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Abstract: Vegetation in the Arctic is often sparse, spatially heterogeneous, and difficult to 

model. Synthetic Aperture Radar (SAR) has shown some promise in above-ground 

phytomass estimation at sub-arctic latitudes, but the utility of this type of data is not known 

in the context of the unique environments of the Canadian High Arctic. In this paper, 

Artificial Neural Networks (ANNs) were created to model the relationship between 

variables derived from high resolution multi-incidence angle RADARSAT-2 SAR data and 

optically-derived (GeoEye-1) Soil Adjusted Vegetation Index (SAVI) values. The modeled 

SAVI values (i.e., from SAR variables) were then used to create maps of above-ground 

phytomass across the study area. SAVI model results for individual ecological classes of 

polar semi-desert, mesic heath, wet sedge, and felsenmeer were reasonable, with r
2
 values 

of 0.43, 0.43, 0.30, and 0.59, respectively. When the outputs of these models were 

combined to analyze the relationship between the model output and SAVI as a group, the r
2
 

value was 0.60, with an 8% normalized root mean square error (% of the total range of 

phytomass values), a positive indicator of a relationship. The above-ground phytomass 

model also resulted in a very strong relationship (r
2
 = 0.87) between SAR-modeled and 

field-measured phytomass. A positive relationship was also found between optically 

derived SAVI values and field measured phytomass (r
2
 = 0.79). These relationships 

demonstrate the utility of SAR data, compared to using optical data alone, for modeling 
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above-ground phytomass in a high arctic environment possessing relatively low levels  

of vegetation. 

Keywords: Arctic; synthetic aperture radar; phytomass; artificial neural network 

 

1. Introduction 

Knowledge of the spatial distribution of vegetation cover and phytomass in the High Arctic is 

becoming increasingly important due to the changing climate of this region. Vegetation is very limited 

in arctic environments, especially in the High Arctic bioclimatic zones [1,2]. The limited vegetation 

that is present, however, can have significant effects on the terrestrial carbon balance [3,4] and 

methane fluxes [5]. Further, knowledge of vegetation density is important for monitoring forage 

quality and quantity for ungulates such as Peary Caribou (listed as Endangered in the Canadian Species 

At Risk Act) and muskoxen [6,7]. 

In addition to the obvious limitations of air and soil temperature, there are a number of factors that 

serve as controls on vegetation growth in the high arctic, including soil moisture [8,9], available 

nutrients [10,11], topography [12,13], microtopography [8,12,14], and soil type [14]. The variation and 

distribution of these different environmental controls results in a very heterogeneous vegetation cover, 

with very different vegetation ecosystems sometimes in close proximity to one other. Remote sensing 

is therefore the best tool available to accurately map the spatial distribution of above-ground 

phytomass at the fine scales necessary to distinguish between these vegetation community types. This 

fine-scale mapping is crucial for accurate carbon budgets and phytomass estimation at the local  

scale [15], and also for accurately scaling up these variables to larger regional scales [16,17]. 

Vegetation cover can also complicate the retrieval of other important biophysical parameters, such as 

soil moisture, when using Synthetic Aperture Radar (SAR) [18,19]; however, if vegetation cover is 

known, soil moisture retrieval accuracy can be increased [19,20]. 

SAR has been used in vegetation/biomass studies at sub-arctic latitudes [21,22], but is very rarely 

used to study arctic vegetation [23], and has not been used at all in the context of the High Arctic. 

There are considerable benefits to using SAR when compared to optical data for arctic research. 

Acquiring cloud-free optical images is often problematic in the arctic, and low solar zenith angles at 

high latitudes can also cause illumination issues with optical data [19]. There are also challenges with 

using SAR to model vegetation in the High Arctic, however, such as the extremely limited amounts of 

phytomass in all but the wettest areas. Even so, there are a number of approaches to modeling 

backscatter from vegetation canopies (see review in [19] and [24]). These approaches, however, only 

apply when the vegetation is dense enough to form some sort of canopy, i.e., the above-ground 

phytomass must be of a sufficient height to have a noticeable effect on backscatter, which may not 

hold true in many parts of the arctic. Agricultural studies have demonstrated that even relatively short 

vegetation can produce an appreciable amount of HV backscatter due to depolarization [21,25] of the 

backscatter, as well as marked differences in HH and VV polarizations [22], though high arctic 

vegetation levels are generally even lower than short-crop agriculture. Low density grasses and sedges, 

which make up much of the vegetation cover in the high arctic, can also be difficult to distinguish from 
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bare ground [26]. Regardless, polarimetric data could be key to this analysis if this depolarization 

holds true for very low levels of vegetation. Multiple incidence angle data may be important for similar 

reasons, with greater incidence angle backscatter having greater interaction (and therefore backscatter) 

with short vegetation than smaller incidence angle data [21,22,27] (similar to how surface roughness 

affects backscatter), though stopping short of full volumetric scatter. 

The Radar Vegetation Index (RVI), which has been used to estimate biomass from SAR  

data [20,28] characterizes vegetation scattering by dividing the cross-polarization scattering by the 

total scattering; effectively measuring the degree of depolarization. RVI may not be applicable if there 

is little to no volume scattering present, as would be the case below a certain threshold level of 

vegetation indicated by a lower HV backscatter contribution. If the vegetation cover is sparse or very 

dry, the surface roughness may be the most significant contributor to total backscatter [29,30]. 

Vegetation can be modeled using not only relations of SAR to above-ground phytomass  

(as described above), but also using other controlling factors as input. As mentioned previously, 

vegetation in the high arctic is closely related to topographic and moisture gradients across the 

landscape, so variables derived from a Digital Elevation Model (DEM) have the potential to be useful 

for vegetation modeling. Vegetation biomass can be a good proxy for soil moisture in the arctic, due to 

the vegetation being dependent on the spatial distribution of soil moisture (i.e., it only grows in areas 

with consistently high soil moisture, with drier areas being completely barren) [31]. Once vegetation is 

modeled, it can therefore be used to help model soil moisture using SAR over the same areas [19,32], 

or vice versa. The inclusion of multiple data types from different sources into the model suggests that 

the use of Artificial Neural Networks (ANNs) would be a practical way to model the vegetation. 

ANNs are commonly used to invert surface parameters from SAR data [33,34], and show great 

promise in both simplifying the modeling process and increasing the accuracy of the results. ANNs 

have the capacity to ―learn‖ complex, nonlinear patterns, and generalize these patterns in noisy 

environments. This capacity to generalize means that ANNs can be effective in situ ations where data 

may be missing or imprecise. ANNs are also able to incorporate prior knowledge and physical 

constraints into the analysis, while making no assumptions about the statistical nature of the input  

data [35,36]. This allows for the incorporation of disparate data from many remote sensing and 

ancillary sources, and can include variables such as terrain height, slope, aspect, soil texture and land 

cover. ANNs are superior at generalizing (or extending) results for application to new areas than a 

strictly empirical model, and do not have the same parameterization problems and assumption 

difficulties as physical models. The target variable for the ANN model needs to be a spatially  

explicit measure of vegetation phytomass, so a vegetation index from high resolution multi-spectral 

data is ideal. 

Raynolds et al. [37] established that maximum annual Normalized Difference Vegetation Index 

(NDVI) values from coarse spatial resolution imagery are closely related to peak summer  

above-ground phytomass across a range of sites in the arctic along a latitudinal gradient. Previous 

research at the Cape Bounty study location used in this analysis, using high spatial resolution imagery 

to generate NDVI, demonstrates a weaker relationship [9], possibly due to the differences in the range 

of phytomass levels sampled (i.e., Raynolds sampled across five bioclimatic zones), spatial resolutions, 

or vegetation characteristics unique to Cape Bounty. Other vegetation variables were more closely 

correlated to high spatial resolution NDVI, such as Percent Vegetation Cover (PVC) [9], vegetation 
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volume [38], and Leaf Area Index [4]. A large proportion of the phytomass is made up of bryophytes 

in the high arctic [37,39], with Cape Bounty being no exception, and this is thought to be a 

confounding factor in the relationships of NDVI to these other vegetation variables, due to the 

differing NDVI reflectance characteristics of bryophytes and vascular plants [40–42]. It is not clear as 

to the effects of bryophytes on SAR backscatter in this environment, although their ability to absorb 

and retain moisture likely influences the dielectric properties at the surface. Watanabe et al. [43], in a 

study using L-band SAR, discovered that moss layers in permafrost environments have a significant 

impact on co-pol backscattering (though not cross-pol backscatter), so the effects on C-band SAR, as 

used in this study, are likely to be noticeable, especially if the bryophytes are holding water. 

Previous studies in the High Arctic have noted the fine-scale topographic and moisture controls of 

the ice-wedge polygon and frost crack dominated landscape [8,14]. Vegetation in polar semi-desert 

areas is often limited to the margins of the polygons, where wind speed is reduced and sufficient 

moisture and nutrients are present to allow growth; these features therefore leave large patches of  

bare ground. This high proportion of bare ground can dominate the NDVI signal, causing an 

underestimation of above-ground phytomass for the area. Previous research has suggested that using 

the Soil Adjusted Vegetation Index (SAVI) [44], which takes into account larger proportions of bare 

ground in the signal, could ameliorate the NDVI underestimation of above-ground phytomass [8,45]. 

Optical data will therefore be used to generate SAVI values across the study area to be used as a 

baseline for the vegetation modeling. 

The purposes of this research are two-fold: (i) to determine the effects that high arctic vegetation 

has on SAR backscatter, including polarimetric effects; and (ii) to model vegetation phytomass using 

an Artificial Neural Network (ANN). The results of the ANN will then be related to above-ground 

phytomass levels. Due to the low levels of vegetation phytomass in the study area, it is not expected 

that the vegetation itself will have strong interactions with the SAR signals, but it is likely that changes 

in soil moisture and surface roughness that would be strongly associated with areas of higher 

phytomass could be detected more easily. 

2. Methods 

Before creating the ANN models, the study area was segmented into discrete image objects using 

the multi-spectral data. Once this was completed, the variables to be used as the model input were 

determined. A variety of difference variables, texture variables, and, in the case of the polarimetric 

data, polarimetric variables and decompositions, were derived and extracted from the SAR data. These 

variables were averaged within the image objects, and then analyzed for multicollinearity and 

correlation to multi-spectral derived SAVI values. The models were then applied to larger scale image 

objects, and also used to model above-ground phytomass (Figure 1). 
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Figure 1. Methodology diagram showing data sources (light grey) and outputs  

(dark grey). FQ and UF inputs are Fine-Quad polarimetric and UF inputs are Ultra-fine 

single polarization (HH) RADARSAT-2 data. 

 

2.1. Study Location and Site Description 

Field work for this study was conducted at the Cape Bounty Arctic Watershed Observatory 

(CBAWO), located on southern Melville Island in Nunavut, Canada (approximately 74.91°N, 109.44°W) 

in 2009 and 2010 (Figure 2). The CBAWO is composed of two parallel watersheds that, when 

combined, cover approximately 15 km
2
. The topography is rolling, with low to medium relief; 

elevation ranges from 5 m to 125 m above sea level. Past glaciation has deposited various tills in the 

region, primarily Winter Harbour till [46], which is a thin (1–2 m) carbonate rich till that is draped 

over the other layers [46]. There are also Holocene-era clay-rich marine sediments, which are located 

between about 35 m and 90 m above sea level [46,47]. According to the Circumpolar Arctic 

Vegetation Map [48], Cape Bounty is located in bioclimatic zone B, with a vegetation classification of 

G2-graminoid, prostrate dwarf shrub, forb tundra.  

Vegetation in the area is extremely heterogeneous, and consists of bryophytes, forbs, graminoids, 

and prostrate shrub species (i.e., Salix arctica). The vegetation can be classified into three main 

ecological types based on topographic and moisture conditions: polar semi-desert, mesic tundra, and 

wet sedge tundra. Greater phytomass is found in the mesic and sedge communities, which have large 

amounts of bryophytes and graminoids. Mesic areas are more sparsely vegetated than the sedge areas, 

but can have equal or greater phytomass due to large quantities of bryophytes [45]. Polar semi-desert 

areas can be completely barren, but are often characterized by patterned ground features with 
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vegetation cover found in depressions. In areas that do contain vegetation, phytomass values range 

from about 200 to 2200 g/m
2
. Phytomass values in the lower end of this range are not expected to be 

detectable by SAR. Large areas of exposed, fractured bedrock are also present, and the entire area is 

underlain by permafrost, with an active layer of 0.5 m–1 m during the summer. 

Figure 2. Study location on Melville Island, Nunavut, Canada. 

 

2.2. Optical Imagery 

A high spatial resolution (1 m) Digital Elevation Model (DEM) was derived from a Worldview-2 

stereopair (15 July 2012) at Cape Bounty and used for orthorectification of the optical and SAR data, 

as well as for generating the Topographic Position Index (TPI) variable. The TPI is a method of 

defining the relative position of a given location along a topographic gradient [49], where negative 

values represent valley or slope bottoms, values near zero represent flat areas or midslope areas, and 

positive values represent ridge tops and hills. The TPI was calculated using a 150 m radius window on 

the 1 m spatial resolution DEM [50]. 

2.3. Object-Based Image Analysis (OBIA) 

High resolution multispectral data (i.e., GeoEye-1) collected at Cape Bounty (22 August 2009), 

were pan-sharpened to 0.5 m spatial resolution, and orthorectified using ground control points in the 

form of corner reflectors (set up for the SAR imagery, but were identifiable in the optical imagery as well). 

The image was then atmospherically corrected using the ATCOR algorithm as implemented in PCI 

Geomatica 2013. In the absence of comprehensive field data, SAVI data were generated to validate the 

ANN models; these data provide a spatially comprehensive surrogate for field measures of vegetation. 

The correction value, L, was set to 0.5 for the SAVI calculation (Equation (1)), where NIR is the  

Near-infrared band, and RED is the visible red band. 

SAVI = 
         

         
       (1) 
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The vegetation model was constructed using OBIA, in which image objects consisting of groups of 

spectrally similar pixels are used as the minimum mapping unit, rather than individual pixels. OBIA 

has a number of advantages over pixel-based methods, including reduced dependency on noise-filtering 

algorithms (especially with SAR data), and the ability to investigate different spatial scales by simply 

changing the size of the image objects. OBIA is recognized as a very effective tool for analyzing  

geo-spatial and remotely-sensed data [51]. Image objects were generated from the 0.5 m pan-sharpened 

GeoEye-1 imagery (described above) for the CBAWO using eCognition
®
 8.64 software. Near-infrared, 

red, and green bands were used for grouping spectrally similar pixels, in order for the objects to be 

representative of the vegetation ecology on the ground. Two image object sizes that were physically 

meaningful [52,53] were chosen, with the smaller objects for both locations ranging between 

approximately 50 and 6000 m
2
, and the larger objects ranging from 50 to 35,000 m

2
 in size. 

2.4. SAR Data 

RADARSAT-2 data were used to take advantage of the relatively high resolution beam modes and 

fully polarimetric data. SAR data were collected at various incidence angles over the study area during 

the summers of 2009 and 2010 (Table 1) with both the Ultra-Fine (U) and Fine-Quad (FQ) beam 

modes. The Ultra-Fine beam mode has a spatial resolution of 3 m, though it is limited to a single 

polarization. The Fine-Quad products are fully polarimetric, but have a slightly coarser spatial 

resolution, at 8 m. Although additional SAR scenes were collected, those presented in Table 1 were 

identified as being relatively snow-free and uncompromised by active precipitation.  

Table 1. RADARSAT-2 data used in the analysis. 

RADARSAT-2 Beam Mode 
Avg. Incidence 

Angle (°) 
Polarization 

Spatial 

Resolution 

Acquisition 

Date 

U 2 31.4 HH 3 m 12 August 2009 

FQ 5 24.4 HH/VV/VH/HV 8 m 29 June 2009 

U 75 25.8 HH 3 m 11 July 2010 

U 26 48.4 HH 3 m 09 July 2010 

FQ 2 20.9 HH/VV/VH/HV 8 m 08 July 2010 

FQ 2 
a
 20.9 HH/VV/VH/HV 8 m 23 July 2010 

a
 Pass was descending; all others were ascending; U—Ultra-Fine Mode; FQ—Fine Quad Polarimetric Mode. 

The Ultra-Fine mode data were orthorectified before further analysis, while the Fine-Quad data 

were analyzed in slant range to preserve polarimetric information, and were only orthorectified to 

extract the plot data for each variable after the variables were calculated for the scene. Nine  

corner reflectors spaced around the watersheds of Cape Bounty were used to assist with geometric 

correction. Speckle filtering was not performed explicitly, except for the calculation of the RVI and the 

Cloude-Pottier decomposition [54]; it was otherwise handled through image-object averaging 

(discussed below). 
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2.5. Vegetation Modeling 

Polarimetric decompositions were analyzed to determine the nature of the SAR backscatter in this 

low vegetation terrain. Comparing the Cloude-Pottier decomposition values of entropy and alpha angle 

(H-α) between bare and vegetated surfaces could give an indication of the strength of the effect that 

vegetation has on backscatter, as these parameters change based on the type of scattering mechanism 

present on the surface [54]. Other SAR-derived parameters, such as the RVI, were also examined in 

this context. The low levels of phytomass in this environment (<2200 g/m
2
), are not expected to 

produce noticeable dipole or volumetric scatter, and this analysis of the scattering mechanisms  

present is included to confirm this suspicion. For similar reasons, HV backscatter is not expected to 

change significantly between areas of high and low phytomass. The physical structure of the 

vegetation present in this area, mainly grass/sedge and small forbs, also does not, in theory, lend itself 

to useable levels of VV backscatter. HH backscatter is expected to be more variable with changing 

amounts of phytomass. 

The SAR-derived parameters evaluated for inclusion to the ANN models are given in Table 2. The 

texture variables [55,56] were calculated on a per-pixel basis using an 11 × 11 pixel window for each 

RADARSAT-2 scene, before being averaged for each image object. Other variables are simple means 

of the pixel values for each image object. The texture measures for the U and FQ scenes were 

calculated using the HH backscatter intensity. The natural logarithm of the Normalized Backscatter 

Roughness Index (Ln(NBRI)) [57] variable was computed using the U75 and U26 scenes (Table 1) to 

maximize the incidence angle difference. 

In addition to the SAR-derived variables, the TPI variable was also included in the analysis. 

Variables that were not directly correlated (Pearson |r| < ~0.3) with the optical-derived SAVI values 

for each image object were removed from further analysis. Visual analysis of scatter plots helped to 

reveal possible non-linear correlations that the Pearson correlation would not identify. Variables that 

were highly correlated (Spearman |ρ| > ~0.8) with other remaining variables were also removed to 

alleviate concerns over multicollinearity, which can be a problem when training ANNs. 

A series of ANN models were then implemented to model the relationships between the  

remaining variables and the SAVI values. The neural network implementation of the MATLAB
®

 

software package was used in the development of the ANN; it is a two-layer feed-forward network 

with sigmoid-function hidden neurons and linear-function output neurons, trained with the  

Levenberg-Marquardt backpropagation algorithm [58]. One ANN was developed using all of the 

image objects from Cape Bounty together, and others were developed using separate models for each 

ecological class as defined and mapped for the area by Atkinson and Treitz [45]. These four ecological 

classes are derived based on a vegetation and moisture gradient, and are characteristic of the local 

vegetation ecology. The ecological classes (eco-classes) are polar semi-desert, mesic tundra,  

wet sedge, and felsenmeer/rock. The polar semi-desert and felsenmeer/rock classes have the lowest 

above-ground phytomass values, with mesic tundra and wet sedge having higher values. 

A number of image objects were excluded from the analysis, both from the initial model 

development with the smaller image objects, and for the model application with the larger image 

objects. Objects excluded included any classified as water or unclassified by the ecological 

classification [45], as well as any objects outside a 10 degree range of local incidence angle (centered 
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on the scene-average local incidence angle for any given beam mode). This was to prevent outliers due 

to the effects of steep slopes and cliffs on SAR backscatter. The remaining smaller size image objects 

(n = 10,041) covering the Cape Bounty study area were randomly partitioned into three sets for the 

ANN development: 70% of the data were used for training, 15% for validation, and 15% was held 

back as a completely independent test set. Validation data are used as a guide on the accuracy and 

generalization capability of the model when fitting it to the training data. The resulting ANN models 

were then applied to the larger image objects (n = 1333) to determine the ability of the models to adapt 

to different spatial scales. 

Table 2. Variables generated from Synthetic Aperture Radar (SAR) data. Variables in 

italics are additional variables applicable only to the fully polarimetric FQ data. 

a
 [55], 

b
 [56], 

c 
[57], 

d
 [54], 

e
 [28]. 

While modeling SAVI from SAR data is a good first step, it is also important to determine what  

those values mean on the ground in terms of above-ground phytomass in this environment. Previous 

attempts at relating an optical vegetation index (NDVI) to above-ground phytomass for this 

environment were mixed [9], with r
2
 values for Cape Bounty of 0.55. Other studies have found 

stronger relationships [3,37,59], but were at much coarser spatial resolutions. To show that the ANN 

results (estimated SAVI values from SAR variables) can be used to predict actual ground-based 

measures of above-ground phytomass, regression analyses were used with field-sampled values of 

above-ground phytomass collected for previous research [9]. This ANN-phytomass relationship can 

then be used to construct maps of above-ground phytomass levels across the study area. 

  

Variable Description 

Homogeneity 
a
 A measure of local homogeneity 

Contrast 
a
 A measure of local variation 

Correlation 
a
 A measure of the linear dependency of grey levels of neighboring pixels 

Mean 
a
 Arithmetic mean of all pixel values 

SD 
a
 Standard Deviation of pixel values 

VI/VA/VL/U 
b
 A normalized log measure of texture 

HH    intensity of the UF HH polarization 

Ln(NBRI) 
c
 Natural logarithm of the Normalized Backscatter Roughness Index 

Entropy 
d
 Amount of mixing between 3 scattering mechanisms 

Anisotropy 
d
 Amount of mixing between 2nd and 3rd scattering mechanisms 

Alpha Angle 
d
 Characterizes the scattering mechanism 

Beta Angle 
d
 Characterizes the dominant polarization 

Intensity Ratio Ratio of intensities between HH/VV polarizations 

Pedestal Height Minimum value of the co-polarization response 

Phase Difference Phase angle difference between HH/VV polarizations 

HH/VV/HV/VH    intensity of the various available polarizations 

RVI 
e
 Radar Vegetation Index—Divides cross-pol by total scattering 
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3. Results and Discussion 

3.1. Scattering Mechanisms 

Two Fine-Quad RADARSAT-2 scenes from 8 and 23 July 2010 (Table 1) were chosen for the 

Cloude-Pottier analysis. The July 8 scene was a ‗wet‘ scene, taken shortly after a precipitation event 

when the surface and the vegetation still held appreciable amounts of water, and the July 23 scene was 

a ―dry‖ scene, where the surface and vegetation were not holding high levels of water. The results of 

these H-α classifications indicate that there is only low and medium entropy surface scattering in this 

study area, as expected, even in areas characterized by high above-ground phytomass. The only 

occurrences of non-surface scattering classes are caused by ice cover (ocean and lakes) and areas of 

large boulders and felsenmeer/rock (Figure 3). Similarly, the RVI was not correlated with either SAVI 

values or previously modeled above-ground phytomass [9]. These results therefore indicate that the 

levels of above-ground phytomass are not sufficient for polarimetric methods to be helpful in 

vegetation modeling for this study area with the available polarimetric scenes, a conclusion further 

supported by the lack of correlation between other SAR-derived polarimetric variables (Table 2) 

(including HV and VV polarizations) and SAVI values derived from the GeoEye-1 image data. The 

polarimetric data were acquired at steep incidence angles (<25°) to allow for more accurate soil 

moisture retrievals, so it is possible that there would be greater polarimetric sensitivity to the 

vegetation at shallower incidence angles. 

Figure 3. Results of the Cloude-Pottier H-α decomposition and classification of FQ2 scene 

from 23 July 2010. (a) Low entropy (smooth) surface scattering; (b) Medium entropy 

(rough) surface scattering; (c) Medium entropy dipole scattering; (d) Medium entropy 

multiple scattering. 
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3.2. ANN Models 

The variables that were found to correlate to SAVI, and were therefore used in the ANN, are given 

in Table 3. One of the disadvantages of the ANN approach is the difficulty in determining the relative 

contribution of each input variable to the model output, though this problem can be mitigated to some 

extent with careful variable selection and individual variable correlation analysis. The reasons for these 

correlations seem to depend on the characteristics of backscatter changes from different incidence 

angles, rather than any sort of textural or polarimetric information. The ―Mean‖ values of the U2 and 

FQ5 scenes were correlated with SAVI, and were both included, despite being correlated to each other, 

due to their differences in sensitivity to different eco-types. That is, the two variables became less 

correlated with each other as SAVI values increased, likely due to the differences in incidence angle 

between the two beam modes. The Ln(NBRI) variable also seems to be correlated to SAVI due to 

backscatter differences from different incidence angle beam modes that are dependent on  

above-ground phytomass and associated soil moisture differences. Lower SAVI values correspond 

with higher Ln(NBRI) values. The TPI variable is also very likely sensitive to the topographic controls 

on the local soil moisture regime; as previously described, vegetation abundance is very closely  

related to moisture abundance in this environment, and topography is an important driver of  

moisture availability. 

Table 3. Variables derived from SAR data and elevation models used to develop the 

Artificial Neural Networks (ANNs). 

SAR-Derived DEM-Derived 

Mean: U2 (13 August 2009) TPI (150 m radius) 

Mean: FQ5 (29 June 2009)  

Ln(NBRI): U75 (11 July 2010) U26 (9 July 2010)  

The results of the ANNs (Table 4) developed for the separate eco-classes were individually less 

accurate than the model generated using only a single class that included all points (all-class ANN). 

However, when the outputs of the separate eco-class models were merged together into one output 

variable to allow for a single correlation analysis to SAVI (Table 4—―combined‖, Figure 4) the results 

are much stronger, with an r
2
 of 0.6, and a normalized Root Mean Square Error (N_RMSE) of 8%. The 

N_RMSE is the RMSE normalized to the range of SAVI values present in each dataset (% of the total 

range), and is a good way to directly compare the performance of the ANNs to each other. In addition, 

the mean values of SAVI for each image object, derived from the optical imagery, were not 

significantly different (p < 0.05) than the mean values of the ANN output for each image object. A 

closer examination of the results of the All-class ANN (Figure 4) indicates that the model loses its 

predictive capability beyond SAVI values of approximately 0.3. The results when separated by  

eco-class are much more accurate (Figures 4 and 5), even at values of SAVI above 0.3. The separate  

eco-class models were therefore applied to the larger image objects to determine their ability to 

generalize to coarser spatial resolutions. 
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Table 4. ANN results for the small image objects. The ―combined‖ results are the 

combination of the separate eco-class ANNs. N_RMSE is the RMSE normalized to the 

range of values present in the data. Mean Soil Adjusted Vegetation Index (SAVI) values 

are derived from the optical data for each object; mean ANN is the modeled SAVI mean 

for each object. 

 Training Validation Testing Final Output 

Eco-Class r
2
 RMSE r

2
 RMSE r

2
 RMSE r

2
 N_RMSE 

Mean 

SAVI 

Mean 

ANN 

Polar semi-desert 0.43 0.039 0.44 0.038 0.44 0.038 0.43 8% 0.189 0.190 

Mesic heath 0.42 0.042 0.47 0.036 0.42 0.039 0.43 12% 0.255 0.256 

Wet sedge 0.28 0.053 0.30 0.048 0.37 0.058 0.30 11% 0.291 0.292 

Felsenmeer/Rock 0.61 0.025 0.50 0.030 0.57 0.021 0.59 11% 0.137 0.133 

Combined Output --- --- --- --- --- --- 0.60 8% 0.204 0.205 

All-class ANN 0.49 0.046 0.48 0.046 0.49 0.046 0.49 9% 0.204 0.205 

Figure 4. (a) Output of the All-Class ANN compared to the SAVI values derived from 

optical data; (b) Combined ANN model output from each separate eco-class ANN, 

compared to SAVI values. 

  

(a) (b) 

The lower r
2
 and higher RMSE values for the Wet Sedge eco-class could be due to factors that are 

influencing either the optical-derived SAVI values or the SAR-derived parameters. The wet sedge 

ecological type is dominated by sedges, but there are also high proportions of bryophytes, which have 

different reflectance properties than other vegetation and can lead to lower values of SAVI than would 

otherwise be expected given the ecological classification and above-ground phytomass levels present. 

These wet sedge areas are also characterized by saturated soils and patches of standing water, which 

can have large influences on SAR backscatter that would not be reflected by equivalent changes in the 

SAVI values. Inherent errors in the ecological classification, which is ~79% accurate [45], also likely 

account for some of the more extreme values in each class. 

When applied to the larger image objects, the separate eco-class ANNs give similar results to those 

seen for the smaller image objects for the separate ecological classes, with the combined model results 
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showing an even stronger relationship than for the smaller objects (Table 5, Figure 6). This is likely 

due to the reduction in extreme values of SAVI and the model output that is a result of increased 

averaging for the larger image objects. The individual RMSEs are higher than for the small object 

models, even though the r
2
 values are higher, a consequence of a much smaller number of image 

objects: 1333 large objects compared to 10,041 small objects. A smaller number of objects cause the 

highest and lowest errors to have a greater influence on the overall RMSE. We can also see that the 

slope of the relationship for the felsenmeer/rock class is lower than the other classes for the large 

image objects (Figure 6), while it is higher than the other classes for the smaller image objects (Figure 5). 

This lower slope is due to a lower maximum class SAVI value of 0.18 for the larger objects  

(versus 0.31 for the smaller objects), again likely an effect of the increased spatial averaging of the 

larger objects. The visual agreement between the output of the ANNs applied to the different object 

sizes is also very strong (Figure 7). 

Figure 5. Individual ANN model output from each separate eco-class ANN. 

 

Table 5. Results of the eco-class ANNs when applied to the large image objects. 

Eco-Class r
2
 N_RMSE Mean SAVI Mean ANN 

Polar semi-desert 0.56 8% 0.190 0.196 

Mesic heath 0.48 12% 0.264 0.267 

Wet sedge 0.52 9% 0.294 0.297 

Felsenmeer/Rock 0.47 19% 0.128 0.133 

Combined 0.72 6% 0.203 0.208 
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Figure 6. Regression of the separate eco-class ANNs applied to the larger image objects. 

 

Figure 7. ANN modeled SAVI output for the Cape Bounty study area when the model is 

applied to the smaller objects (Left) and the larger objects (Right). 

 

3.3. Above-Ground Phytomass Modeling 

The relationship between the ANN-modeled SAVI values and field-measured above-ground 

phytomass at the Cape Bounty location using the smaller image objects shows a stronger relationship 

than the previous NDVI-above-ground phytomass relationship of Atkinson and Treitz [9] (Figure 8), 

with an r
2
 of 0.87, and a RMSE of 239 g/m

2
, or approximately 11% of the maximum range of 

phytomass values. It is not clear whether this improved result is due to the better relationship of SAVI 

versus NDVI to above-ground phytomass, or if the SAR data is simply more sensitive to above-ground 

phytomass than the optical vegetation indices. When a similar regression is applied between optical-based 

SAVI values and above-ground phytomass, the relationship is not quite as strong, with an r
2
 of 0.79 

and a RMSE of 309 g/m
2
 (approximately 14% of the maximum range of phytomass values), 

suggesting that the SAR data could be more sensitive to above-ground phytomass. A limitation of this 
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relationship is that it does not hold for values of SAVI less than about 0.1, which in this instance only 

results in the exclusion of approximately 25 (less than 0.3%) of the image objects. Values of SAVI less 

than 0.1, represent areas that have extremely low values of above-ground phytomass. The modeled 

values of above-ground phytomass were then used to create a spatially explicit map of above-ground 

phytomass across the Cape Bounty study area (Figure 9). A further complication of this relationship 

arises due to the physical linkage between phytomass and soil moisture in this environment. It is 

possible that the SAR model is sensitive to the combined moisture/vegetation signal, rather than just 

vegetation, though this may not be problematic because of the very real relationship between these 

variables on the ground [9]. Surface roughness can also have a large impact on SAR backscatter 

values, but controlling for surface roughness values across the landscape (from [60]) did not  

result in significant changes to the model, suggesting that surface roughness is not a major factor in 

this instance. 

Figure 8. Relationship between the ANN modeled SAVI values and field-derived 

measures of above-ground phytomass for the smaller image objects. 

 

Figure 9. Multi-spectral derived SAVI values (Left) for the small image objects compared 

to the SAR-modeled above-ground phytomass values (Right) across the Cape Bounty 

study area. Blank (white) areas indicate where objects were excluded from the analysis  

(see methods). 
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4. Conclusions 

High resolution optical data were used to facilitate the modeling of above-ground phytomass using 

RADARSAT-2 Synthetic Aperture Radar (SAR) data. Three different SAR parameters, along with a 

topographic position index derived from a high-resolution digital elevation model, were used to create 

Artificial Neural Network (ANN) models that estimated values of the Soil Adjusted Vegetation Index 

(SAVI) across different sets of image objects. Models for individual ecological classes were found to 

outperform a single model that included all classes (r
2
 = 0.49, normalized root mean square error 

(N_RMSE) = 9%) when the output from the separate models were combined and compared to the 

optical-derived SAVI values (r
2
 = 0.60, N_RMSE = 8%). The models were applied to larger image 

objects, with acceptable results (r
2
 = 0.72, N_RMSE = 6%), showing the potential of the models to be 

applied at multiple spatial scales without sacrificing accuracy. The output of the ANNs was also used 

to create another model that estimates above-ground phytomass across the landscape, and resulted in a 

strong relationship with ground-sampled phytomass values (r
2
 = 0.87, N_RMSE = 11%). This 

relationship demonstrates the utility of SAR data, compared to using optical data alone, when 

attempting to model above-ground phytomass in a high arctic environment with relatively low levels 

of vegetation. The phytomass levels in this environment are low enough that much of the relationship 

between field-measured phytomass and the SAR variables could be due to backscatter sensitivity to 

soil moisture, and, to a smaller degree, surface roughness. However, the close coupling of moisture 

and phytomass in this environment means that this relationship increases rather than decreases the 

effectiveness of the modeling effort. 

Polarimetric variables were not found to be correlated to SAVI, and were therefore not used as 

inputs to the ANN models. This lack of correlation is not surprising, as the RADARSAT-2 dataset was 

initially acquired for soil moisture estimation, where steep incidence angles are preferred to reduce the 

surface roughness dependency and vegetation interaction. In the near future, it would be worthwhile to 

acquire polarimetric SAR data at shallower incidence angles to maximize vegetation interaction and 

determine the potential degree of polarimetric C-band SAR correlation to high arctic vegetation. The 

use of shorter wavelength SAR sensors, such as TerraSAR-X, would also likely increase the effective 

influence of vegetation on backscatter, due to the very low levels of vegetation in high arctic 

environments, and is an avenue worth further exploration. 
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