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Abstract: This study proposed a new approach to measure the similarity between spectra 

to discriminate materials and evaluate the performance of parameter-selection procedures. 

Many pure pixel vector-based similarity measurements have been developed in the past to 

calculate the distance between two pixel vectors. However, those methods may not be 

effective since they do not take full advantage of the spectral correlation. In this study, we 

adopt Ensemble Empirical Mode Decomposition (EEMD) to decompose the spectrum into 

serial components and employ these components to improve the performance of spectral 

discrimination. Performance evaluation was conducted with several commonly used 

measurements, and the spectral samples used for experimentation were provided by the 

spectral library of United States Geological Survey (USGS). The experimental results have 

demonstrated that EEMD can extract the spectral features more effectively than common 

spectral similarity measurements, and it better characterizes spectral properties. 

Our experimental results also suggest general rules for selecting noise standard deviation, 

the number of iterations for EEMD and the collection of Intrinsic Mode Functions (IMFs) 

for classification. Finally, since EEMD is a time-consuming algorithm, we also 

OPEN ACCESS



Remote Sens. 2014, 6 2070 

 

 

implement parallel processing with a Graphics Processing Unit (GPU) to increase the 

processing speed. 

Keywords: hyperspectral; remote sensing; ensemble empirical mode decomposition (EEMD); 

spectral angle mapper; similarity measurement 

 

1. Introduction 

Hyperspectral image classification is very important for endmember discrimination in various 

applications. In the past, many pure pixel vector-based similarity measurements have been proposed to 

evaluate the similarity between two pixel vectors. Several popular methods, including the Euclidean 

Distance (ED), Mahanalobis Distance (MD) [1–4] and Spectral Angle Mapper (SAM) [1–6], 

are widely used to measure the spectral distance and provide acceptable results for pure pixel 

classification. However, they also have some drawbacks, because those distance measurements do not 

fully utilize the correlation between bands [4]. 

In this study, we adopted a signal-analysis method to analyze spectral data by Empirical Mode 

Decomposition (EMD), which will generate a collection of Intrinsic Mode Functions (IMF) [7]. 

The decomposition procedure of EMD depends on the magnitude of the original signal with various 

intrinsic time scales, i.e., it can decompose the signal into different frequency components. The EMD 

has been widely used in the past for time-domain signal processing, and was also employed to 

decompose the time-sequence signal to determine intrinsic information [8,9]. For EMD to be effective, 

the differences in both frequencies and amplitude must be sufficient for decomposition analysis. If the 

physical criteria for the differences between two signals are not met, the sifting process derives an IMF 

with single tone modulated in amplitude instead of a superposition of two unimodular tones [9]. Thus, 

the modulated signal would no longer encompass the characteristics of the original signals. 

To overcome the problem of mode mixing, Wu and Huang proposed Ensemble Empirical Mode 

Decomposition (EEMD) [10,11]. 

In various signal processing applications, both EMD and EEMD have been implemented for feature 

extraction and noise reduction [12,13]. Especially for remote sensing images, 2D-EMD [14–16] and 

MEEMD [11] have been proposed recently for the decomposition of hyperspectral image into IMFs, 

but they apply to pre-selected two-dimensional image band instead of one-dimensional spectral 

information. The aim of this research is to discriminate materials by extracting the unique absorption 

features from the spectrum of each pixel. In this study, we propose a two-stage process for spectral 

similarity measurement. It first adopts EEMD to generate a series of IMFs and accumulate a set of 

IMFs for enhancing absorption features, followed by SAM as a common technique for hyperspectral 

image classification.  

Furthermore, due to the large amount of large-dimension data processing required, it is not efficient 

to process hyperspectral images with EEMD [17]. Therefore, parallel processing with a Graphics 

Processing Unit (GPU) is implemented for EEMD [18,19]. The performance analysis shows that GPU 

can significantly reduce the computing time for EEMD.  
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2. Methodology 

The proposed method is a two-stage process to measure the spectral similarity of two pixel vectors. 

In the first stage, EEMD is adopted to decompose a series of IMFs, and a set of IMFs is accumulated to 

enhance absorption features. Secondly, SAM is utilized as the distance measure for spectral similarity. 

Because of the computational complexity, parallel processing architecture is also implemented.  

2.1. Ensemble Empirical Mode Decomposition (EEMD) 

EEMD is a self-adaptive algorithm. In comparison, the traditional Fourier transform needs to 

convert the signal by frequency-domain integral analysis, but EMD can be directly performed for 

decomposition on a time-domain signal. After a special sifting process, a signal x(t) can be 

decomposed to n units of hj representing IMFs, and an item rn as its trend.  
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All IMFs are orthogonal to each other, and each IMF represents a unique range of energy 

and frequency. The sum of all IMFs is equal to the original data. The IMF must satisfy the following 

two conditions [9]: 

1. The numbers of extrema and zero-crossings of IMFs must be either equal or differ at most by one.  

2. At any point, the mean of local maxima and local minima envelopes is zero. 

In reality, the nature of a signal x(t) does not satisfy the definition of IMF. That is to say, a large 

part of the data consists of various frequencies. To satisfy the definition of IMF, the use of EMD 

incorporates the sifting process [7]. This process serves two purposes: (1) to eliminate ride waves; and 

(2) make the IMF wave profiles more symmetric. 

By using EMD for signal decomposition, the input signal must satisfy the following  

three conditions: 

1. The signal has at least two extrema; one is the maximum and the other the minimum. 

2. The time-period scale is defined by the time lapse between two extrema. 

3. If the data have no extrema, only the inflection point is recorded, and the extrema can then be 

estimated by differentiation.  

Finally, the results can be calculated by integration of these components. 

The algorithm is summarized as follows: 

(1) Identify all extrema of x(t) 

(2) Interpolate between minima (resp. maxima) with “envelopes” emin(t) (resp. emax(t)) 

(3) Compute the mean envelope 
2
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 , where k is the iteration number. 

(4) Extract the detail hj = x(t)−mk(t).  

(5) Repeat (1)–(4) until hj(t) meets the definition of IMF, and IMF converges. 

(6) Repeat (1)–(5) to generate a residual rn(t), rn(t) = x(t)−hn(t)  
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In practice, the above procedure has to be refined by a sifting process which repeats steps (1)–(4) on 

the signal r(t), until it can be considered as having zero-mean according to the stopping criteria. Once 

this is achieved, the result is considered as the effective IMF. Then step (6) is applied to generate the 

corresponding residual rn(t). 

To make sure the EMD decomposition process generates IMFs that meet its conditions,  

Huang et al. [7] proposed that a stopping criterion in the sifting process is needed for the EMD 

process. The criterion can be implemented by limiting the size of the standard deviation (SD) by twice 

sifting the results as defined below:  
2
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A typical value is between 0.2 and 0.3 [7]. When the computed SD value lies in the specified range, 

the sifting process is automatically stopped. Figure 1 shows the operating procedures of EMD. First, in 

Figure 1(a), the signal x(t) is input and decomposed to n IMFs. Each IMF is calculated by the “k times” 

sifting process until the SD is less than 0.3 as shown in Figure 1(b). The sifting process 

(see Figure 1(c)) computes the difference between the signal x(t) and the mean of the maxima and 

minima envelopes. 

Figure 1. The procedure for Empirical Mode Decomposition (EMD). (a) Main flow; 

(b) Calculation of IMF; (c) The sifting process. 

 
(a) (b) (c) 
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Although the use of EMD has made significant contributions in many applications, its ability to 

handle signal-processing problems is still insufficient. Rilling and Flandrin [8,9] stated that EMD 

decomposition capability strongly depends on the frequencies and amplitudes, and the differences in 

both frequencies and amplitudes of two signals must be sufficient for EMD decomposition analysis. 

If the criteria for the differences between two signals are not met, the sifting process derives an IMF 

with a single tone modulated in amplitude instead of a superposition of two unimodular tones. This 

phenomenon is called the beat effect. To overcome the problem of mode mixing, Wu and Huang [10] 

proposed EEMD. A uniform distribution of white noise is added to signals before decomposition to 

reduce the effect of the mode mixing in the EMD process [20]. As a result, the EEMD method is 

capable of resolving both the issues of mode mixing and multi-dimensional computation [11]. 

For EEMD, the ratio of the added white noise and the number of signals in the ensemble must be 

predetermined. According to the number in the ensemble, different white noise wi(t) with the same 

amplitude is added N times to an original signal x(t) to generate N modified signals xi(t).  

( ) ( ) ( )i ix t x t w t   ,...,N,i 21  (3)

Next, the EMD decomposition is performed on each modified signal xi(t). Assume the signal is 

decomposed into n units of IMF and one residue as a trend. Further, by the EEMD method, it will get 

N × n IMF signals and n trends rin(t). Then, xi(t) can be rewritten as:  
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To reduce the mode mixing, the EEMD method averages the result of the IMF set Hj(t) and the 

trend R(t) derived from EMD.  
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The error in the decomposition caused by the added white noise is given by the following empirical 

formula of Wu et al. [10] for large amounts of data:  

n
N

   (7)

where N is the number of ensembles, ε is the amplitude of the added noise, and εn is the final standard 

deviation. According to this empirical formula, wi(t) can be obtained,  

( ) ( )iw t noise t   (8)

The EEMD process is shown in Figure 2. Comparing EEMD and EMD (Figure 1), the only 

difference is that EEMD needs to average N hj(t) to get each IMF, but EMD does not. 
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Figure 2. The procedure for Ensemble Empirical Mode Decomposition (EEMD) processing. 

 

2.2. Spectral Angle Mapper  

A measurement of the similarity of pixels is normally needed for spectral mapping, and the Spectral 

Angle Mapper (SAM) is a widely used as a spectral similarity metric in remote sensing [1–6]. In a 

scatter plot of pixel values from two bands of a spectral image, pixel spectra and target spectra will 

plot as points as shown in Figure 3. If a vector is drawn from the origin through each point, the angle 

between any two vectors defines the spectral angle between those two points. The SAM computes a 

spectral angle between the closest set of pixel spectra and the target spectra, si and sj.  
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Figure 3. Concept of Spectral Angle Mapper (SAM). 
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2.3. Parallel Computing Implementations 

In this research, the experiment adopts parallel-computing technology [18,19] to speed up the 

EEMD. The EEMD method can be performed by a GPU developed by NVIDIA. The experiment 

divides EEMD into two sections. The first is to assign threads for computing each individual ith x(t), 

and to record an entire result of IMF hj(t) by iterative computation. For each input spectrum x(t), N 

additive Gaussian noises are randomly generated. Each thread processes one noisy spectrum and 

decomposes it into IMFs. The second is to compute in a parallel manner for a vector ensemble mean of 

the jth IMF from all threads (see Figure 4). 

Figure 4. The Graphics Processing Unit (GPU) architecture of EEMD. 

 

3. Experimental Results 

The experimental data were provided by the United States Geological Survey (USGS) spectra 

library, where five minerals were chosen: actinolite, andradite, goethite, hematite and illite. Each 

material has four to 10 spectra (Figure 5). For each mineral, at least one spectrum is quite different 

from the others, which reduces the classification accuracy. The EEMD can extract the absorption 

feature to improve the accuracy. 

To demonstrate the effectiveness of EEMD, the SAM was applied to the original and decomposed 

spectra by EMD and EEMD. Furthermore, a comparison of parameter settings for EEMD was also 

conducted, including noise standard deviation, number of signals in each ensemble average and 

number of accumulated IMFs.  
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Figure 5. Spectral reflectance results for five minerals. 
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3.1. SAM for Original Data 

To assess the accuracy of discrimination between minerals, 2000 spectra of each material were 

simulated with additive white Gaussian noise having signal-to-noise ratio (SNR) 40, and spectral 

similarity was measured by SAM. Table 1 shows the similarity discrimination of these five minerals in 

contrast to the original spectra. The SAM values between pairs of five original spectra are  

75.8%, 80%, 75%, 70.2% and 80%. The experiment examined the degree of accuracy by kappa 

coefficient [21]. The test result is reliable because the kappa coefficient is 0.7025. 

Table 1. Similarity discrimination rates on the experimental samples of five minerals vs. 

USGS spectral library. 

Actinolite Andradite Goethite Hematite Illite 

Actinolite 75.8% 0% 0% 0% 0% 
Andradite 0% 80% 25% 29.4% 20% 
Goethite 0% 0% 75% 0% 0% 
Hematite 20% 20% 0% 70.2% 0% 

Illite 4.2% 0% 0% 0.4% 80% 

Kappa value 0.7025 

3.2. SAM for EMD Decomposed Data 

The EMD algorithm was applied to decompose the spectra into seven IMFs (Figure 6), and spectral 

similarity was measured by SAM for each IMF. From Table 2, the largest kappa coefficient occurs for 

the first IMF (0.6564) which is slightly less than that for the original data, while the worst kappa 

coefficient occurs for the sixth IMF (0.0079), which did not provide good discrimination. 
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Figure 6. The spectra of Intrinsic Mode Functions (IMFs) by EMD for Actinolite. 
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Table 2. The similarity discrimination rate for the EMD process on the samples of five minerals. 

Actinolite Andradite Goethite Hematite Illite Kappa 

IMF 1 100% 60% 75% 58.3% 80% 0.65640 
IMF 2 100% 60% 25% 50% 80% 0.52632 
IMF 3 28.6% 80% 0% 75% 60% 0.46137 
IMF 4 0% 40% 0% 75% 40% 0.34278 
IMF 5 100% 20% 0% 25% 0% 0.02623 
IMF 6 0% 60% 0% 16.7% 0% 0.00794 
IMF 7 33.3% 40% 0% 25% 80% 0.22132 

Figure 7. Spectra of accumulations of IMFs from 1–6. 

0 50 100 150 200
0

0.5

1

O
rig

in
al

0 50 100 150 200
-0.2

0

0.2

IM
F

 1
-2

0 50 100 150 200
-0.2

0

0.2

IM
F

 1
 -

 3

0 50 100 150 200
-0.5

0

0.5

IM
F

 1
 -

 4

0 50 100 150 200
-0.5

0

0.5

IM
F

 1
 -

 5

0 50 100 150 200
-0.5

0

0.5

IM
F

 1
 -

 6

 



Remote Sens. 2014, 6 2078 

 

 

Each IMF is ordered sequentially from higher frequencies to lower frequencies. Summation of all 

IMFs yields the original data. Because we compared the absorption feature of each IMF with the 

original spectra, the wavelength of the absorption feature can be estimated. Since this feature is 

distributed through several IMFs, combining a set of IMFs should enhance the absorption features. The 

accumulation of IMFs is shown in Figure 7, and the absorption features are clearly observed. 

3.3. SAM for EEMD Decomposed Data 

EEMD was employed to overcome the drawback of mixing modes in EMD. Several parameters 

have to be determined to initialize EEMD, including noise standard deviation (Nstd), number of 

signals in each ensemble average (N) and number of accumulated IMFs. 

First, the accuracy of performance for each number of signals in the ensemble average was analyzed 

by kappa coefficient (Table 3). The noise standard deviation was selected from 0.1–0.9, and the 

numbers, N, for the ensemble averages were 10, 50, 80, 100, 500 and 1,000. When N = 1, EEMD is 

identical to EMD. The experimental results show a stable kappa value when N exceeds 100 (Figure 8). 

Therefore, considering the efficiency of the algorithm, N was set to be 100 for EEMD.  

Table 3. Kappa value vs. N and Nstd for IMF 1 with SNR = 30. 

IMF 1 1 10 25 50 80 100 500 1000 

0.1 0.1795 0.1184 0.1190 0.1185 0.1101 0.1116 0.1094 0.1098 
0.2 0.1259 0.1291 0.1369 0.1161 0.1129 0.1103 0.1105 0.1109 
0.3 0.0918 0.1240 0.1265 0.1225 0.1198 0.1154 0.1160 0.1154 
0.4 0.0405 0.1064 0.1159 0.1194 0.1146 0.1114 0.1138 0.1130 
0.5 0.0850 0.1028 0.1091 0.1189 0.1100 0.1119 0.1121 0.1133 
0.6 0.0760 0.0984 0.1095 0.1145 0.1101 0.1109 0.1120 0.1134 
0.7 0.0519 0.1248 0.0988 0.1056 0.1058 0.1108 0.1124 0.1134 
0.8 0.0458 0.0526 0.0881 0.1011 0.1018 0.1088 0.1110 0.1148 
0.9 0.0259 0.0445 0.0563 0.0830 0.0936 0.0985 0.1059 0.1074 

Figure 8. Kappa value vs. N and Nstd for IMF1 with SNR = 30. 
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Secondly, the noise standard deviation needs to be determined. From Table 4, N for the ensemble 

average is 100, the noise standard deviation (Nstd) is from 0.1–0.9. The simulated data contain additive 

white Gaussian noise with SNR = 20, 30 and 40. The results show that the kappa coefficients are over 

0.7511 and 0.8688 for the third and fourth IMF, respectively, for all Nstd from 0.1–0.9 and SNR 40. 

Significant improvements are obtained with the third or fourth IMF with EEMD alone compared with 

the accuracy of original data (0.7025). The maximum kappa value is 0.9771 when Nstd = 0.2, SNR = 40 

for the fourth IMF. Therefore, if the spectral estimate has high SNR, with noise standard deviation less 

than 0.2, EEMD performs well.  

Table 4. Kappa values of IMF1~7 in SNR = 20~40 vs. Nstd under N = 100. 

Nstd 
N = 100 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

IMF 1 

SNR = 20 0.1051 0.1128 0.1131 0.1151 0.1146 0.1114 0.1110 0.1096 0.1098

SNR = 30 0.1116 0.1103 0.1154 0.1114 0.1119 0.1109 0.1108 0.1088 0.0985

SNR = 40 0.5613 0.5068 0.4920 0.4710 0.4570 0.4398 0.4284 0.4149 0.4034

IMF 2 

SNR = 20 0.1935 0.2066 0.2183 0.2240 0.2236 0.2199 0.2180 0.2214 0.2145

SNR = 30 0.1588 0.1540 0.1486 0.1421 0.1370 0.1351 0.1294 0.1271 0.1293

SNR = 40 0.7173 0.6500 0.5960 0.5678 0.5336 0.5158 0.4974 0.4799 0.4515

IMF 3 

SNR = 20 0.3125 0.3678 0.3850 0.3924 0.4005 0.3953 0.3848 0.3740 0.3764

SNR = 30 0.3511 0.3501 0.3381 0.3359 0.3414 0.3363 0.3371 0.3336 0.3343

SNR = 40 0.8385 0.8631 0.8505 0.8253 0.8034 0.7885 0.7708 0.7596 0.7511

IMF 4 
SNR = 20 0.4814 0.5785 0.6063 0.6280 0.6235 0.6151 0.5966 0.5949 0.5863
SNR = 30 0.5061 0.4936 0.4670 0.4749 0.4513 0.4430 0.4291 0.4293 0.4109
SNR = 40 0.8791 0.9771 0.9531 0.9535 0.9220 0.9191 0.9035 0.8945 0.8688

IMF 5 

SNR = 20 0.3475 0.5211 0.6199 0.6321 0.6619 0.6733 0.6636 0.6755 0.6873

SNR = 30 0.5855 0.6571 0.6681 0.6628 0.6655 0.6600 0.6530 0.6496 0.6473

SNR = 40 0.6133 0.7764 0.7995 0.8221 0.8414 0.8653 0.8696 0.8800 0.8865

IMF 6 

SNR = 20 0.3429 0.3730 0.5574 0.5650 0.5858 0.6030 0.6039 0.5963 0.5866

SNR = 30 0.5319 0.5486 0.7200 0.7258 0.7438 0.7719 0.7508 0.7521 0.7618

SNR = 40 0.3021 0.4833 0.5025 0.5571 0.5835 0.6221 0.6366 0.6514 0.6636

IMF 7 

SNR = 20 0.3730 0.4540 0.4581 0.4643 0.4554 0.4296 0.4196 0.4291 0.3998

SNR = 30 0.4858 0.6079 0.6413 0.6675 0.6866 0.6948 0.6731 0.6783 0.6276

SNR = 40 0.4964 0.5014 0.4991 0.5225 0.5339 0.5316 0.5186 0.5125 0.4715

Finally, the number of accumulated IMFs was analyzed. Several IMFs contain absorption features, 

so that the accumulation of a set of IMFs should enhance the classification accuracy (Figure 6). 

To accumulate IMFs, the absorption features must be clearly identified. In this experiment, the number 

of signals in the ensemble average was set as 100 to optimize, as closely as possible, the tradeoff 

between noise reduction and efficiency. EEMD was applied to various SNRs and noise standard 

deviations. Table 5 shows the classification accuracy using SAM values of the accumulated IMFs: 

IMF 1–2, IMF 1–3, IMF 1–4, IMF 1–5, IMF 1–6. The results show that the kappa coefficients are over 

0.7556 and 0.9224 for IMF 1–3 and IMF 1–4, respectively, for all Nstd and SNR 40. They also 

indicate that EEMD provides further improvements for the fourth IMF compared with the third IMF. 

The highest kappa value is 0.9909 when Nstd = 0.2, SNR = 40 for IMF 1–4. 
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Table 5. Kappa values of the accumulated IMF (1–2 to 1–6) in SNR = 20~40 vs. Nstd  

when N = 100. 

Nstd 
N = 100 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

IMF 1–2 

SNR = 20 0.2243  0.2315 0.2375 0.2348 0.2343 0.2328 0.2321  0.2281 0.2231 

SNR = 30 0.4661  0.4526 0.4386 0.4285 0.4199 0.4140 0.4075  0.4009 0.3951 

SNR = 40 0.7448  0.6868 0.6369 0.6208 0.5811 0.5608 0.5436  0.5276 0.5276 

IMF 1–3 

SNR = 20 0.4011  0.4111 0.4095 0.4016 0.3965 0.3921 0.3863  0.3808 0.3818 

SNR = 30 0.7179  0.7220 0.7056 0.6946 0.6815 0.6701 0.6599  0.6466 0.6375 

SNR = 40 0.8910  0.8726 0.8526 0.8335 0.8154 0.8000 0.7841  0.7668 0.7556 

IMF 1–4 
SNR = 20 0.6004  0.6374 0.6433 0.6419 0.6380 0.6266 0.6143  0.6085 0.5965 
SNR = 30 0.8473  0.8438 0.8468 0.8558 0.8481 0.8410 0.8308  0.8256 0.8174 
SNR = 40 0.9855  0.9909 0.9833 0.9844 0.9749 0.9634 0.9510  0.9401 0.9224 

IMF 1–5 

SNR = 20 0.7158  0.7911 0.7994 0.7988 0.8051 0.8038 0.7975  0.7939 0.7923 

SNR = 30 0.9201  0.9343 0.9374 0.9440 0.9455 0.9460 0.9404  0.9465 0.9439 

SNR = 40 0.9378  0.9430 0.9645 0.9754 0.9830 0.9864 0.9909  0.9924 0.9945 

IMF 1–6 

SNR = 20 0.8164  0.8130 0.8020 0.8108 0.8074 0.8116 0.8015  0.8028 0.8041 

SNR = 30 0.8984  0.8805 0.8539 0.8738 0.8636 0.8716 0.8601  0.8789 0.8760 

SNR = 40 0.9083  0.8868 0.8473 0.8869 0.8724 0.8845 0.9909  0.8875 0.8873 

Furthermore, the kappa coefficient decreased when Nstd > 0.5, indicating that the classification 

accuracy was also reduced. If the spectra have low SNR, both the number of IMFs and the Nstd need 

to be increased to achieve an acceptable performance. On the other hand, with high SNR, no matter 

how many IMFs are used, the classification performs well when Nstd < 0.5. The stable performance 

appears with IMF 1–5 and Nstd = 0.5, the kappa coefficient is 0.8051, 0.9455, and 0.9830. For higher 

classification accuracy and computational efficiency, it suggests EEMD with N = 100, Nstd = 0.2–0.5 

and accumulation of IMF 1–4 or IMF 1–5. 

3.4. EEMD Speedup by GPU 

The computation environments are shown in Table 6. The proposed algorithm was developed to run 

on NVIDIA Tesla C1060 GPU via CUDA, and was compared with its CPU serial code on Intel Xeon 

5504 with Linux, and Intel i5-2400 with Windows 7. CUDA (Computer Unified Device Architecture) 

is a parallel-computing platform and programming model created by NVIDIA and implemented by the 

GPUs that they produce. Table 7 shows the performance of EEMD in four different processing 

environments and computer language. For performance comparison, the numbers of test samples (N) 

are chosen from 500 to 3,000. In PC environment, the computing time is approximately proportional to 

the number of samples and C/C++ language is about five times faster than Matlab. Comparing the 

environments using C language, the cluster architectures can further improve the performance. The 

computational performances have 15 and 60 times improvement with quad-core CPU and GPU, 

respectively, when N exceeds 2,000. It is worth noting that the 240-core GPU is not efficiently utilized 

with a small sample size—when N = 500—with only a 30 time improvement for GPU compared to a 

PC environment. 
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Table 6. Computation Environments. 

 PC Cluster 

 CPU CPU GPU 

Operating System Windows 7 SP1 Debian GNU/Linux 6.0.2 

Platform Intel i5-2400 
Intel Xeon 5504 

(Quad-core) 
Tesla c1060 
(240 cores) 

Clock rate 3.1 GHz 2.0 GHz 1.3 GHz 

Memory DDR3 4G × 2 DDR3 2G × 6 DDR3 4G 

Language 
Matlab 
2008a 

VS2008-C/C++ Linux-C Linux-C&CUDA 

Table 7. The performance of EEMD in various computational environments (values are  

in seconds). 

N Matlab 2008a VS2008-C/C++ Linux-C Linux-C&CUDA 

500 34,127 6240 423.03 207.59 
1000 66,574 13,073 846.19 283.22 
1500 99,650 19,188 1268.53 345.29 
2000 132,624 24,757 1692.13 408.37 
2500 165,575 30,966 2112.62 561.02 
3000 199,109 37,097 2548.61 684.97 

4. Conclusions  

Empirical mode decomposition (EMD), a fully data-driven method for decomposing signals  

(Huang et al. [7]), is excellent for extracting nonlinear characteristics of signals. Additionally, EEMD 

outperforms EMD by accommodating noise and avoiding the beat effect. We proposed a two-stage 

process for spectral similarity measurement; first, adopt EEMD to generate a series of IMFs and  

then accumulate a set of IMFs for enhancing absorption features; secondly, use the SAM technique  

for hyperspectral image classification. The experimental results show that EEMD-decomposed 

hyperspectral signals can enhance discrimination ability. The IMFs also indicate the absorption 

features of spectra, and the accumulated IMFs can improve absorption characteristics. Our study also 

overcame two drawbacks of EEMD; the algorithm is time-consuming and several parameters have to 

be determined before processing. To overcome the first drawback, we propose parallel processing with 

GPU architecture to decompose spectral data. The performance analysis shows that GPU can 

significantly reduce the computing time for EEMD. Our insights into selecting three key parameters 

(noise standard deviation, number of signals in ensemble averages, and the number of accumulated 

IMFs for EEMD) assist in overcoming the second drawback. 
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