%). These accuracy values were higher than the 

best result of the GLCM method; but remained lower than the PDC-NAPC method. 

4.4. Program 

The methods discussed are available in software developed in the C++ language 

(http://lsie.unb.br/abilio). The main functions of the program are organized in the main window 

interface, which contains the image input boxes, method modules and image display. The program 

reads general raster data stored as an interleaved binary stream of bytes in band sequential format 

(BSQ). Each image is accompanied by a header file in American Standard Code for Information 

Interchange (ASCII) containing information to read the data file, such as sample numbers, line 

numbers, bands, the interleave code (BSQ) and the data type (byte, signed and unsigned integer,  

long integer, floating point, 64-bit integer, unsigned 64-bit integer). This configuration, combining the 

image and header file, allows for versatility in the use of different image formats. When the user tries 

to open an image without the header file, an interface requesting the necessary information about the 

input image structure automatically appears. 

The software is divided into three modules: (1) the PDCA method; (2) forward and inverse 

transformation NAPC; and (3) the SCM classifier. The PDCA method considers as input the following 

parameters: a single radar image, the number of bins representing the number of components and the 

size of the moving window. The PDCA generates the following output data: an image composed of all 

components and a single image in grayscale relating to bins determined by the user. The forward 

NAPC transformation considers as input the PDCs and the number of neighborhoods to be used in 
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calculating the matrix of noise. The inverse transformation NAPC considers as input the signal 

components of the NAPC and the eigenvectors matrix of the forward NAPC rotation. Finally, the SCM 

method takes as input data the endmembers and the components after the noise removal. 

All inputs and results are shown in the file list, so it is possible to visualize them by choosing ―gray 

scale‖ or ―RGB‖ composite. The display interface provides basic functions for images visualization 

such as zoom areas and pixel values. Moreover, the results (output files) can be read from other 

viewers of binary images. 

5. Discussions 

In examining SAR data, a crucial issue is the challenge of developing accurate models for the 

statistics of pixel intensities, with the purpose of classifying or filtering. In this article, the main 

objective was to show a new algorithm that improves the SAR image classification. The algorithm 

combines different methods; some procedures have already been applied in radar images (PDF and 

filters by moving-window) and others from methods for hyperspectral images processing (MNF, pixel 

purity index and SCM) are still unused. One of the main innovations compared to already published 

strategies is the elaboration of the probability density curves for each image pixel using a moving 

window approach, which generates multi-components that minimize noise and enable the application 

of spectral classification techniques. Unlike other moving-window filters [1–7], the new approach 

generates several output images referring to different frequencies from a single input image. This 

approach is similar to multi-channel filtering approach from GLCM and Gabor filter. Besides, the 

moving-window procedure establishes a spatial pattern in the elaboration of the probability density 

curves, favoring the comparison and classification. Normally, in other studies, PDF estimation 

considers a large number of samples [9,16]; in this new approach, smaller datasets are used, which 

decrease the mixing between classes and suggest the good stability of the probability density curves. 

The proposed algorithm has two free parameters, which must be adjusted to obtain a histogram with 

a good quality sample distribution. In the present study, we used a window size of 11 × 11 pixels that 

generates 121 samples that are distributed in 16 bins. Despite the good results shown by sample 

distribution, new studies may test other combinations in order to have a gain in performance. Since the 

radar image is converted to the PDC components, it is not possible to obtain an inverse transform. 

NAPC transformation is applied in the PDC components in order to minimize the noise of the 

probability density curves. This procedure is very different from the conventional methods of noise 

removal in radar images, which operates on a single image. Therefore, this new approach using  

multi-components has no similarity with other methods applied to radar data, but is compatible with 

the procedures used in hyperspectral images [98–101], aerial gamma-ray surveys [33,34,102,103] and  

time-series data [35–37]. The key to success is in the reconstruction of a valid signal and the 

attenuation of noise from the PDC components. Thus, this new data configuration allows the use of 

several methods of digital image processing used for others data types.  

We did a test on a well-known and representative area of the Amazon Forest, where the model 

achieves the accurate detection of targets. Forest mapping using radar data is particularly important in the 

tropics, where optical sensors are often constrained by the presence of haze, smoke or clouds. However, 
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the proposed method should be further tested in other environments in order to evaluate its performance 

for different targets. For this, the algorithm is in free software for those who want to test it. 

The PDCA method was compared with the GLCM and Gabor methods, widely used in the SAR 

image classification and texture analysis. These methods present various free variables that provide a 

wide variety of results. In this study, different combinations of descriptors were tested in order to 

obtain better classification accuracy. The best combination of GLCM descriptors was composed of 

dissimilarity, contrast, and homogeneity. However, the accuracy values among the best descriptor set 

and other subsets are statistically very close, because of the high multicollinearity of GLCM images. 

The best descriptors from Gabor filter images are the lower spatial frequency ( .5   cycles per  

image-width) in four orientations (0°, 45°, 90° and 135°). 

A limitation of the proposed method is the classification on the boundaries of different classes. In 

these locations, the probability density curve displays a hybrid behavior of the two classes causing 

difficulty in classification. Future work will mainly cover the development of new algorithms for this 

specific problem. In addition, others radar bands or methods of noise elimination, endmember 

identification and classification can be tested. 

6. Conclusions 

The PDCA method is conceptually simple and effective in speckle filtering and allows a supervised 

classification from the probability density curves. The probability density curve describes a stationary 

condition, mainly after the noise elimination with the NAPC transform, which facilitates the 

classification. In this case, the spatial frequencies of the radar images are distributed in different 

images, which is an improvement to their representation, unlike other methods that are limited to only 

one output image. In this sense, the color composition of the PDC-NAPC signal components is an 

interesting enhancement technique highlighting the main surface targets and allowing for significant 

improvement of single image radar. 

The PDCs can be treated similarly to the multispectral images from optical sensor systems or aerial 

gamma-ray surveys. Endmembers of probability density curves are identified using the n-dimensional 

scatter plot and the classification is accomplished through the SCM method. The probability 

distribution for the amplitude and intensity SAR data is far from being symmetric because of the 

Rayleigh distribution. However, in this study, the asymmetry attribute is a factor for endmember 

individualization. The method also does not have difficulties in identifying targets with strong returns 

from point scatters as well as targets with very low intensities and very small ranges. Thus, the method 

is suitable for discriminating different types of scattering. However, there are still several issues that 

can be investigated in future research in order to enhance and achieve better performance, such as the 

sensitivity analysis of free parameters, comparisons with other methods, and applications to other 

environments. All these factors are challenges for SAR image processing and the spectral-analysis 

algorithms extend the processing alternatives. 
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