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Abstract: The miniaturization of electronics, computers and sensors has created new
opportunities for remote sensing applications. Despite the current restrictions on regulation,
the use of unmanned aerial vehicles equipped with small thermal, laser or spectral sensors
has emerged as a promising alternative for assisting modeling, mapping and monitoring
applications in rangelands, forests and agricultural environments. This review provides
an overview of recent research that has reported UAV flight experiments on the remote
sensing of vegetated areas. To provide a differential trend to other reviews, this paper is not
limited to crops and precision agriculture applications, but also includes forest and rangeland
applications. This work follows a top-down categorization strategy and attempts to fill the
gap between application requirements and the characteristics of selected tools, payloads and
platforms. Furthermore, correlations between common requirements and the most frequently
used solutions are highlighted.
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1. Introduction

In recent years, the use of unmanned aerial vehicles (UAVs) has extended to civilian applications such
as homeland security, forest fire monitoring, quick response surveillance for emergency disasters, Earth
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science research, volcanic gas sampling, humanitarian observations, biological/chemosensing/demining
tasks, and gas pipeline monitoring [1]. The International Civil Aviation Organization (ICAO) has
defined unmanned aircraft as any aircraft intended to operate without a pilot on board [2], and they have
established the rules for a subset of such aircraft with a limited level of autonomy, which are known as
remotely-piloted aircraft systems (RPAS), in preparation for flight operations in the near future. Globally,
road-map strategies and legislation initiatives are being defined to fill the technological and operational
gaps that limit the full operation of RPAS. For the sake of simplicity and to remain consistent with the
majority of the research work reviewed in this paper, the term UAV is applied to any aerial platform that
is capable of flying without a person on board, independent of its level of autonomy.

Civilian applications of UAVs were initially considered for D3 operations (dirty, dull and dangerous).
For instance, the use of UAVs in dirty situations, such as radioactive contamination, was documented
after the Fukushima reactor damage [3,4]. The use of UAVs for dull operations includes their use
in frontier surveillance [5] and digital elevation model (DEM) creation [6]. In dangerous situations,
UAV-based applications have been used during hurricanes and wildfire situations [7,8]. Currently, the
reduced cost of these platforms compared to other alternatives has positioned UAV as a viable substitute
and/or complement to current remote sensing aerial platforms, such as satellites and full-scale manned
aircraft. Because of the reduced cost, the use of UAVs is also a possibility for businesses related to
entertainment, logistics, multimedia creation, cargo operations, etc.

Apart from the use of UAVs in dirty, dull and dangerous conditions, a number of remote sensing
operations have tested the use of UAVs in the monitoring of wildlife, ice cover, weather phenomena,
climate change, etc. [9]. Scientific studies have been mainly concerned with the precursors of remote
sensing flights using UAVs. They have shown the feasibility of UAVs and the advantages of using
such platforms, including their cost savings and increased opportunities for usage, endurance, flexibility
and resolution. Compared to satellite-based remote sensing applications, UAV-based applications have
a much better resolution (from hundreds of meters to several centimeters) and greater flexibility in
selecting suitable payloads and appropriate time and/or space resolutions [10]. When comparing UAVs
with full-scale manned aircraft remote sensing in terms of endurance, cost or opportunity, UAVs have
shown advantages because they have a greater set of possibilities. Dunford et al. [11] focused on the
advantages of UAV aerial work in obtaining high-resolution imagery (less than 25 cm) that was collected
relatively cheaply and at a high temporal resolution because of the high flexibility of the UAV operation.
The easily deployable capability of UAVs makes them useful for rapid response applications.

In this paper, we will review a number of recently published works describing the use of UAVs in
remote sensing applications, especially those experiments documenting real flight operations devoted to
monitoring vegetated areas. Approximately 40 UAV experiments are used as the base for this review,
and they describe UAV flights over 15 countries that have monitored 18 different types of vegetation,
measured up to 21 types of vegetation indices, included a similar number of payload configurations,
and operated 32 different UAV frame models. It should be noted that the main focus of the paper
is on the direct applications of UAVs, rather than on the current research in platforms and sensors.
More comprehensive overviews of the evolution and state-of-the-art of platforms and sensing payloads
can be found in [10,12,13]. The objective of the paper is to show the success of such experiments,
problems that must be solved, use of processing algorithms and results obtained after the flight and data



Remote Sens. 2014, 6 11053

processing. We also review the correlations, if any, between the payloads, frames and applications to
possibly assist newcomers in determining the best options for each UAV remote sensing application
based on research experience.

This paper is organized as follows. Section 2 presents previous review works related to UAVs
and remote sensing and proposes a new taxonomy for UAV experiments classification. Section 3
classifies UAV experiments based on the vegetation types being sensed. Section 4 presents the different
applications of remote sensing UAV flights. Section 5 focuses on the realized data processing and
algorithms executed to obtain useful results. Sections 6 and 7 present the sensors and frames used
and classify them according to the type of vegetation, application, data processing and expected results
of the remote sensing. Section 8 analyzes current and future trends extrapolated from the reviewed
works. Finally, Section 9 presents the conclusions and future view of the authors on the use of UAVs in
vegetation mapping and monitoring.

2. Taxonomy of UAV Experiments in the Remote Sensing of Vegetation

Several reviews have been published recently reporting UAV experiments [9,10,14–16]. In general
they focus on a specific feature of the experiments, such as the platform, or report applications other
than vegetation monitoring. In this paper we will focus exclusively on actual UAV flight experiments
over any type of vegetation. In order to reach a complete view of all elements in the scene, we base
our review in the taxonomy proposed by Zecha et al. [16]. Zecha et al. present a review on the
use of robotic vehicles in precision agriculture starting from 2000 when the US Department of Defense
switched off the selective availability of global positioning system (GPS) [17]. Improvements in precise
position referencing created possibilities for the use of robotic vehicles such as UAVs for outdoor and
wide-space applications. The miniaturization of electronic devices (sensors, modems, processors, servos,
batteries, etc.) has produced the elements required for a change of paradigm in the unmanned vehicle
arena. There is a long list of universities and research centers currently involved in UAV development
projects suitable for agriculture, including Utah State, Technical of Braunschweig, Stuttgart, Illinois,
Brisbane, Munster, Fraunhofer FHR, Cordoba CSIC, NRC in Fiorenze, Alaska, Sydney, NASA, etc.
The survey is focused on the description and classification of vehicular platforms. Platforms are
presented according to a taxonomy in the form of a categorization tree [18]. Table 1 shows Zecha’s
taxonomy: the first column contains the categories and each row presents the classifications within each
category. The nomenclature has been adapted for consistency with the rest of paper. The first level sets
thirteen categories, such as usage, propulsion or degree of automation, and the second level provides an
alternative classification within each category. For example, the category 1-Area of mobility has three
subcategories: Air, Ground and Water. For the purposes of this review, it is clear that certain categories of
the taxonomy are not relevant, such as the category 1-Area of mobility, since only the subcategory Air is
of interest for this work. In the rest of the section we will provide a simplified taxonomy (see Table 2) on
the UAV experiments applied to the remote sensing of vegetated areas. The proposed taxonomy is based
on the categories of Zecha’s taxonomy. For each category, the corresponding category or categories in
the Zecha’s taxonomy is shown in brackets. Other related review works will be also presented inside the
corresponding category.
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Table 1. Zecha’s taxonomy on mobile sensor platforms [16].

Category Subcategory
1-Area of mobility Air Ground Water

2-Area of application Military Industry Surveying Agriculture Aquaculture Forestry
3-Application Mapping Monitoring Scouting Applying
4-Processing Online Offline

5-Data analysis Regression Classification Data mining
6-Level of data fusion Low Intermediate High
7-Software architect. Modular Blackboard Control Multi-agent Component Dataflow

8-Sensors set Redundant Complementary Cooperative
9-Sensing activity Active Passive

10-Method Optical Thermal Electrical Magnetic Acoustic Mechanical Chemical
11-Platform size Small / Light Medium Large / Heavy
12-Propulsion Electric Combustion

13-Automation degree Manual Automated Autonomous

Table 2. Taxonomy on UAV-based remote sensing systems operating in vegetated areas.

Category Subcategory
(2) A-Vegetation Wildland Agricultural field
(3) B-Application Passive Proactive Rective

(4–7) C-Processing Pre-processing Vegetation indices Segmentation 3D reconstruction
(8–10) D-Payload Laser Spectral Thermal Chemical
(11–13) E-Platform Fixed-wing Rotorcraft Unpowered

2.1. Vegetation

The category 2-Area of application is a recurrent topic in other reviews. Following a recommendation
of the International Society for Photogrammetry and Remote Sensing, Everaerts [19] presents the first
version of an inventory of current UAV platforms and sensors being used in remote sensing. Based
on the information collected at the UVS-International web site, which reaches up to 800 new UAV
platforms each year, they found that military organizations are the most advanced current users of UAVs.
Austin [20] also provides a long list of UAV applications for military usage in this book but also indicates
the use of UAVs in the civilian arena, which includes aerial photography, agriculture, coastguard and
customs operations, infrastructure conservation, fire services, fisheries, information and communication
services, meteorology, road traffic, police activities, etc. This list of civilian roles has yet to be adopted
because of current regulatory limitations and issues with insurance acceptance. UAVs have been used in
South Africa and Australia for tasks related to animal care, especially for sheep and cattle herds. Related
to agricultural and farming works, the book distinguishes three type of applications: crop monitoring,
crop sowing/spraying, and herd monitoring/driving. For Dunford et al. [11], the fields of application of
UAVs in remote sensing are as follows: forestry, agriculture, geosciences, vegetation, gullies, biophysics,
archeology, tidal, sediments, soil surfaces, bathymetric maps and rangeland. Nex and Remondino [14]
propose a similar list: agriculture, forestry, archeology and architecture, environment, emergencies and
traffic monitoring. Their review contains three case studies on aerial works for archeology, mining and
urban data modeling in three dimensions.
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Because our interest is limited to UAV-based experiments that have been carried out over vegetation
for civilian remote sensing purposes, only the subtypes agriculture and forestry of Zecha’s taxonomy are
considered. Our first category (A-Vegetation) is ordered by the vegetation type, and it is divided into two
subcategories: wildland and agricultural field. “Wildland” includes rangeland and forest. “Agricultural
field” includes large extensions of uniform crops, such as cereal fields, and smaller land areas with fruit
trees or high added-value bushes, such as vineyards. The list of crops for which UAVs have been tested
is long (alfalfa, wheat, corn, cotton, olive, peach, coffee, papaya, beet palm, potatoes, citrus, barley, rice,
clover, sorghum, sunflowers, in vineyards, etc.). As the price of electronics has decreased, an increasing
number of crops have been benefiting from the application of UAVs in remote sensing.

2.2. Application

In the category 3-Application, the listed subtypes are: Mapping, Monitoring, Scouting and Applying.
Thus, this classification has an increasing level of complexity. Mapping consists of showing the observed
spatial data on top of a map. Adding time repetitions to obtain temporal progress results in monitoring.
Including a search for a target, such as weeds, results in scouting. For the last level of complexity,
applying acts upon the observed area. In this paper, we will show that most of the reported UAV flights
over vegetation up to now are mainly for mapping purposes. The final objective of those experiments is to
test the platform and payload to show the UAV capabilities. In more advanced experiments, airborne data
are compared to ground (truth) data. Only a limited number of reviewed papers [21,22] present actual
monitoring through repeated flights over the crop season or by comparing forested mass against previous
years. Reports on scouting are also limited to vegetation classification using models of anomalous light
reflectance and transmittance detection in vegetation. Finally, the only mentions of ‘applying’ are from
Austin [20] and Watts et al. [9] for sowing and fumigating in Japan and Australia; however, a reference
to a scientific paper has not been provided.

In this paper, we organize the category (B-Application) differently and define the following subtypes:
passive, proactive, and reactive. This classification considers the possible consequences for which the
UAV is used, and in particular, it considers the decision-making processes that follow UAV flights.
‘Passive’ applications are those used to generate a map without immediate consequences in which the
obtained information is useful in the long term. An example can be scientific UAV flights that support
decisions made at political levels related to a forest. In “proactive” applications, the UAV data is used
immediately after landing and rapid off-line data processing. For example, farmer decisions related to
water management (irrigation, evaporation/transpiration, salinity, etc.), nutrient management (usually
nitrogen but also ferrum, magnesium, zinc and copper), pesticide application (herbicides for weeds,
limitation of insect, mite and nematode populations and root-related diseases), growth regulation (plant
density and defoliation) and harvest assessment [23]. Finally, “reactive” applications consist of the
production of actuation capabilities for the UAV itself at the same moment that a situation is detected. We
believe a progression from the current passive applications towards proactive ones is already underway,
but the final targets are the reactive applications.
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2.3. Processing

The categories from four to seven (4-Processing, 5-Data analysis, 6-Level of data fusion and
7-Software architecture) are all relative to payload processing and are primarily focused on how the
processing is performed. In the long list of reviewed papers, payload processing is performed offline
except for those papers focusing on UAV flight control [24]. The data analysis is based mainly on
classification, and some works use regression [25]; however, none of the studies document data mining
techniques. Finally, software architecture is never described in the references, which has lead us to
assume that a sequential modular architecture is used.

Instead of documenting how processing is performed, the reviewed literature provides numerous
details of what processing is done, including the involved inputs, their combination, and the final
results of the processing. This leads to our third category (C-Processing). Three main processing
steps are identified: “vegetation indices” calculation, “segmentation”, and “three-dimensional (3D)
reconstruction”. The target information to be obtained drives the different steps of the processing. In
vegetation mapping, usually one or more vegetation index is applied to obtain the vegetation type, health,
stress or growth status. Processing algorithms used in target recognition are mainly related to image
processing techniques, such as segmentation and classification. Finally, 3D reconstruction algorithms are
based on stereo vision, structure from motion and other techniques from the field of computer animation.
A number of lateral calculations have also been mentioned in many papers. Sensor calibration and
radiometric homogenization are examples of pre-processing steps that have significant importance for
the posterior processing. Georeferencing and mosaicking techniques are frequent processing steps too.
All such calcultations are included in the fourth subcategory: “pre-processing”.

2.4. Payload

The categories 8-Sensor set, 9-Sensing activity and 10-Method are all related to sensors, and they are
all covered in the fourth proposed category (D-Payload). In the reviewed experiences, because of the
low-cost requirements and limited weight capabilities, the sensors are never redundant or cooperative, but
complementary. If more than one sensor is on board, then the second sensor obtains additional required
data that complement the first sensor. Most sensors use optical, electro-optical and thermal methods,
so they are passive sensors. According to Austin [20], there is a nearly worldwide use of visual and
infrared cameras in crop monitoring. Nevertheless, a number of experiments use radar/LiDAR sensors,
which use active acoustic, ultrasonic and light emissions, in the remote sensing of vegetation [26–28].
The capability of UAVs for flying much closer to the ground than satellites or full-scale manned aircraft
increases the variety of sensors that can be used as payload, and they are not limited to spectral imaging.
Biochemical sampling has been reported by Techy et al. [29], but only the flight coordination capabilities
are reported in the paper. Studies using magnetic, mechanical or chemical sensors for vegetation
monitoring have not been found. A review of sensors for classical remote sensing is provided by
Pinter et al. [23]. The biophysics basis of such sensors is fundamental for providing information
on the spectral reflectance and thermal emittance of ground objects and differential characteristics of
leaves, soils, and dry and green vegetation. These are the classification characteristics of electromagnetic
sensors. Other factors that affect the quality and confidence of vegetation index results are illumination
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and meteorological conditions in general, topography, and the angle of view of the remote sensor with
respect to the plant.

2.5. Platform

The categories 11-Platform size, 12-Propulsion and 13-Automation degree are all relative to the air
platform. The size of the platform is always reported data for all experiments using UAV because such
data characterize most of the functionalities and limitations of the flight and payload of the experiment.
Propulsion is in general, directly related to the size of the platform. Large platforms typically use
internal combustion engines while small platforms use electrical engines. However, the automation
degree, which is set by the autopilot of the UAV, is independent of the size of the platform, which is
shown later.

Surprisingly, the majority of UAV classifications provided in the literature [9,10,14,20] are not
focused on the size, propulsion or automation degree but on the airspace and flight characteristics.
Endurance, range, altitude, and aerodynamics profile of the platform (fixed wind, rotorcraft, blimps, etc.)
are major differential features. Nevertheless, endurance and ceiling altitude are related to platform size,
with large platforms having long endurance, long ranges and high ceiling altitudes and small platforms
having short endurance, short range and low altitudes. In addition, cost is directly related to size.

Watts et al. [9] classify UAVs using three basic parameters (altitude, endurance and flight
capabilities). They propose 7 categories: HALE, MALE, LALE (all Long-Endurance with
High/Medium/Low Altitudes), LASE, LASE Close (Low Altitudes Short-Endurance), MAV/NAV (Mini
and Micro/Nano UAV), and VTOL (Vertical Take-Off and Landing). A similar platform classification is
provided in Austin’s book [20]. The author classifies UAVs according to the platform range/endurance
but also by the size, and the following five categories are defined: Long-endurance long-range;
Medium-range; Close range; Mini UAV; and Micro/Nano UAV. The two classifications produce different
names for similar concepts, differ in the VTOL category and on the subdivisions in the long-endurance
category. In addition, Everaerst [19] offers a classification by altitude but excludes the medium altitude
vehicles for remote sensing applications because of the conflict indicated for commercial flights. For
the low altitude UAVs, Everaerst extends the previous classifications to include new types of frame:
blimps [30], balloons [31], and powered paragliders [32]. Similarly, Dunford et al. [11] present a review
focused on low altitude UAVs and classify such UAVs according to the flying method: kites, blimps,
balloons, paragliders and motor-powered UAVs. Nex and Remondino[14] present three orthogonal
classifications of the UAV platforms: according to their use are classified as tactical and strategical,
according to their propulsion systems as rotary, fixed-wing and lighter-then-air, and according to the
power system as unpowered or powered.

An alternative classification can be found in Clothier et al. [33]. According to a risk-based approach,
the UAVs are classified in two axis. One axis accounts potential damage in terms of energy and the other
axis the damage in term of the size of the area or number of people involved. The proposed classification
has 5 levels: Category 1 for less risk UAS (can only cause injuries to one or few people), Category 2
for UAS able to injury a small amount of people standing outdoors, Category 3 is for UAS with some
probability to break a wall/roof and injury people indoors, in category 4 UAS are able to penetrate in a
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concrete structure and category 5 in the highest risk category, where the affected area can extend more
than 1 hectarea. Risk assessment is regulated through the airworthiness regulations, which sets that all
aircraft must show a Certification of Airworthiness (CoA). Up to now, only very few UAVs have obtained
it in a temporal basis [34], while waiting for legislation still to be fully developed. In the future, the new
legislation developed after the ICAO Circular [2] will set the exact classification of the UAV.

Another review focused on autopilots only for small UAVs (mini, micro and nano) is from
Chao et al. [15]. Autopilots are the part of the flight management system in charge of the guidance of
the vehicle through the desired route. And guidance is traslated into the adequate order to the controller
close-loop, a control system which translates then to the surface servo-mechanisms and to the engines.
The control orders must consider the current state of the UAV and the desired commands emitted from
the ground station by the pilot, and their execution must be smooth. The current state is provided by
the fusion of the sensors onboard, mainly innertial units, GPS receivers and magnetometer. Different
control and filtering techniques exist, such as proportional-integral-derivative (PID) controller, fuzzy
logic, neural networks and Kalman filter. Common commercial reported autopilots are: Procerus Kertrel
(of only 16.7 gr of weight), the MicroPilot series (i.e., MP2028), the Piccolo family (with multi-UAV
support) and the UNAV 3500 (the cheapest). All of them have navigation through waypoints, hold states
and auto-takeoff and landing. In the open source bazaar the list is: Paparazzi (from ENAC), Crossbow
(package including MNAV inertial system and Stargate processor) and Ardupilot.

Figure 1. UAV experiments classification by vegetation type (colors), airframe (symbols),
altitude, size, and endurance.

A global view of the most significant characteristics of some of the UAV experimental flights is
shown in figure 1. Colors show the type of vegetation: blue is for crops, green is for forests, and red
for rangelands. Markers show the type of airframe: circle is fixed-wing and triangle is rotorcraft. Then
flight altitude, experiment flight time and platform size are given in the three axis. Notice that altitude
is in logarithmic scale to better distinguish between low altitude flights. Not all experiments are shown
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because not all the data required for the plot were available. Nevertheless, the figure gives an global idea
of the experiments and their characteristics.

3. Vegetation Types

A number of different vegetation types have been surveyed using UAVs. Most studies have focused
on crops fields in which the scan area is limited and well known. However, there is also a significant
number of studies on wildlands where limited access and low population density make the use of UAVs
especially interesting.

Wildland experiments include those in rangelands [25,35–38] and closed canopy forests [11,39–41].
The term rangeland describes extensive unforested lands in the form of prairies, desert grasslands
and shrublands, woodlands, savannas, chaparrals, steppes, and tundras. Although the different forms
of rangeland comprise more than half of the earth’s land surface, a lack of approaches is observed
in this area. Rango et al. [35] presented preliminary results from study sites in New Mexico and
Idaho showing the great potential for the use UAVs for rangeland management. The Hung et al.
experiment [25] obtains the distribution of different vegetation species and detect invasive weeds over
two cattle farms of Queensland, Australia. Lucieer et al. [42] conducted a successful experiment using
a UAV for mapping moss beds in Antarctica. Logistical constraints and the spatial scale of the moss
beds (tens of m2) make a UAV an ideal tool for collecting ultra-high resolution imagery in such an
environment. Wallace et al. [39] demonstrated the capability of a UAV-LiDAR system for forestry
inventory applications. In [28] a Eucalyptus globulus plantation in Tasmania, Australia, is used as
the test field for canopy structure estimation. The flexibility and cost-effectiveness of UAVs has also
been shown by Dundorf et al. [11] for riparian forests in the Drôme River in southern France, and by
Jensen et al. [43] in the Oneida Narrows near Preston, Idaho.

On the other hand, numerous studies have been conducted in agricultural areas and include a variety
of test fields ranging from fruit trees to bushes, roots, legumes and cereals. UAV-based remote sensing
experiments on citrus, peach and olive trees in Spain and papaya and palm orchards in Malaysia are
reported in the literature [44–47]. Vineyards are a common target of study in wine-producing countries
such as the USA [48,49] and Spain [50–52]. In September 2002, NASA’s solar-powered Pathfinder-Plus
UAV was used to conduct a proof-of-concept mission in US national airspace above the 1500 ha
plantation of the Kauai Coffee Company in Hawaii [53]. Other reported crops include potatoes [29,54],
soya [54], sugar beet [55,56], rice [57] corn [46,56,58,59], wheat [22,57,60], and barley [57]. The higher
number of tests compared to wildlands can be explained by the ease of operation, reduced area of study,
lower heterogeneity and more familiar characterization (for a particular crop), and productivity interests.

4. Applications

There are a large number of experiences that demonstrate the great potential of the use of UAVs for
vegetation mapping and monitoring. A subset of documented use cases is listed in Table 3. Mapping
and monitoring applications involve acquiring and processing data, and the obtained results are expected
to provide the basis for making decisions and trigger different actions for the vegetation. Based on the
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degree of participation of the application in the full process, we have classified them as passive, proactive
or reactive.

Table 3. Vegetation remote sensing applications using UAVs.

Application area Use case
Passive applications

Climate change monitoring Mapping moss beds in Antarctica [42]
Monitoring of biodiversity in the Fonttainebleau forest [41]

Rangeland health monitoring Determining canopy cover and gap sizes [35]
Monitoring changes in the canopy structure [28]
Dead wood identification [11]

Rangeland/forest inventory Differentiating rangeland vegetation [36]
Mapping and characterization of riparian forests [11]

Topographic surveying and mapping Mapping the substrate and vegetation in rivers [43]
Assessing ephemeral gully erosion in agricultural fields [61]

Proactive applications

Wildfire fighting Forest fire detection and monitoring [62,63]

Precission Agriculture Modeling canopy structure [48]
Ripeness monitoring [53]
Water stress detection [45,46,50,51]
Estimation of nitrogen level [22,59,64]
Pathogen detection [44,55]
Aerobiological sampling [29]
Plant health monitoring [54]
Mapping invasive weeds [53]
Monitoring herbicide applications [65]

Reactive applications

Spraying Spraying chemicals on crops [66]

Passive applications are primarily engaged in collecting information, but not in conducting a
direct action on the vegetation in the short term. Examples of such applications include estimating
canopy cover, monitoring vegetation change, modeling biophysical and biochemical characteristics, and
mapping of species [11,25]. Vegetation change [28,35] is a major indicator for climate change [42],
biodiversity conservation [41], and estimation of health and remediation treatment effectiveness [67].
For example, Breckenridge [38] uses different mapping and classification systems to evaluate changes
in vegetation as a result of fires. In agriculture, changes in crop status over time can be extrapolated to
predict future crop growth [56,65]. Modeling and mapping applications are also used for rangelannd
and forestry inventory. Laliberte and Rango [36] highlight the ability of UAV imagery to quantify
spatial patterns and patches of vegetation and soil not detectable with piloted aircraft or satellite imagery.
The high resolution, low-cost, and flexibility of UAVs are also valuable features to get updated data in
continuously changing environments, such as rivers [43], where the vegetation, the path and the flow of
the river are always changing, and ephemeral gullies in agricultural fields [61], where their intermittency
and small width and depth make them difficult to be detected by general topographic surveying and
mapping. Also noteworthy is the versatility of UAV-based systems to be used in different contexts. It
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is the case of the AggieAir platform [43], which is involved in agricultural, riparian, habitats and road
mapping projects.

Proactive applications typically monitor the vegetation status to detect areas of disease, nutrient
deficiency, invasive weeds, pathogens and drought. They differ from passive application in that collected
data are used to make decisions on short-term actions. Their main area of application is Precision
Agricuture(PA). PA allows fertilizers, pesticides, herbicides, and irrigation to be applied to the specific
needs of each crop in each specific area, rather than apply equally to the entire field, thus improving the
product and saving resources. For example, monitoring water status [45,46,50,51,55] is widely reported
in the literature and it is required to optimize irrigation strategies. Herwitz et al. [53] and Johnson
and Herwitz [49] reported on experiments that analyze ripeness for vineyards and coffee plantations.
Nitrogen mapping [59] can also be used to guide fertilizer tasks. Aerobiological sampling [29] enables
plant pathologists to detect, monitor, and forecast the spread of high risk plant pathogens above
agricultural fields. Calderon et al. [44] assessed methods for early detection of Verticillium wilt,
which is the most limiting disease in all of the traditional olive-growing regions worldwide. Another
relevant field of application where a quick and efficient response is critical is fire fighting. Wildfires
are a devastating catastrophe for forest. Remote sensing experiments using UAVs for forest fires have
already been presented. In [62], a heterogeneous fleet of UAVs cooperate in the detection and monitoring
of forest fires. In [63], the large Ikhana airframe hosted the AMS scanner and obtained imagery from
high altitudes. All the above applications involve collecting and processing data quickly and repeatedly
for different time periods, thus making UAV-based systems particularly suitable. In the case of wildfires,
safety is added to the already mentioned advantages of UAVs.

In the near future, UAVs are expected to be used for reactive applications, which would increase their
autonomous ability to make decisions and perform actions. UAV systems are already in use in Japan
for sowing and spraying [20]. In such cases, perimeter fences are used for electronic positioning and
allow for the automatic flight of the UAV. Smart sowing or spraying applications must be considered in
which the data produced by the sensors are processed in real-time and the system has the intelligence
to react in accordance with the results of the scan. In [66], feedback obtained from a wireless sensor
network deployed on the crop field is used to control the route of a spraying UAV. As indicated by
Zecha et al. [16], future solutions of this type will require a standardized interchange of data and system
components. Additional well-known challenges to be addressed by UAV-based solutions are the limited
accuracy of position and orientation data, synchronization issues between imaging sensors and the GPS
and inertial navigation system, high roll and pitch variation between images, perspective distorsion, and
high variability in illumination conditions [6].

5. Data Processing

Distinguishing features in the spectra provide the primary mechanism for detection and classification
of materials in a scene [68]. Vegetation is characterized by a notable absorption in the red and blue
channels, higher reflectance in the green channel, and strong reflectance in the near-infrared (NIR)
wavelengths. Different vegetation types exhibit distinct variations in their spectral signature as well
as other differences in the size, color and shape of the leaves. Physiological changes as a result of crop
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stress are also expressed as variations in the visible (VIS) and NIR wavelengths. Stressed vegetation
exhibits a higher reflectance than healthy vegetation in the VIS wavelengths and lower reflectance in
the NIR wavelength. Leaf chlorophyll a+b (Ca+b) and leaf area index (LAI) are indicators of stress and
growth that can be estimated from spectral indices [45]. Leaf stomatal conductance (G) is widely used as
an indicator related to drought stress, and it can be estimated from thermal imagery [69]. Consequently,
the processing of imagery in the VIS, NIR and thermal bands can be used to identify, classify and monitor
different types of vegetation.

5.1. Image Pre-Processing

Numerous issues may affect the quality of the imagery, so a pre-processing stage is commonly
included to enhance the data prior to computational processing. Atmospheric effects such as absorption
and scattering, spectral variability of the surface materials of the scene, and viewing angle are some of
the external factors that contribute to spectral image degradation [68]. Despite the low altitude flight of
UAV, Berni et al. [46] found that for the thermal camera, errors higher than 4◦K can be achieved if the
atmospheric transmittance effect and atmospheric thermal path radiation are not considered. They report
a successful experiment using the MODTRAN [70] radiative transfer model for the estimation of surface
temperature images.

Camera lenses and filters are another source of image distortion. Camera geometric calibration is used
to estimate the intrinsic camera parameters and lens radial distortion [71]. Lelong et al. [22] detail the
method they used to compensate for vignetting, which includes image darkening from the image center
to its border.

Flight instability also introduces significant changes to the illumination and geometry of the image.
Images are usually orthorectified, to remove the effects of perspective and relief, and then stitched
together to form a large mosaic image [22,35,40,46,50,53,55–58,72,73]. Dunford et al. [11] present
the results of classifying species and identifying standing dead wood that were obtained at both a single
image scale and large image mosaic scale. They found that the larger scale of the mosaic shows potential
for the classification of major units of vegetation; however, classification errors are also increased at
the mosaic scale because of differences in radiometry between the images. Additionally, the cost of
performing at the mosaic scale must be considered if the response time is critical for the application.

5.2. Vegetation Indices

To overcome the spectrum variability introduced by the previously mentioned factors (such as
atmospheric conditions), vegetation indices (VI) are usually calculated as the combination of two or
more spectral bands. Table 4 lists the thermal and spectral indices that are most commonly reported in
UAV-based remote sensing experiments (see [51] and [44] for a more extensive list of indices). For each
index, the third column indicates the region or regions of the spectrum required for its calculation: the
VIS region extends from 380 nm to 700 nm, the NIR region extends from 0.75 µm to 1.4 µm, and the
long-wavelength infrared region, also known as the thermal infrared region (TIR), extends from 8 µm to
15 µm. The last column indicates examples of use cases found in the literature.
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Table 4. Primary vegetation indices used in UAV-based remote sensing.

Index Description Bands Uses

Thermal indices

CWSI Crop Water Stress Index TIR Water stress detection [44,50,51]

Ig, I3 Stomatal Conductance indices TIR Water stress detection [50,51]

Spectral indices

GI Greenness Index VIS Chlorophyll concentration [22,44,45,51]

GNDVI Green Normalized Difference VI NIR, VIS Nitrogen concentration [22]
Water stress detection [51]
LAI estimation [60]

NDVI Normalized Difference VI NIR, VIS LAI estimation [22,44–46,54–56,58,72]
Water stress detection [51]

PRI Photochemical Reflectance Index VIS Water stress detection [44–46,51]

SAVI Soil-Adjusted VI NIR, VIS LAI estimation [22,44,51]

TCARI/OSAVI Transformed Chlorophyll Absorption in
Reflectance/Optimized Soil-Adjusted VI

NIR, VIS Chlorophyll concentration [44–46]
Water stress detection [51]

Canopy temperature has long been recognized as an indicator of plant water status, which is related
to changes in the stomatal aperture. The crop water stress index (CWSI) [74] is based on the difference
between the measured canopy temperature and a non water-stressed baseline. Different formulations
of stomatal conductance indices, such as Ig and I3 [75], introduce the use of wet and dry reference
surfaces to reduce the sensitivity to environmental variations. The results obtained by Baluja et al. [51]
and Gago et al. [50] showed that all three thermographic indices are well correlated with the stomatal
conductance measured directly on the ground (with coefficients of determination (R2) ranging from
0.54 up to 0.70). Thomson et al. [76] discuss the potential and challenges involved in using thermal
methods for sensing canopy temperature in humid subtropical climates, where small increases in canopy
temperature can be difficult to detect. They also demonstrate the effect of altitude (in their experiment,
altitude accounted for 58% of the variability in canopy temperature), and validate the use of thermal
imagery to detect leakage from irrigation systems.

Indices that combine NIR and red (R) bands are usually related to biomass, canopy structure,
and LAI. Among them, the normalized difference vegetation index (NDVI) [77] is the most widely
used [22,44–46,51,54–56,58,72]. It is defined as the ratio between the difference and sum of the NIR
and R bands:

NDV I =
NIR−R

NIR +R
(1)

The typical values of NDVI range from 0.1 to 0.6, with higher index values indicating a greater green
leaf area and biomass. Several variations, such as the soil-adjusted vegetation index (SAVI) [78]
or the optimized soil-adjusted vegetation index (OSAVI) [79], have been formulated to minimize
the effect of soil background. On the other hand, indices using the green (G) band, such as the
greenness index (GI) [80] are indicators of active chlorophyll production, which is related to the
leaf nitrogen concentration. Lelong et al. [22] derived a genereic relationship between the GNDVI
and nitrogen uptake (QN) and between the NDVI and LAI for monitoring wheat crops in small
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plots. Validation againsts ground-measured biophysical parameters showed a precision level of 15%
in the estimation. Furthermore, Hunt et al. [60] found a good correlation (R2 = 0.85) between
LAI and GNDVI in imagery collected above two variably-fertilized fields of winter wheat. The
transformed chlorophyll absorption ratio index normalized by optimized soil-adjusted vegetation index
(TCARI/OSAVI) integrates advantages of indices minimizing soil background effects (OSAVI) and
indices that are sensitive to chlorophyll concentration (TCARI) [81]. Finally, the photochemical
reflectance index (PRI) [82], which is computed from data in the visible range, is related to short-term
changes in photosynthetic efficiency.

Figure 2. Visible mosaic of Robison Ridge site in Antarctica (left), moss health derived from
MTVI2 vegetation index (upper right), and moss surface temperature at ultra-high spatial
resolution (lower right); the red circle highlights a thermal shadow (reprinted from [85]).

Various thermal and spectral indices were evaluated by Baluja et al. [51] to assess vine water status.
Among the spectral indices, NDVI and TCARI/OSAVI show the highest correlation with stem water
potential (R2 = 0.68) and stomatal conductance (R2 = 0.84), respectively. The authors indicate that
the relationship with thermal imagery can be considered as a short-term response, whereas NDVI and
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TCARI/OSAVI indices are most likely the result of cumulative water deficits. Berni et al. [46] showed
that the PRI is related to canopy temperature (R2 = 0.69) and suggest that it can also be used as a
good indicator of water stress. This relation between PRI and temperature was confirmed in [45], where
the authors investigated water stress in a citrus orchard. They also showed that the crown temperature,
blue-green index (BG) [83], and chlorophyll fluorescence estimates (FLD3) [84] are the best related to
water stress (R2 = 0.34, R2 = 0.49, and R2 = 0.66, respectively). In the field of disease detection,
Calderon et al. [44] assessed the potential of using vegetation indices for the early detection of the
soil-borne fungus Verticillium wilt in olive orchards and discrimination among disease severity levels.
They found that indicators based on crown temperature (CWSI), visible ratios (B, BG, BR), and FLD3
are effective at detecting disease in early stages. In affected trees, the structural indices (NDVI), PRI,
chlorophyll, and carotenoid indices were shown to be good indicators for the detection of the presence
of moderate to severe damage. Recently, Turner et al. [85] found a quadratic relationship between
ground-measured Antarctic moss health and the Modified Triangular Vegetation Index 2 (MTVI2) [86]
computed from multispectral images. Resulting moss health map and moss surface temperature map are
shown in Figure 2.

5.3. Segmentation

Due to its high resolution, UAV-based imaging systems are also emerging as a cost effective
alternative to airborne LIDAR system for assessing the distribution and size of forest gaps. According
to [87], resolutions of 7 cm/pixel permit the identification of gaps as small as 1 m2. Gap maps obtained
from UAV-acquired orthophotos and a manned LIDAR flight can be compared in Figure 3. Different
segmentation techniques are also used to extract pure canopy pixels [49–51,53,54]. Johnson and
Herwitz [49] and Herwitz et al. [53] applied a thresholding algorithm to mask pixels associated
with cloud, soil, and shadow, and obtain only directly illuminated canopy pixels. Baluja et al. [51]
obtained consistent results using the watershed [88] algorithm for rows extraction in vineyards, where
the differences between vines in terms of vigor made a thresholding selection difficult. Watershed
transformation is based on the gradient magnitude, with pixels having the highest gradient intensity
corresponding to region boundaries. Calderon et al. [44] used automatic object-based crown detection
applied to multispectral imagery to identify pure olive crowns. Rango et al. [35] used object-oriented
image classification software to classify mixed rangeland into four primary cover types (bare soil, shrubs,
subshrubs, and herbaceous plants). Similar object-oriented strategy is used by Hung et al. [25] with
the aggregation of pose information and solar model. Dunford et al. [11] evaluated both pixel-based
and object-oriented techniques for the classification of species and identification of dead wood. For
the pixel-based classification, decision tree techniques were applied. For the object-oriented method, the
image was first segmented and the segments were then classified using parameters based on their spectral
properties, texture, size, shape and topological relationships. They showed that the object-oriented
approach performed considerably better (overall accuracy 91%) than the pixel-based approach (overall
accuracy 84%). Additionally, the authors indicated that classifications were notably better than was
achievable from medium-resolution satellite imagery, and better than reported by Johansen et al. [89]
using high resolution Quickbird satellite imagery and an object-oriented methodology (overall accuracy
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of 79%). However, working at the mosaic scale, the pixel-based approach performed better (overall
accuracy 71%) than the object-oriented approach (overall accuracy 63%). According to the authors,
these errors could be attributed to differences in radiometry between the images, and these errors must
be addressed for the classification of large image mosaics.

Figure 3. Very high-resolution (≈7 cm/pixel) RGB images showing delineated gaps in two
different regions in Germany (a, b), and the gap map obtained for the same plot as (b) with
a manned LIDAR flight (c) (reprinted from [87]).

5.4. 3D Reconstruction

High-resolution three-dimensional (3D) measurements are essential for the accurate estimation of
vegetation structure in agriculture, forestry, and land management applications. The traditional method
of obtaining the shape and appearance of real objects involves scanning the actual objects. The result
of the scan is usually a point cloud, which is a large collection of 3D data representing the ground,
vegetation, and any other objects in the scene. Nagai et al. [90] showed how a laser scanner, digital
and IR cameras, inertial measurement unit (IMU), and GPS can be integrated in a UAV platform to
construct a digital surface model. The 3D-shape acquired by the laser scanner, texture information
acquired by the digital cameras, and vegetation indices acquired by the IR cameras were combined to
generate a 3D vegetation index model. The density of the 3D laser points was about 20 points per m2,
and the average error of the resulting digital surface model was approximately 10 to 30 cm. Another
example of use was described by Wallace [28], who investigated the use of a UAV LiDAR system
for assessing canopy structure within forested environments. The relative stability of four metrics for
estimating canopy structure was assessed based on the standard deviation from the mean (1.86% for the
most stable metric).

Alternatively, computer vision technologies, such as stereo vision or Structure from Motion (SfM)
can be used to produce 3D images and maps from two-dimensional (2D) visual or spectral photography.
From one stereo pair of images, the points in both images corresponding to a single point in reality can
be determined. Stereo vision is performed in two steps: the first is referred to as correspondence, and it
searches for a set of points or features in one image which can be identified as the same points or features
in the other image; the second step is referred to as reconstruction, and it computes the 3D coordinates of
these points in the world coordinate system. Diverse experiments have been found that use stereoscopic
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reconstruction. Frankenberger et al. [61] assessed the possibility of using low-cost digital cameras and
dense stereo techniques to generate DEMs for gully erosion assessment. Gademer et al. [41] used a
tri-camera system for stereoscopic acquisition and the generation of a 3D point cloud to monitor forest
vegetation dynamics, although a quantitative analysis was not presented.

Figure 4. Interpolated DEMs of Constitution Hill in Wales, UK, using (a) TLS and (b) SfM,
(c) aerial photograph of the site, and (d) point density map.‘A’ and ‘B’ labels correspond to
the headwall at the highest point and near-vertical faces respectively. ‘VF’ and ‘DF’ labels
refer to vegetation-free and desenly vegetated sub-regions respectively (reprinted from [91]).

SfM emerges as a promising cost-effective alternative to more expensive systems such as LiDAR.
Instead of a single stereo pair, SfM requires multiple, overlapping photographs as an input to feature
extraction and 3D reconstruction algorithms. Traditional methods require knowledge of the position
and orientation of the camera or the location of ground control points for scene triangulation and
reconstruction. In contrast, the SfM method solves the camera pose and scene geometry simultaneously
and automatically by using a highly redundant bundle adjustment. The result is a point cloud which is
similar to what is obtained with a laser scanner, together with the color, thermal or spectral information
provided by the camera. In [91], Westoby et al. compare a SfM-derived DEM with that obtained using
terrestrial laser scanning (TLS) (see Figure 4). The vertical accuracy using SfM was in the order of
decimetres. Mathews and Jensen [48] explored the use of SfM to model vine canopy structure. Images
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collected with a UAV equipped with a digital camera were used to create a SfM point cloud (with a mean
of about 9 points per m2). On the negative side, we must highlight the high computational load of the
algorithm. Execution times from 7 to 56 h to process about 500 images at 2272 × 1740 pixels resolution
are reported in [91].

A different approach is presented by Wallace et al. [39], who take advantage of SfM technology to
improve LiDAR georeferencing accuracy. They used a modification of the SfM algorithm to estimate the
orientation from a HD video camera. These orientation observations were then fused with observations
from the GPS receiver and the IMU within a Sigma Point Kalman Smoother to find the position and
orientation of the LiDAR system. As a result, the horizontal accuracy of the final point cloud improved
from 0.61 m to 0.34 m. This accuracy together with the very high density of the point clouds (up to 62
points perm2) allowed measurements of tree height, location, and canopy width with standard deviations
of 0.05 m, 0.44 m, and 0.25 m, respectively.

6. Payload

The equipment required for modeling, mapping, and monitoring vegetation is mainly composed of
imaging sensors together with a GPS and an inertial navigation system (INS). Existing commercial
technology allow for high resolution imagery sensors to an increasingly small size and weight, and at
a reasonable cost. Figure 5 shows some imaging sensors used in UAV systems. Sensors are broadly
classified as passive (an external source of energy, such as the sun light, is needed to observe the target),
and active (they rely on their own sources of radiation to illuminate the target so that the energy reflected
and returned to the sensor may be measure).

Figure 5. Imaging sensors used in UAV-based systems for vegetation remote sensing.

The LiDAR is an active optical sensor that transmits laser beams toward a target. The time from when
the laser pulse left the system to when the reflection is returned is used to calculate the range distance
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between the sensor and the target. The distance is then combined with the positional information (GPS
and INS) to produce a highly accurate georeferenced point cloud. The UAV-LiDAR system presented
in [28], with application to forest inventory, uses an Ibeo LUX laser scanner (maximum range 200 m,
maximum scanning range 110◦ set to ±30◦, distance resolution 4 cm, angular resolution 0.25◦, 1 kg).
In [90], digital surfaces are modeled using a SICK LMS-291 Laser RangeFinder (maximum range 80 m,
error of about 10 mm, angular resolution 0.25◦, 4 Kg).

A spectral image sensor is a passive sensor that captures image data at specific frequencies
across the electromagnetic spectrum. The data from a spectral image sensor can be viewed as a
stack of images, with each image corresponding to a different color or spectral band. Calibration
and correction operations must be performed to compensate for artifacts and gain variations in the
sensor [22,25,46,49,51,54,57,68,93,94]. Multispectral imagers are the main type of sensors used in the
reviewed experiments. As example of the multispectral sensors used, we can cite MCA6 Tetracam
(1.3 MP, 2.7Kg) [46,51,94], Mini MCA Tetracam (1.3 MP, 720 g) [55], Tetracam-ADC (2.1 MP,
500 g) [65], and Geospatial Systems MS3100 (1.3 MP, 13 Kg) [53]. Reported spatial resolution is
in the order of decimeters at 200 m AGL and centimeres at 50 m AGL. Different combinations of
spectral bands are used for different purposes. As seen in the previous section, Green, Red an NIR
channels are the most commonly used for vegetation applications. In some works, the required bands
are obtained by adding or removing optical filters to commercial RGB digital cameras, just replacing
one color channel by the desired NIR band [22,42,56,58,60]. Commercial off-the-shelf digital cameras
provide easy access to standard RGB channels. Pixel resolution typically ranges from 5 to 12 MP, such
as in Sony DSC-V1 [61], Canon PowerShot G5 and Canon EOS 5D [11], FUJIFILM-FinepixZ10fd [40],
Canon PowerShot A480 [48], and Canon PowerShot SX100 [43]. RGB images were mainly used for
stereoscopic or SfM-based 3D reconstruction, but also for mapping and dead wood identification [11].

Recently, relatively low-cost, small size, and light weight hyperspectral image sensors are also
emerging. A hyperspectral image sensor employs hundreds of contiguous bands through a wide
spectral range. A micro-hyperspectral camera Micro-Hyperspec VNIR (260 bands, spectral range
400–1000 nm, 6 nm FWHM, 450 g) was installed on board a UAV at the Laboratory for Research
Methods in Quantitative Remote Sensing (QuantaLab, IAS-CSIC, Spain) [44,45]. Uto et al. [64]
developed a hyperspectral sensor system based on the Mini-Spectrometer C10988MA (256 bands,
spectral range 340–763 nm, spectral resolution 14 nm, 400 g). Burkart et al. [93] developed a
hyperspectral measurement system in the visible to near infrared range based on the Ocean Optics STS
microspectrometer (1024 bands, spectral range 350–800 nm, 3 nm FWHM, 216 g).

Finally, thermal imaging sensors, used for temperature measurement, capture data in the 8 to 15 µm
spectral range. Examples of thermal cameras documented in the reviewed experiments are Thermoteknix
MIRICLE 307 (spectral range 8–12 µm, 640 × 480 pixel resolution, 200 g) [44], NEC F30IS (spectral
range 8–13 µm, 160 × 120 pixel resolution, 300 g) [55], FLIR Thermovision A40M (spectral range
7.5–13 µm, 320 × 240 pixel resolution, 1.7 kg) [46,51], and Xenics Gobi384 (spectral range 8–14 µm,
384 × 288 pixel resolution, 500 g) [50].

A completely different type of payload is the spore-sampling devices used by Techy et al. [29]
for aerobiological sampling missions. The spore-sampling devices consist of circular petri plates that
can be opened and closed like a clam shell while the UAV is in flight. After the flight, the plates are
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transferred to the laboratory to detect, monitor, and forecast the spread of high risk plant pathogens
above agricultural fields.

7. Aerial Platforms and Flight Characteristics

A UAV is an aircraft, so it shares the same features of the design and development process of full-scale
aircraft. The principal differences are the necessity of a ground station, communication link with the
airframe and lack of regulation. From the user’s perspective, UAV can be flown at lower altitudes, which
can be considered dangerous for non-remotely piloted aircraft and with lower cost. The lower altitudes
permit higher resolutions of the sensor information, and the lower cost permits a higher frequency of
flights and improved temporal resolutions.

The aerial platforms used in the experimental flights under review are almost half fixed-wing
and half rotorcraft, with a scarce 10% of the experiments using gliders or kites as a test platform.
The mentioned fixed-wing platform names are AggieAir [43], APV-3 [49], Carolo P330 [73], J3
Cub [25], L’Avion Jaune [22], MLB Bat 3 [35], Pathfinder [53], Quantalab [45], and Vector-P [60].
Rotorcraft frame list is even longer: Camcopter [72], Align Trex 500 [42], AscTecFalcon-8 [93], Hexa
XL [59], MD4-1000 [64], Microdrones md4-200 [72], Mikado Logo 600 [57], Mikrokopter [50], NUS
QuadLion [27], Oktokopter MK-Okto [55], Parrot ARDrone [24], Quanta-H [94], Rotomotion [72],
TerraLuna OktoKopter [28], Vario [46] and WeControl AG [54]. Certain works use more
than one platform of the same type [27,29,44,54,59,72], and others use platforms of different
types [22,73,94]; certain platforms are used for collaboration, but most of the platforms are compared to
test their responses and approaches. Figure 6 shows some examples.

Figure 6. Different UAV platforms used in vegetation remote sensing.
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The sizes are generally small (23 mini/micro and 18 nano UAV), but there is also documentation of
a 36.3 meter wingspan aircraft [53]; it is a solar-powered AeroVironment Pathfinder used to analyze
the ripeness of coffee plants in Hawaii. The smallest documented size is a Parrot quad-rotor at
30 × 30 centimeters, which is used to navigate a forest in Australia [24] by using two visual cameras.
In general, fixed-wing aircraft are larger than rotorcraft aircraft, with the former within 2–5 m and the
later between 1–3 m. For rotorcraft UAV, helicopters are closer to 3 m, whereas multi-copters with
4-6-8 rotors are in the smaller size category. Certain platforms are self-designed, but most (90%) are
commercial off-the-shelf UAVs and aeromodels adapted to hold the payload.

The number of autopilots being documented is also very extense: AP04 [44,46,51], Ardupilot
AHRS [58], DJI ACE Waipoint [57], Mavionics [73], Microdrones [64], Micropilot [60],
Mikrokopter [39,50,59], Paparazzi [43], Rotomotion AFCS [65] and WePilot1000 [54]. In a small
number of works (8%) the autopilot is self-designed. There is a high correlation for rotorcraft with
the use of autopilots; this correlation is not found for fixed-wing platforms. The reason is most likely the
complexity of manually flying a rotorcraft, especially helicopters. Most gliders, paragliders, and kites,
use radio control manual piloting [11,22,48,73]. It is worth mentioning here the Tetracam Hawkeye
Parafoil-based UAV [95], able to carry any of Tetracam’s multispectral imaging systems. The Hawkeye
can be flown either manually via by radio control, or flying a pre-programmed mission via its Goose
autopilot. A clear benefit of platforms with an autopilot is that the experiment obtains more detailed
location data, such as the altitude above ground. For an accurate location, the most frequently used
combination is boarding a GPS receiver and adding ground control points on the ground. The use of
an autopilot also allows for sophisticated flight plans that are especially suitable for area monitoring,
which is necessary in many vegetation mapping applications. Linear, square, circular and rectangular
flight plans are simple examples. Other generic forms such as trochoidal, L-form or looped are generated
using the waypoint navigation available in most autopilots. However, scans of areas following parallel
transects, even in perpendicular directions, are the most used flight patterns [28,54,57,60,64,73]. The size
of the areas monitored by the UAV flights are generally within 1–10 ha. The largest area is 7000 ha [43]
as a result of the high altitude platform used (AggieAir).

The payload capacity and flight autonomy of the platform are usually a trade-off decision: additional
payload is usually possible if less fuel is used. However, both are directly related to the size of the
aircraft. Mini/micro UAV hold payloads from 1 kg to 30 kg with a median value of 5 kg. The nano
UAV have a reduced payload capacity (in the range of hundreds of grams), but this payload is sufficient
to board commercial off-the-shelf cameras. The flight time ranges from 12 hours for a Pathfinder to
5 minutes for the TerraLuna Oktokopter, which shows a direct relation to the size of the platform. The
most frequent values in monitoring vegetation works is in the half-hour to one-hour range.

8. Discussion

The extensive list of papers documenting remote sensing flights using UAVs shows the capabilities
of these aerial vehicles to be used as a complement, or even as substitute, of satellites and full-scale
aircraft. While these pre-existing platforms and their attached sensors have been performing remote
sensing flights in the last decades, UAVs are showing advantages on the temporal and spatial resolution
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of the imagery. By flying over the area of interest more frequently and at lower altitudes, unmanned
aircraft appear to provide a good remote sensing tool at low-cost. UAVs arise at the perfect moment
to profit from the current knowledge of the properties of the light reflectance and emittance, from the
state-of-the-art on methods of calculation and interpretation of vegetation indices, and from the capacity
of electronics to miniaturize in size and price. On the negative side, the extremely diverse alternatives of
the experiments show a lack of standardization at all levels, from sensors, vegetation indices, operational
methods, UAV sizes and models, and automation of pilot capabilities.

The high-intensive high-value crops are the main target for the use of UAVs because they provide a
good return of investment. The majority of flights (two thirds of the works) are given for this type of
vegetation. The use of UAVs over crops is also explained by the ease of operation, well delimited area
of study, low heterogeneity, familiar characterization, and productivity interests. Vineyards are probably
the best example. The quality (and price) of the grapes is very dependent on the time for the harvest,
temperature, water stress or infestations. As a second target, cereals fields, such as corn and wheat, are
also common in UAVs remote sensing works. The third type of vegetation in number of experiments
are the fruit trees. In contrast, although more than half of the earth’s land surface are different forms of
rangeland, only the 20% of documented flights focus on these areas. Six papers disseminate UAVs flights
over closest forest. They present vegetation mapping results used in scientific and ecological studies, in
which the short term economical benefits are not always given. The only three papers using LiDAR on
their UAVs are also applied to forest.

About two thirds of the revised papers are classified in our taxonomy as proactive applications, since
the captured information is used to trigger future actions over the vegetation, being the water stress and
nitrogen level estimation the most common. This fact correlates directly with the type of vegetation
of the majority of the papers: crops. The remaining one third of the papers documents mainly passive
applications. They used the UAV to collect data for mapping or inventory purposes. Only two papers
report reactive applications: both use the UAV for spraying chemicals but only one is able to decide the
route using ground sensors input. In general, we observe that most works just replicate the applications
previously done by conventional aircraft to prove the capabilities of UAVs for remote sensing. In a near
future, we expect to see more advanced robotics systems on board, providing automatic/autonomous
behavior to the UAVs and their payload, and working on reactive applications as a high-efficient and
cost-effective tool for precision agriculture.

Typically, the UAV payload produces as final result a NDVI map, which is recognized as a good
estimator of the biomass of the vegetation and for long-term water stress assessment. The map is a
large mosaic image constructed by stitching images together. The images contain spectral information,
mainly the NDVI or other derived vegetation indices. The near-infrared channel wavelengths are the
most basic input to obtain them (20 times). Six works demonstrate that commercial off-the-shelf
cameras can be rapidly transformed to obtain the near-infrared band. After validating aerial results
against ground-measured biophysical parameters, a precision of 15% demonstrate the goodness of such
estimations. In addition, sensor calibration and noise reduction are shown to be of as much importance
as the identification of the spectral signatures of the vegetation. The low cost of these sensors allows
also to have duplicated cameras and to increase the output products. Few works rely on thermal sensors,
almost 2-order of magnitude more expensive than commercial cameras. Thermal bands are basically
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used for water stress detection, but similar or even better results [51] are obtained from the combination
of near-infrared and visual bands. On the other side, water stress indices have been also obtained using
only visual bands. From the authors perspective, the rapid evolution of software (image processing,
statistical analysis, data fusion, etc.) and the high-quality of commercial cameras will define the remote
sensing done with UAVs. The main reason are the expected short-term economical benefits. We think
that expensive sensors, such as thermal cameras, LiDAR or multi/hyper-spectrometers, are going to be
used only in scientific and research works. For this specific type of applications, sophisticated algorithms
such as object-based segmentation or 3D reconstruction, are being developed. Special attention must be
given to the combination of the flight data (such as inertial and positioning information) with the payload
to increase the quality and accuracy of the output.

UAVs platforms are diverse, almost half being fixed-wing and the other half rotorcraft. Only two
papers present long-endurance (8–12 hours) high-altitude (3–6 thousand meters) experiments with the
Path Finder and the RCATS/APV-3 sensing huge areas of vegetation. For the rest of the papers, the trend
is a cost-effective solution of adapting aeromodels with commercial-off-the-shelf autopilots. In general,
small UAVs have low autonomy and flight for short periods (from 5 minutes to half an hour) and at low
altitude (5–30 m). Larger platforms have more endurance (1–3 hours) and higher altitudes (100–200 m).
The extension of the covered areas oscillates from tens to some hundreds of hectares in size.

In the future, we believe that the use of UAVs will extend globally to non-urban areas. The ground
control points currently used for improving geolocation mapping will be a network of sensors spread
over fields and collaborating with remote sensing tasks. While today the processing of data acquired
by the UAV is usually performed offline, in the future online data processing and intercommunication
functionality will provide aerial works with the ability to further extend from current mapping and
modeling applications to more intelligent application activities. The current concept of precision
agriculture will shift to smart farming, incorporating mapping, monitoring and scouting applications,
and to be able to apply these abilities with a high level of autonomy. Future ecological crops will require
less water waste and minimal application of fertilizers, and will provide quality products. Frequent
enough, periodicity of remote sensing flights (monitoring application) will improve to the knowledge
and development of sensing models and efficiency of online decision-making processes. Certain gaps
must still be filled, such as that of standardization, UAV flight reliability, increased levels of data fusion
(including external sensors and additional vehicles), higher levels of automation, potential sense and
avoid requirements for small UAVs, human-UAV interfaces, etc. We propose to follow the 5-categories
taxonomy, adapted from Zecha’s taxonomy, to obtain a holistic approach able to fill all these gaps
and be able to use robotics aerial platforms in vegetation monitoring. The current costs of UAV
sensing platforms and complexity of their use suggest remote-sensing businesses opportunities that might
provide pay-per-use services for smart farming based on timeliness and frequency, which would require
up-to-date interpreted maps with a regular delivery frequency.

9. Conclusions

Remote sensing of the earth and its vegetation has been performed in recent decades by sensors
attached to satellites and full-scale aircraft. Satellites provide a continuous set of imagery which permits
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monitoring on a regular time basis, whereas full-scale aircraft improve the resolution of the imagery
by flying at lower altitudes, however, because of the cost, the frequency of full-scale aircraft is not as
regular as that of satellites. Unmanned aircraft appears to provide a good complement to the current
remote sensing platforms because of their promise of low-cost and high resolutions. In this review, a
number of experiments using UAVs for remote sensing over vegetated areas are presented to show the
current state of UAV development. As soon as the legislation to safely integrate UAVs in the airspace is
in place the number of UAVs will exploit exponentially. Moreover, the operational limitations imposed
by regulations will certainly determine the way platforms, sensors and automation evolve. Their use on
remote sensing especially for precision agriculture will create a new and solid economical market which
can be one of the motors of the world economy of the next years.
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