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Abstract: The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by 

the National Aeronautics and Space Administration (NASA) in April 2013. Just weeks 

after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. 

Given that the image acquired was in the daytime, its shortwave infrared observations were 

contaminated with reflected solar radiation; however, those of the satellite’s Thermal 

Infrared Sensor (TIRS) show thermal emission from the volcano’s summit and flanks. 

These emissions detected in sensor’s band 10 (10.60–11.19 µm) have here been quantified 

in terms of radiant power, to confirm reports of the actual volcanic processes operating at 

the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic 

observation capabilities. Data from band 11 have been neglected as its data have been 

shown to be unreliable at the time of writing. At the instant of image acquisition, the 

thermal emission of the volcano was found to be 345 MW. This value is shown to be on 

the same order of magnitude as similarly timed NASA Earth Observing System (EOS) 

Moderate Resolution Imaging Spectroradiometer thermal observations. Given its unique 

characteristics, the TIRS shows much potential for providing useful, detailed and accurate 

volcanic observations in the future. 
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1. Introduction 

At the time of writing, the newest satellite for earth observation is Landsat-8, launched as part of the 

Landsat Data Continuity Mission (LDCM) on 11 April 2013. This is the most recent spacecraft of the 

Landsat series of satellites which have been in service since 1972. It was designed as a successor to the 
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Landsat-7 Mission, being constructed and launched by the National Aeronautics and Space 

Administration (NASA) and operationally controlled by the US Geological Survey (USGS) [1]. The 

satellite is endowed with two earth-observation sensors: the Operational Land Imager (OLI), with 

spectral bands ranging from the visible to shortwave, largely for observing electromagnetic signals 

reflected from Earth’s surface, and the Thermal Infrared Sensor (TIRS), with two thermal infrared 

bands for Earth-emitted electromagnetic signal detection [2,3] (see Table 1). Like its predecessors, 

Landsat-8 has a temporal resolution of 16-days. 

Table 1. Characteristics of the Landsat 8 Operational Land Imager (OLI) and Thermal 

Infrared Sensor (TIRS) bands [4]. 

Instrument Band Spectral Range (µm) Spatial Resolution (m) 

OLI 

1 0.43–0.45 30 

2 0.45–0.51 30 

3 0.53–0.59 30 

4 0.64–0.67 30 

5 0.85–0.88 30 

6 1.57–1.65 30 

7 2.11–2.29 30 

8 0.50–0.68 15 

9 1.36–1.38 30 

TIRS 
10 10.60–11.19 100 

11 11.50–12.51 100 

This paper examines the first thermally anomalous volcanic observation made by the TIRS, 

analysing an image acquired of Paluweh volcano, Indonesia (8.3288°S, 121.7091°E) little more than 

two weeks (on 29 April 2013) after its launch. It attempts to highlight the sensor’s potential for 

volcanic observations, and to use its data to quantify the thermal emission of the volcano at the instant 

of image acquisition. At the time of writing, data from the TIRS band 11 have been found to be 

unsuitable for quantitative analysis and as such, only that from band 10 is used here, following the 

application of the currently published constant offset correction [5]. 

2. Thermal Remote Sensing of Volcanic Activity 

Since the 1960s, the infrared remote sensing of volcanoes has developed into a discipline in its own 

right. It commenced with largely qualitative observations from both aerial and space-borne platforms, 

e.g., [6,7], and has since developed into a quantitative discipline, utilising some of the most up to date 

and sensitive orbiting sensors to detect and monitor global volcanic activity (see [8] for an in depth 

review of current and future progress).  

A common issue for all space-based sensors (thermal or otherwise) that are used to make volcanic 

observations is that none have been launched with the specific aim of volcanic remote sensing; this has 

simply been one of a number of possible applications for many such sensors. This remains the case for 

Landsat-8; in fact, the mission was not originally envisaged as possessing any thermal infrared 

detection capabilities at all [1]—something which would have severely hindered its utility for volcanic 

remote sensing. Fortunately however, the platform was ultimately provided with this capability in the 
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later stages of its design. This means the LDCM continues to offer utility in all manner of applications 

which require thermal emission observations, and this is not simply restricted to volcanic observations 

but extends to the observation of other thermally anomalous phenomena including fires and urban heat 

islands [3,9]. 

Active volcanic surfaces are particularly amenable to their remote study using thermal infrared 

detectors by virtue of their emission of heat. Indeed, the thermal emissions of an active volcanic 

surface relate directly to the volcanic activity at a specific time, be it a fresh lava flow, active lava lake 

or a subtly warm fumarole field [10,11]. Examples of direct relationships between thermal infrared 

emissions and volcanic activity include the detection of cyclical volcanic emissions related to physical 

processes on the ground [12], the determination of lava effusion rates (e.g., [13,14]) and the 

discrimination of different activity styles and lava types [15]. Obviously one significant benefit of such 

studies is the potential to gather data while avoiding the risks and costs associated with on-the-ground 

volcanic fieldwork. 

The reason for the direct relationship between thermal emissions and volcanic activity is that all 

objects above absolute zero (0 K) emit electromagnetic radiation at a wavelength and quantity that are 

each a function of the characteristics of the emitting surface in terms of its temperature and radiating 

efficiency (emissivity). As the temperature of a surface increases, so too does the radiance it emits; this 

is according to the Stefan-Boltzmann Law [16,17]: 

E = σ ε T
4 (1) 

where: E = radiant flux density (W∙m
−2

∙σ = Stefan-Boltzmann Constant (5.6697 × 10
−8

 W∙m
−2

∙K
−4

),  

ε = emissivity of the surface (unitless) and T = temperature of the surface as a greybody (K) (where a 

greybody is a non-perfect emitter of radiation as compared to a perfect emitter, otherwise called a 

blackbody). Consequently, a hotter volcanic surface will radiate more energy (i.e., a higher radiant flux 

density) than a cooler one, and variations in this value represent variations in volcanic activity on 

the ground.  

The overall spectral radiance, Lλ, (in units of W∙m
−2

∙sr
−1

∙µm
−1

), emitted by a blackbody at a 

particular temperature (T) and wavelength (λ), is given by the Planck Equation (2) [18]. This quantifies 

Wien’s Displacement Law which states that the spectral radiance emitted from a surface will increase 

with its temperature while at the same time, the chief emissions will become of shorter wavelength 

(Wien [19]): 
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Constants of C1 and C2 have stipulated values of 1.19 × 10
−16

 W∙m
−2

∙sr
−1

 and 1.44 × 10
−2

 m∙K, 

respectively [20].  

3. The Landsat-8 TIRS and Volcanic Observations 

The thermal infrared bands present on many satellite sensors have been widely used for the 

monitoring of volcanic ash plumes (e.g., [21]) and thermally anomalous volcanic phenomena on the 

ground (e.g., [11,22–24]) and as such, have a proven utility in volcanic monitoring. Despite this, until 

2009, NASA had planned not to include any thermal infrared detectors on the Landsat-8 spacecraft and it 
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was only due to lobbying by the US Western States Water Council that thermal detection capabilities of 

the new satellite were provided via the TIRS [1]. The TIRS detects thermal emissions from Earth’s 

surface in two separate bands: 10.60–11.19 µm and 11.50–12.51 µm (bands 10 and 11 respectively), 

effectively splitting the one thermal infrared band of the previous Thematic Mapper and Enhanced 

Thematic Mapper + sensors and in turn, providing data to allow for more accurate atmospheric 

corrections [25]. The 100 m spatial resolution of the TIRS bands is a retrograde step compared to the 

60 m resolution of the previous Landsat ETM+ but was a necessary compromise given the shorter  

time-scale (only 3 years) for its development [1]. Despite this apparent retrograde step, the TIRS displays 

other advantages over its predecessor TIR Landsat sensors in that its imagery are collected in a  

―push-broom‖ manner (as compared with a ―whisk broom‖ manner), which reduces the signal to noise 

ratio, its TIR bands have a greater dynamic range and the TIR imagery collected are combined with OLI 

imagery to form one registered image [1,26,27]. Unfortunately at the time of writing, data from the TIRS 

band 11 are of dubious reliability and we are advised not to use it for quantitative analysis [5]. The band 

10 TIRS image of Paluweh Volcano on 29 April 2013 is shown in Figure 1 ([28]).  

Figure 1. Landsat-8 band 10 image of Paluweh Volcano on 29 April 2013. The volcano 

forms an island in the Flores Sea to the north of the Indonesia island of Flores. Evident 

here are bright regions to the centre and south of the landform which constitute the 

thermally anomalous activity at the volcano. To the west, the plume emanating from the 

volcano can be seen as a darker (cooler) region. The rectangular region outlined in red is 

that which was extracted for analysis. It encompasses the anomalous volcanic radiant 

signals, here outlined in blue, and also a portion of the non-volcanically active 

surroundings and a small part of the associated ash plume. Image source: [28]. 

 

The spectral range of sensitivity within which the TIRS bands operate, and the temperature ranges 

they are capable of detecting, are shown in Figure 2, overlain on Planck Function curves displaying the 



Remote Sens. 2014, 6 2286 

 

infrared emissions from surfaces at a range of temperatures. Evidently, the TIRS bands are particularly 

sensitive to surfaces at temperatures of 320–350 K, whereas for molten temperatures (e.g., >900 K), 

the use of shortwave infrared (SWIR) and mid-infrared (MIR) bands would be more appropriate. 

Although 320–350 K might initially appear a low temperature when viewing an active volcanic 

surface, the 10,000 m
2
 pixels of the TIRS are likely to be heterogeneous and to view surfaces 

displaying a range of temperatures associated with both active (and relict) volcanism and also 

unaffected ground and vegetation. Additionally, the presence of a lava dome at the volcano [29] 

suggests that only a very small proportion of the surface (i.e., cracks in the chilled lava dome surface) 

will be of incandescent temperature [30–32]. As such, the overall temperature detected at the pixel 

scale (the pixel integrated temperature, or PIT) is likely to average out at significantly below 

incandescence and quite possibly at around 320–350 K. This is corroborated by Figure 3a, which 

simulates a range of volcanic-like surfaces consisting of a hot component (at varying temperature) and 

a cooler component (at 300 K), each of varying proportions, that would produce a PIT at the peak of 

detection for TIRS bands: 360 K [1], and also by Figure 3b which displays the range of PITs that the 

individual pixel detection components of the TIRS would detect on viewing a variety of configurations 

of simulated volcanic-like surfaces, again assuming two surface components: a hot component of 

varying temperature and a cooler component of 300 K. The detection capabilities of the thermal 

infrared bands to surfaces at ambient temperature does mean, however, that these ambient emissions 

must be removed from those of the brighter volcanic pixels to retrieve the purely anomalous radiant 

emissions attributable solely to volcanic activity.  

Figure 2. The spectral range of sensitivity within which the TIRS bands (Landsat-8 bands 

10 and 11) operate, overlain on the Planck Function displaying the temperature range these 

bands are capable of detecting and, for comparison, the infrared emissions from surfaces at 

a range of temperatures. 
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Figure 3. (a) Simulated volcanic-like surfaces being viewed within one TIRS pixel, with 

two sub-pixel components of varying size and temperature which would produce a TIRS 

pixel integrated temperature at the peak of detection for 10,000 m
2
 TIRS pixels: 360 K [1]; 

this assumes a cooler component temperature of 300 K. Inset: a representation of the 

theoretical heterogeneous pixel assumed in these scenarios, with a small hot component 

representing high temperature elements such as fresh lava or cracks in the carapace of a 

lava dome, and a larger cooler component (here at 300 K) representing the non-volcanic 

background surface. (b) The range of pixel integrated temperatures (PITs) that individual 

TIRS pixel detection components would detect as emitted from a surface with a cooler 

component (or background) temperature of 300 K and a hotter component with the 

characteristics displayed. The red line represents the limit of detection for TIRS. 
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4. Methods 

The first Landsat-8 image of an active volcano was acquired on 29 April 2013, at 10.00 Eastern 

Indonesia time (02.00 UTC). This image, in all 11 bands, was downloaded from the United States 

Geological Survey’s Global Visualisation Viewer [28]. Data from the TIRS band 10 was extracted and 

contrast enhanced to allow for the isolation of pixels attributable to volcanic heat emissions; these were 

bright compared with pixels imaging the non-active surroundings and the associated volcanic ash plume 

(Figure 1). To ensure the complete radiant signal from the volcanically active surface was captured, 

while minimising contributions from non-volcanic regions, a region fully encompassing the surface 

emitting anomalous volcanic radiant signals, and also including a portion of the non-volcanically active 

surroundings, and a small part of the associated ash plume, was extracted (i.e., the rectangular region 

outlined in red in Figure 1). 

Individual pixel data from the extracted region were converted to top of atmosphere (TOA) radiance 

(LTOA, W∙m
2
∙sr

−1
∙µm

−1
) following: 

LTOA = ML Qcal + AL (3) 

where: ML = rescaling factor (3.342 × 10
−4

 for Landsat-8 band 10); Qcal = pixel digital number (DN) 

values and AL = rescaling factor (0.1 for Landsat-8 band 10) [33]. Subsequent calibrations have shown 

that the subtraction of an additional 0.29 W∙m
2
∙sr

−1
∙µm

−1
 will correct for discrepancies in band 10 

calibrations [5] and as such, this step was also applied.  

The TOA spectral radiances associated with the extracted region are shown in Figure 4. Here it 

should be acknowledged that the radiance associated with each pixel is a pixel integrated value for the 

heterogeneous surface; that is, an average of the emissions over the whole of the pixel area which 

might include thermally anomalous volcanic and non-thermally anomalous sources (see Figure 3 for a 

representation of such a pixel). In examining this dataset, only one pixel displayed the maximum 

detectable radiant signal (360 K), potentially suggesting saturation. Where saturation does occur in 

such a dataset, it often results in an underestimation of the radiant signal, thereby hindering accurate 

quantitative analyses [24]. This limited presence of saturation here is encouraging therefore, as it 

suggests that for similar volcanic surfaces and TIRS observations, saturation might also be avoided 

thereby facilitating quantitative analyses.  

Top of atmosphere values provide an indication of the temperatures at the surface but, being at an 

altitude of 708 km in the case of Landsat-8, to accurately determine the emissions of energy actually 

leaving the surface and hence, the true PIT at the surface, the radiant signal must be corrected for the 

influence of the atmosphere that it has passed through; the emissivity of the emitting surface must also 

be considered. The emissivity of a surface is the ratio of the radiance it emits to the radiance that a 

blackbody would emit at the same temperature, and its value for the volcanic surface at Paluweh was 

selected as 0.982. This value was derived from the NASA Moderate Resolution Imaging 

Spectroradiometer [MODIS] Land Surface Temperature and Emissivity Product, MOD11A1 [34], 

obtained from [28] for the day and surface in question. Although this value derives from a larger 

(1000 m × 1000 m) MODIS pixel, it is comparable to emissivity values derived at other volcanic 

sites [35]. 
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Figure 4. Top of atmosphere radiant signals associated with the extracted region (see 

Figure 1), for the TIRS band 10. 

 

The influence of the atmosphere is in terms of its attenuation and augmentation of the surface 

emitted radiant signal. To determine the transmissivity (τ) of the atmosphere to TIRS band 10 signals, 

the MODO v. 4 software (a graphical user interface to the MODTRAN atmospheric transmission 

correction code) was used, initialised with surface level data, a tropical atmosphere and using the 

precise spectral response for this band (from: [36]). An online simulation (as described in [37]) was 

then run to retrieve the corresponding upwelling (Lu) and downwelling (Ld) atmospheric radiance 

components. The outputs were: τ = 0.77, Lu = 2.28 W∙m
2
∙sr

−1
∙µm

−1
 and Ld = 3.62 W∙m

2
∙sr

−1
∙µm

−1
. 

Using these data, the spectral radiance leaving the emitting surface at temperature T (K) (Lλ, 

W∙m
2
∙sr

−1
∙µm

−1
) could be calculated by rearranging the following equation from [37]: 

LTOA = τ ε Lλ + Lu + τ(1-ε) Ld (4) 

This was then then converted to brightness temperature using the inverse of the Planck Equation (5) 

where λ = the central band 10 bandpass, i.e., 10.95 µm: 
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These procedures were applied for all pixels within the extracted region. In a nighttime Landsat 8 

image, it would have been possible to do this by simply isolating the corresponding anomalously 

radiant pixels in the associated OLI SWIR imagery (i.e., following [38]), however because of the 

presence of reflected sunlight, this was not possible. As such, following [32] in the analysis of ASTER 
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TIR imagery of Bezymianny volcano, Russia, the background temperature of the bands in question 

was obtained by averaging that of surrounding, clearly non-volcanic pixels within the extracted region 

of Figure 1 (
10bg ). Care was taken to ensure those pixels chosen for this purpose did not represent the 

cooler volcanic plume.  

To objectively isolate only those pixels truly representing the thermally anomalous surface, the 

standard deviation of the same, clearly non-volcanic pixels (σbg10) was also determined, with the aim 

of representing the ―normal‖ background temperature variability. Only pixels within the extracted 

region, with temperatures greater than (
1010 +)×3 bgbgσ , were extracted as thermally anomalous. 

Although the use of 3 × σ is rather arbitrary, examination showed it to satisfactorily isolate just 

volcanically active pixels which are outlined in blue in Figure 1 and the brightness temperatures of 

which are shown in Figure 5. This method compares with that used by [39], although using their 2 × σ 

value in this case would have left, unmasked, discrete areas within the background far from the main 

thermal anomaly and as such, unlikely to have been related to the volcanic activity. 

Figure 5. The brightness temperature of pixels isolated as anomalous within the region of 

extracted thermal anomaly for the TIRS band 10. The region for which data are represented 

here relates to that outlined in blue in Figure 1. 

 

The total radiant flux density associated with the thermally anomalous pixels isolated (Q in W), and 

that associated with the values of 
10bg (i.e., Qbg10), was then calculated using the Stefan Boltzman 

equation (Equation (1)) incorporating both the pixel brightness temperature (T in K) and area (A, 

10,000 m
2
): 
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Q = σ ε T
4
A (6) 

From the data of the isolated thermally anomalous pixels, the corresponding Qbg10 was subtracted, 

to leave behind a radiant flux density value theoretically attributable only to the volcanic processes at 

the surface. These retrievals were summed to produce a radiant power value for the surface which 

related to the instant the image was acquired. Given that this retrieval relates only to one observation, 

we unfortunately cannot use it to make any assumptions as to variations in the volcano’s activity over 

time [40], although it provides both a useful snapshot of the volcano’s activity and a glimpse at the 

potential utility that such observations will have in the future. In terms of accuracy, that of this 

retrieval will be heavily dependent on the accuracy of the data incorporated into the calculations. As 

such, a sensitivity analysis was conducted into the influence of these variables on the retrievals. With 

regard to transmissivity and emissivity, amending the values by a certain percentage changed the 

retrieval by a similar proportion. In contrast, changing the upwelling and or downwelling values had a 

negligible effect on overall retrievals. 

5. Results 

The retrieval of radiant power for the thermally anomalous pixels at Paluweh was 345 MW for the 

TIRS band 10. Given such data, previous workers have often gone on to calculate lava effusion rates. 

This is not done here as the data are based on just one observation and [41] shows that variations in lava 

effusion rates may occur over timescales of tens of minutes, suggesting that such instantaneous readings 

might not be truly representative. However, the instantaneous value does provide a useful indicator 

against which the volcano’s activity can be compared with similar data recorded at other volcanoes. For 

example, [42] shows that for Lascar volcano, Chile, 2001–2005, which similarly to Paluweh displays 

lava dome activity, radiant power emissions reached nearly 70 MW. Such thermal emissions compare 

less favourably with those of other sorts of volcanic activity with, for example [43] showing, for 

throughout 2001, emissions reaching 2250 MW at Kilauea and 10,000 MW at Mount Etna.  

The thermal anomaly isolated in the Landsat-8 image of Paluweh was spread over 264 pixels 

(2.64 km
2
) (Figure 5). Given the intensity of the anomalous surface towards its northern centre, this 

precise area is assumed to represent the active lava dome, with the cooler pixels stemming north and 

south from it most likely representing active and/or cooling pyroclastic flows that were reported as 

associated with the eruption [29]. 

Unfortunately, Paluweh is a relatively under studied and remote volcano and, as such, no ground 

measurements are available to corroborate the values determined here. However, what is available are 

observations acquired from other sensors. As such, data from the MODIS Fire Product (MOD14A1) 

were acquired from [28]. This product identifies potential fire (or thermally anomalous volcanic) 

pixels and, for those classified as such, outputs the corresponding radiant power emissions based on 

volcanic MIR detections as compared with detections from adjacent non-anomalous pixels [44,45]. 

Extraction of the relevant MOD14A1 data for Paluweh for a two week period around this Landsat-8 

acquisition showed retrievals of up to 258.3 MW. This is obviously within the same order of 

magnitude but lower than the TIRS retrieval. There are a number of possible reasons for this apparent 

underestimation. Firstly, the MOD14A1 product is derived from mid-infrared observations (around 

4 µm) [44]. Surfaces emitting chiefly in this region of the spectrum are of particularly high 
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temperature and such temperatures might not have been reached over large areas at Paluweh. 

Secondly, the pixels of MODIS are 1000 m × 1000 m and hence, one hundred times the size of those 

of the TIRS. As such, emissions from non-volcanic (i.e., non-thermally anomalous) surfaces are likely 

to dominate detections, as opposed to those from active surfaces. Thirdly, at the time of MODIS image 

acquisitions, the volcanic plume may have obscured the surface. 

6. Conclusion 

Given its compliment of thermal infrared bands, the LCDM provides an appropriate continuation in 

the thermal detection capabilities of the Landsat range of satellites, and with their increased number 

and improved signal to noise ratio and dynamic range, as compared with previous TIR Landsat bands, 

they show potential for the acquisition of highly accurate data. Its first observation of volcanic activity 

on 29 April 2013 (just two weeks after its launch) has been shown to provide useful quantitative data 

relating to the activity of the volcano at the time. This paper however, is just an initial examination of 

the first available active volcanic Landsat-8 observation and there is much more which now needs to 

be studied, including examining some of its more recent imagery (now that the satellite is out of its 

100-day commissioning period [46]), using the sensor’s SWIR bands in night time volcanic imagery, 

applying dual band techniques to its data to glean a sub-pixel impression of volcanic activity and 

utilising, together, its TIR and OLI data which are combined within one image in its Level 1 products. 

There is also the opportunity, once the calibrations problems of the TIRS band 11 are rectified, of 

using the satellite’s two thermal bands for application of split-window algorithms, something never 

before possible with only one TIR band on previous Landsat satellites, and for deriving a timeseries of 

observations from which the derivation of varying lava effusion rates might be derived more 

appropriately than with just one image. 

Other sun-synchronous satellites with TIR observation capabilities have fewer bands (e.g.,  

Landsat-7), a poorer spatial resolution (e.g., AVHRR) or have actually surpassed their 

planned lifetimes (e.g., the NASA Terra and Aqua satellites which host the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer [ASTER] and MODIS sensors). As such, LCDM TIRS 

observations are likely to increase in value in the coming years. With its three year lifetime, the TIRS 

bands will not provide the continuity of data to which we have become accustomed but, given their 

high quality and resolution, the remote sensing community must take every opportunity to analyse and 

interpret the data they acquire for the furtherance of volcanic knowledge, to inform future sensor 

design and to highlight the utility of TIR bands for new and planned Earth-observation spacecraft. 
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