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Abstract: Landmine clearance is an ongoing problem that currently affects millions of 

people around the world. This study evaluates the effectiveness of ground penetrating radar 

(GPR) in demining and unexploded ordnance detection using 2.3-GHz and 1-GHz  

high-frequency antennas. An automated detection tool based on machine learning 

techniques is also presented with the aim of automatically detecting underground explosive 

artifacts. A GPR survey was conducted on a designed scenario that included the most 

commonly buried items in historic battle fields, such as mines, projectiles and mortar 

grenades. The buried targets were identified using both frequencies, although the higher 

vertical resolution provided by the 2.3-GHz antenna allowed for better recognition of the 

reflection patterns. The targets were also detected automatically using machine learning 

techniques. Neural networks and logistic regression algorithms were shown to be able to 

discriminate between potential targets and clutter. The neural network had the most  

success, with accuracies ranging from 89% to 92% for the 1-GHz and 2.3-GHz  

antennas, respectively. 

Keywords: demining; ground penetrating radar; neural network; logistic regression; 

pattern recognition 
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1. Introduction 

Mine detection is an ongoing and increasing problem that affects millions of people around the 

world, because of the enormous danger that mines represent to humans. Due to the long lifetime of 

these objects, the victims are often unrelated to the original conflict during which the mines were 

emplaced. Currently, millions of mines remain buried underground, are in the arsenals of governments 

or are under the control of armed groups around the world [1]. These mines kill or maim someone 

every 20 min [2]. Mines can be rapidly placed in large quantities by unqualified personnel, but 

demining involves difficult and dangerous activities that require highly qualified personnel. United 

Nations (UN) statistics indicate that nearly two deminers are killed for every 1000 removed mines [3]. 

The use of non-invasive methods to detect and remove mines and unexploded ordnance (UXOs) could 

decrease the threat of mines to human life. 

Ground penetrating radar (GPR), which has proven to be suitable for subsoil investigations, is a 

technique that has been recognized by the scientific community for mine and UXOs detection [4,5]. 

GPR has been proposed as a solution for mine clearance and the removal of unexploded ordnance 

because of its speed, safety and suitability as a non-invasive technique compared to more invasive 

methods that are commonly used in demining operations, such as excavations or traditional detection 

methods, such as metal detectors, which may be dangerous. GPR has significant advantages over the 

standard electromagnetic induction (EMI) technique, because it allows improved discrimination of 

small metal fragments [6]. Military organizations, universities and private companies have developed 

specific research programs, such as the International Advanced Robotics Programme (IARP), that are 

based on the design of vehicles that are focused exclusively on the problem of humanitarian 

demining [5,7]. Examples of demining robots that use GPR detection sensors are the MHV (Mine 

Hunter Vehicle) and the ALIS (Advanced Landmine Imaging System), which were both developed by 

the University of Tohoku (Japan), FORESIGHT (Landmine detection system, Canada), NIITEK GPR 

(part of the Chemring Group, USA), the MINDER (Mine detection, Neutralization and Route marking 

system, U.K.) and the U.S. AN/PSS-14 HSTAMIDS (Handheld Standoff Mine Detection System) [8]. 

The aim of this paper is to propose a real-time mine detection procedure and application to locate 

buried UXOs for the Marine Corps of the Spanish Navy. A commercial GPR system was used to 

acquire data over a sandy soil that simulates beach conditions. The data were simultaneously processed 

by the proposed machine learning application to provide accurate real-time probabilities of buried 

hazardous objects. 

An experimental minefield scenario was simulated using different types of landmines (anti-personnel 

and anti-tank mines in addition to mortar and hand grenades), as well as other materials, such as stone, 

plastic and wood. The explosives in real minefields and former battlefields are buried at different 

depths depending on their specific functions and can be found according to different orientations due 

to erosion; therefore, the targets were buried at several depths and configurations. Two high 

frequencies (2.3 and 1 GHz) were tested using a GPR system to define their appropriateness in 

detecting landmines and UXOs under the simulated mining conditions and to characterize the GPR 

signal responses. An exhaustive sample set composed of more than 28,000 GPR traces was obtained 

and was used to train a powerful and fast machine learning application that will improve the 

probability of automated UXO detection, while reducing the number of false positives. 
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Two machine learning algorithms were tested: logistic regressions and neural networks. Logistic 

regressions have been widely used for classification tasks in many applications [9–11]. However, they 

have several limitations when dealing with complex signals and numerous input variables (commonly 

called input features), such as in this case. To optimize the procedure, a neural network was also 

implemented, which provided better results than the logistic regression. 

Both proposed machine learning algorithms use more than 4000 input features, in contrast with the 

9160 or 200 features used in previous studies [12–14]. In addition to the number of input features, an 

important difference from other studies (e.g., [15]) is the use of the trace as the input feature for the 

learning system instead of the 3D radargram. 3D radar techniques imply that the entire study area must 

be analyzed a priori before sending the full dataset to the neural network; therefore, no real-time 

constraints apply. Additionally, most previous studies (e.g., [12,16]) were carried out under controlled 

laboratory conditions, which could lead to excessively optimistic results, and the learning algorithm 

will be prone to failure in realistic environments. 

2. Materials and Methods 

2.1. Experimental Scene 

Two experimental grids, A (4 m × 2.5 m) and B (4 m × 1 m) (Figure 1), were designed to 

characterize the GPR signal for mine detection. The field test was performed in a long-jump trench on 

the property of the Spanish Naval Academy in Marín, Galicia (Northern Spain). A homogeneous sandy 

soil environment was selected to simulate a common minefield situation encountered by Marine 

Infantry Corps troops when landing on a beach. Due to the extremely rainy conditions of Galicia 

during the study period, the experimental area was covered by a waterproof cover for the two days 

before the data collection to isolate it from rain and to prevent pooling of water on the surface. 

Otherwise, it would have been impossible for the personnel and the equipment to work properly under 

the extreme weather conditions. In addition, high water content in the subsoil was avoided, because of 

the attenuation of the radar wave propagation. As other authors have demonstrated [17], the success of 

mine detection decreases as the soil moisture increases. 

Grid A included the most representative items that are found in minefields and unexploded 

ordnance scenarios. The targets were selected by considering their dimensions, casing materials and 

designations, as described in Table 1. Moreover, different depths and orientations of the targets were 

considered, so that their influence on detection by GPR could be observed. To simulate a large variety 

of situations, several types of landmines were buried, such as AP-SB33 anti-personnel mines and  

AT-SB81  anti-tank mines. In addition, several mortar grenades (INSTALAZA II-M63, GM-ECIA) 

were used to recreate UXOs (unexploded ordnance) emplacements. One of these mortar grenades 

(No. 12 in Table 1) was intended to simulate the case of a buried projectile that had been previously 

exploded, and therefore, it was buried without the fuse. Two different types of hand grenades (M-67, 

ALHAMBRA-EJ) were also buried. Table 1 shows the geometrical dimensions, compositions and 

burial conditions of all of the tested items. 
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Figure 1. Experimental grids: A (minefield and unexploded ordnance scenarios) and 

B (“false” targets, including wood, plastic and stones). The axes (X-Y) used to collect the 

data and the origin for the GPR data acquisition (0, 0) are also illustrated. 

 

Table 1. Descriptions of the landmines and grenades used in the testing, including 

designations, dimensions, casing materials and burial depths and orientations (L = length; 

t = thickness; ø = diameter). 

Nº Object Designation Image Dimensions Casing Depth Orientation 

1 Anti-

personnel 

mine 

AP-SB33 

 

t = 3.23 cm  

Ø = 8.46 cm 
Plastic 10 cm 

Vertical 

2 Horizontal 

3 

Oblique 
4 

Mortar 

grenade 
GM-ECIA 

 

L = 26 cm  

Ø = 5.98 cm 
Metal 20 cm 

5 
L = 38 cm  

Ø = 7.86 cm Horizontal 

6 
Anti-tank 

mine 
AT-SB81 

t = 10 cm  

Ø = 22 cm 
Plastic 

30 cm 

7 
25 cm 

Vertical 

8 Oblique 

9 Hand grenade M-67 
L = 9.31 cm  

Ø = 6.14 cm 
Metal 12 cm Horizontal 

10 

Mortar 

grenade 

INSTALAZA II 

M-63 

 

L = 34.5 cm  

Ø = 3.56 cm 
Metal 

15 cm 
Horizontal 

11 

Oblique 
12 

 

L = 31 cm  

Ø = 3.56 cm 10 cm 

13 

Hand grenade ALHAMBRA-EJ 
 

L = 7.54 cm  

Ø = 6.37 cm 
Plastic 

Vertical 

14 
7 cm 

Oblique 

15 Horizontal 
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A second scenario (Grid B, Figure 1) that contained non-explosive items (such as wooden planks, 

stones and plastic bottles) was also designed. The objective for including these “false” targets was to 

compare their reflection patterns with those obtained from the explosive targets. “False” anomalies are 

also needed to properly train the automatic mine detection application. If these false positives did not 

exist, the machine learning algorithms may converge on an undesirable solution in which all of the 

detected targets would be classified as potential targets. To be conservative, this could be a valuable 

option, because all anomalies would be detected. However, the aim of the application is not only to 

detect anomalies, but also to be able to discriminate potential targets from different types of clutter, 

such as stones, subsoil layers and moisture, tree roots and changes in subsoil materials. 

2.2. Methods: Theoretical Background 

2.2.1. Ground Penetrating Radar 

GPR is a geophysical method that is based on the propagation of very short electromagnetic pulses 

(1–20 ns) in the frequency band from 10 MHz to 2.5 GHz. Additional information on the basic 

principles of GPR can be found in [18,19]. In the GPR method, a transmitting antenna emits an 

electromagnetic pulse into the ground that is partially reflected when it encounters media with different 

dielectric properties and is partially transmitted into deeper layers. The reflected signal is recorded by a 

receiving antenna. When operated in the common-offset (CO) mode, one or two antennas (shielded or 

unshielded antennas, respectively) are moved over the area of investigation along a specific direction 

while maintaining a constant distance between the transmitter and receiver. An image of the shallow 

subsurface under the survey line is displayed. These two-dimensional (2D) images, which are called 

radargrams, are XZ graphical representations of the detected reflections. The X-axis represents the 

antenna displacement along the survey line, and the Z-axis represents the two-way travel time of the 

radar wave (in nanoseconds). If the time required for the GPR signal to travel from the transmitting 

antenna to the reflector and return to the receiving antenna is measured and the velocity of this wave in 

the subsurface medium is known, then the position, or depth, of the reflector (d) can be determined. 

An important parameter that controls the depth range of GPR is the frequency of the transmitting 

antenna. The antenna frequency used for a GPR survey should be carefully chosen, because a balance 

must be maintained between a low frequency, which provides deeper signal penetration, but poorer 

resolution, and a higher frequency, which provides better resolution, but shallower penetration. Table 2 

shows the maximum penetration depths (under optimum conditions) and spatial resolutions of the most 

common frequencies used in explosive remnants of war (ERW) detection. 

The spatial resolution of the GPR system appears to be the most important factor that influences the 

success of the technique to obtain an appropriate image [20]. The spatial resolution of a radargram is 

commonly referred to by its horizontal and vertical resolutions. The horizontal resolution indicates the 

minimum distance between two reflectors that can be detected as separate events and depends on the 

number of traces adjusted before data acquisition, the beam width and the depth of the reflector [21]. 

The vertical spatial resolution, which allows for the differentiation of two adjacent reflections as 

different events, mainly depends on the central frequency of the antenna and the radar wave 
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velocity [22]. An average radar wave velocity of 13.5 cm/ns was considered, as was reported by other 

authors [19] for loamy sand soils. 

Table 2. Maximum penetration depths and spatial resolutions for the most common 

frequencies used in explosive remnants of war (ERW) detection. 

GPR Antenna Max Depth (m) Δt (ns) Vertical Resolution (Rv) (cm)

Horizontal Resolution 

(Rh) (cm) 

10 cm 20 cm 30 cm

2.3 GHz 0.5 0.435 4 17 23 27 

1 GHz 1.5 1 9 28 36 43 

800 MHz 2.5 1.25 12 31 41 48 

500 MHz 6.0 2 19 43 55 63 

2.2.2. Automated Detection Tool 

The raw GPR signal usually requires computationally expensive digital signal processing. 

Commonly used techniques in landmine detection include correlation functions [23], cross-correlation 

with simulated samples [24] and least mean squares (LMS) methods or their variants, 2D LMS or 3D 

LMS [25]. Many researchers have begun to use statistical approaches [26], AdaBoost classifiers [27], 

hidden Markov models [4] and other techniques for landmine detection. Although these methods can 

provide significant improvements, most GPR signal processing in the literature involves classical static 

methods. Machine learning systems that are able to automatically extract patterns from data are no 

longer computationally expensive and could be used successfully to detect buried objects. 

Several types of machine learning systems could be applied. In this paper, we present a novel 

approach that is based on supervised learning techniques. This approach requires a series of input data 

coming from the GPR and its labeled output, which can serve as examples to feed the system, so it can 

learn the patterns that characterize the clutter, the background noise and the targets being studied 

(e.g., explosive artifacts). 

We use logistic regression and neural network techniques to calculate the probability that buried 

explosives are present in a given area. Because the desired information is whether an ERW is located 

in a particular region, the problem can be understood as a classification problem with two classes: 

0 (safe region) and 1 (dangerous region, meaning that there is a high probability of targets).  

Logistic regressions were selected, because they are widely used and acknowledged by the 

scientific community as universal classifiers and are one of the most commonly used techniques in 

medical applications, bioinformatics and genetics. A neural network was also applied to determine if it 

is a more robust and accurate classifier. The formulations of both methods are beyond the scope of this 

paper, but they are described in detail in [28]. We will focus on a qualitative description so that a 

simple comparison can be performed. 
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2.3. Survey Methodology and Computing Approaches  

2.3.1. GPR Survey 

This study considered different types of mines at different depths. As shown in Table 1, some of the 

targets are quite small and are buried at very shallow depths (7–10 cm). Lower vertical resolutions 

(Table 2) are therefore required to avoid the influence of near-field antenna coupling induction effects 

and to ensure detection. If the depth of the target is less than the vertical resolution, the reflection from 

the object is combined with the direct coupling signal and is not identified. The 1-GHz and 2.3-GHz 

antennas were used, because both frequencies provide the proper vertical resolution, as well as 

sufficient penetration to reach all of the objects. 

The GPR survey was performed using a ProEx Control Unit from MALÅ Geosciences with  

High-Frequency HF (2.3 GHz) and optical (1 GHz) connections. The data acquisition was carried out 

using the CO mode with the antenna polarization perpendicular to the data collection direction  

(X direction in Figure 1), and the acquisition parameters were a 2-cm trace-distance interval and a total 

time window of 14 ns and 43 ns for the 2.3- and 1-GHz antennas, respectively. To cover the entire grid 

and to ensure the detection of the smallest items, parallel 2D profiles were recorded at regular intervals 

of 5-cm spacing in the Y direction (Figure 1).  

All of the collected profiles were filtered before interpretation to correct the down shifting of the 

signal caused by the air-ground interface and to amplify the received signal, as well as to reduce clutter 

and unwanted noise in the raw data (both low- and high-frequency noise in the temporal and spatial 

directions). The objective was to enhance the extraction of information from the received signals and 

to produce a subsurface image that includes all of the features and/or targets of interest, which 

simplifies the interpretation of the GPR data. The data were processed with the ReflexW v.5.6 

software [29]. The filters and parameters used to process the 2.3- and 1-GHz data are shown 

in Table 3. 

Table 3. Data processing applied to the GPR data acquired with the 2.3- and  

1-GHz antennas. 

2.3 GHz 1 GHz 

1. Time-zero correction 1. Time-zero correction 
2. Dewow filtering (time window: 0.5 ns) 2. Dewow filtering (time window: 1 ns) 
3. Gain function (linear: 5; exponential: 4) 3. Gain function (linear: 2; exponential: 1) 
4. Subtracting average (average traces: 200) 4. Subtracting average (average traces: 200) 

2.3.2. Machine Learning Tool for Pattern Recognition 

The physical input signal of the machine learning system is based on the raw and real-time GPR 

data (i.e., the amplitude trace signal acquired by the GPR at each point). However, several 

transformations must be performed to convert the raw amplitude samples from the GPR into input 

features for the system. This section explains how the GPR output is converted into input features for 

the machine learning system and how the model for each system was chosen.  
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GPR provides an amplitude trace every 2 cm with the antenna polarization perpendicular to the data 

collection direction. Each 2.3-GHz and 1-GHz trace is composed of a set of 292 or 500 samples, 

respectively. In general, the traces are strongly correlated in time and space with the nearest traces, 

especially those containing targets; therefore, analyzing the traces independently will lead to a loss of 

information. To take advantage of all of the available data, a sliding window of several consecutive 

traces was set as the input signal for the machine learning system.  

The size of the window is related to the size of the targets that we want to detect, and the sliding 

increment refers to the spatial resolution of the system. Therefore, the window must be large enough to 

contain all of the traces that define the largest target possible and short enough to be able to 

discriminate between adjacent targets. On the other hand, the sliding increment must be short enough 

to be able to provide a real-time probability of detecting ERW. 

A sliding increment of 1 trace and a window of 15 traces were set, which provide the maximum 

spatial resolution of 2 cm, while being large enough to detect all of the targets being studied. However, 

both parameters are fully configurable to adapt the application to any other targets.  

Each amplitude point within a window (i.e., each pixel of a window) will be an input feature for the 

system. For a simple window that contains only one trace, there will be 292 and 500 input features for 

the 2.3-GHz and 1-GHz data, respectively. Therefore, a window composed of 15 traces will include 

4380 or 7500 input features, depending on the frequency, which dramatically increases the 

dimensionality of the problem. To decrease the dimensionality, two additional parameters can be 

established: the minimum and maximum depths to be analyzed. Both parameters are critical for 

demining applications, because a poor choice might lead to severe consequences for the demining 

personnel. In this example, no limits on the depth are applied, and all of the features are analyzed. 

Depending on the application, the polarization can be included as an additional input feature. 

However, in this case, the polarization does not provide any information, because it will be the same 

for all of the acquired data (because the antenna polarization is perpendicular to the data collection 

direction). Both learning algorithms will be trained only for this polarization, which is the most 

commonly used polarization in demining applications. 

Following this schema, all of the radargrams obtained in the measurement campaign were sliced 

into several windows, which will be used to train the two supervised learning algorithms. To validate 

the models obtained in the training process, the samples were divided into three independent sets. 

A radargram window can only belong to one set. The bagging technique follows a rule of thumb in 

which 60% of the samples are used in the training set and will be used to train the model, 20% of the 

samples are in the cross-validation set, which will help to choose the model, and 20% of the samples 

are in the test set, which will be used to measure the quality of the predictions of the system. It is 

important to note that all of the sets, but especially the training set, must contain samples of each case 

being studied; i.e., every set must include windows that contain targets, as well as clutter and noise, so 

the sets will not be skewed. 

To remove some of the noise and clutter from the GPR signal, several pre-processing steps were 

performed on each window. Because the application is real-time constrained, the pre-processing 

cannot delay the output and must be applied only to the window being studied and not to the entire 

radargram. The pre-processing was performed in two steps. First, a background removal was applied to 

remove some of the noise [30]. Second, to improve the contrast and highlight the pattern of the targets, 
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histogram equalization [31] was implemented to increase the SNR ratio of the input signal, which 

leads to a higher probability of detection of the machine learning system. By combining the two 

preprocessing steps, an increase in the SNR of approximately 9 dB was obtained for both frequencies. 

Both pre-processing techniques appear to be simple when compared to other complex algorithms used 

in the literature [19,32]. However, the aim of this paper is to present an accurate real-time application 

that can be used in a real demining context, so computationally expensive methods were dismissed. To 

compensate for this, a complex training stage was applied, because the training procedure can be 

performed at any time that is convenient for the demining personnel, and therefore, it is not  

real-time constrained. 

After the pre-processing step, all of the features must be normalized, so they will have values within 

the same range. This is a mandatory and important step in every machine learning algorithm; it does 

not increase the signal-to-noise ratio (SNR), but it is needed to ensure the convergence of the machine 

learning system. If normalization is not applied, the system might “learn” that the features with greater 

values are more important than the others, and it might converge to an improper solution or even 

diverge. The normalization parameters are extracted from the samples of the training set and will be 

applied to all of the samples in the sets of the system. 

Once the input features have been established, the models of the two systems must be chosen. The 

goal is to obtain a system that is able to generalize properly with a low error rate. This means that the 

model cannot “overlearn” the patterns that are provided by the training set, so when new samples are 

applied (test set), they will also provide accurate predictions. Two machine learning algorithms were 

selected for this application: logistic regressions and neural networks. Thus, selecting the model means 

selecting the regularization parameter that controls the “overlearning” (called overfitting) and the 

number of neurons of the neural network. The method for choosing those parameters is beyond the 

scope of this paper, but is described in detail in [10,28]. 

The detailed architecture of the neural network is shown in Figure 2, where the activation function 

of all of the neurons is the sigmoid function. The number of neurons in the input layer is fixed by the 

number of input features (one neuron per feature); the same applies for the number of neurons in the 

output layer, which is one; i.e., the desired probability. For this application, several simulations showed 

that 10 neurons in the hidden layer provide good accuracy, while also being computationally efficient. 

Figure 2. Neural network architecture. 
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Both the logistic regression and the neural network will provide an output value between 0 and 1 

that will represent the probability that a target is located within the sliding window being studied. 

Thus, a threshold that will determine if an explosive artifact is actually present in each window must 

also be established. Due to the nature of the problem, the threshold for this application was set very 

low (0.25), because it is more important to detect everything, even at the cost of an increased rate of 

false positives, than to obtain false negatives, which would imply that an explosive was not detected 

and would be dangerous for the demining personnel. 

3. Results and Discussion 

3.1. Field GPR Data 

Due to the large number of GPR profile lines that were collected, only the radargrams that show the 

most interesting reflection from each type of target are shown. Figures 3,4 present the individual 

portions of the radargrams produced with the 2.3-GHz and 1-GHz antennas, respectively, for each 

target type. 

For the detection of anti-personnel (AP) mines, the signal reflections showed different responses 

depending on the burial characteristics and the frequency used. The AP mine oriented vertically at a  

10-cm depth was identified from the 2.3-GHz data (No. 1 in Figure 3). Nevertheless, the reflection is 

quite small and is not easily distinguished, due to the minimal thickness of the object, which produces 

a smaller reflection surface. On the other hand, this object was not identified using the 1-GHz antenna 

(No. 1 in Figure 4), because of the small size of the object, as well as the lower spatial resolution of the 

frequency (Table 2) and the near-field antenna coupling induction effects.  

Figure 3. Two-point-three-gigahertz field data and reflection patterns obtained for the 

explosive artifacts described in Table 1. 
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For the AP mine that was buried horizontally, hyperbolic reflections were recognized in both the 

2.3-GHz and 1-GHz frequencies (No. 2 in Figures 3 and 4, respectively). The reflection pattern is 

stronger when the target is horizontal, because the reflection surface is larger. The same result is 

observed for the case of the horizontal anti-tank (AT) mine (No. 6 in Figures 3 and 4). Moreover, in 

this case, diffractions produced by the presence of air voids can be observed. The experimental scene 

was created using inert material, which was already exploded and, thus, contained an empty interior 

space. Reflections generated from the AP mine buried obliquely (No. 2 in Figures 3 and 4) were also 

detected, but the hyperbolic shape was not perfect, as it was in the previous case. Similar results were 

found with both vertical AT (No. 7 in Figures 3 and 4) and oblique AT mines (No. 8 in Figures 3 and 4), 

where the reflection hyperbolas were detected, but were not perfect. 

Continuous flat reflections were distinguished for the oblique (Object 4) and horizontal (Object 5) 

mortar grenades (No. 4,5 in Figures 3 and 4, respectively). The difference in length between the 

grenades (Table 1) is clearly observed in the radargrams. Similar continuous flat reflections were also 

obtained with both frequencies from the horizontally buried INSTALAZA II M-63 mortar grenade 

(No. 10 in Figures 3 and 4). A half-hyperbolic reflection related to the oblique M-63 mortar grenade 

was obtained using the 2.3-GHz antenna (No. 11 in Figure 3). In contrast, a somewhat continuous 

reflection was obtained using the 1-GHz antenna (No. 11 in Figure 4). As expected, these results are 

similar to those obtained for the mortar grenade arranged without the fuse (No. 12 in Table 1), as 

illustrated in Figures 3 and 4 No. 12. 

Figure 4. One-gigahertz field data and reflection patterns obtained for the explosive 

artifacts described in Table 1. 

 

Hyperbolic reflections were observed for the M-67 metal hand grenade (No. 9 in Figures 3 and 4). 

The ALHAMBRA-EJ hand grenades, which were buried at depths of 7–10 cm, were also affected by 
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coupling induction effects when surveyed with the 1-GHz antenna. Although this object is mainly 

composed of plastic, the presence of thin sheet metal produces a stronger signal that facilitates 

identification (No. 13–15 in Figure 4). Both the vertical (No. 13 in Figures 3 and 4) and horizontal (No. 15 

in Figures 3 and 4) grenades showed perfect hyperbolic reflections that were clearly recognized. On the 

other hand, the obliquely buried grenade showed a half-hyperbola reflection (No. 14 in Figure 3) with 

the 2.3-GHz data that was not clearly observed in the 1-GHz data (No. 14 in Figure 4). 

The metal (perfect reflector) objects showed the strongest signal reflections, due to the greater 

dielectric contrast with the sandy soils (dielectric constant or K-value of five [19]). However, the 

plastic objects (K-value of three [33]) were also perfectly detected, although with a lower dielectric 

contrast. It is important to note that detection of real plastic mines will be better, because they contain 

metal components; however, real mines were not considered in this study for safety reasons.  

3.2. Automated Detection Tool Using Machine Learning Techniques 

Once systems have been trained, they must be validated by comparing the predictions obtained 

from the test set with the experimental data. Figure 5 shows an example of how the results are 

displayed, and Figures 6–10 show the results for both the logistic regression and neural network 

systems for some of the radargrams. 

Each figure shows two radargrams; the upper radargram shows where the targets were located, and 

the lower one shows the outcome of the system for each sliding window; i.e., the probability of an 

existing target being present within that window. To provide a rapid visual overview, each probability 

is displayed over its window with a color code that corresponds to the threshold (0.25). Therefore, 

probabilities displayed in red are those whose values are higher than the threshold, which indicates a 

high probability of containing a potential target, while green means a low probability.  

Figure 5. (a) Example of full and (b) detailed radargrams showing the probabilities of each 

sliding window. 

 

By comparing the two algorithms, the neural networks were demonstrated to be more accurate and 

robust than the logistic regressions for both detecting potential explosives and detecting clutter. 

Figure 6 shows the radargrams of the same profile provided by the two systems with the 1-GHz data, 
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while Figure 7 shows the results for the 2.3-GHz data. The results show that whenever the signal is 

clear, logistic regression works well. 

Figure 6. Detection of an anti-personnel mine at 1 GHz using (a) the logistic regression 

and (b) the neural network. 

 

Figure 7. Detection of anti-tank and anti-personnel mines at 2.3 GHz using (a) the logistic 

regression and (b) the neural network. 
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However, whenever the input signal becomes blurry, the error rate of the logistic regression 

increases dramatically (Figure 8a). Nevertheless, the neural network remains accurate, even with fuzzy 

and faint signals (Figure 8b). Remarkably, the neural network provides better spatial resolution and 

less uncertainty than the logistic regression; i.e., the windows that contain the targets are not as wide as 

in the regression cases. 

Figure 8. (a) Failure of the logistic regression in detecting anti-personnel mines at 2.3 GHz 

and (b) the success of the neural network for the same 2.3-GHz GPR signal. 

 

Figure 9 shows the outcomes from both systems when dealing with cluttered signals. In these cases, 

because the clutter provides a fuzzy signal, logistic regression has a high probability of failure  

(Figure 9a). The neural network remains accurate in these cases, although the probability might 

experience more spreading among the sliding windows than when detecting solid targets, so the area of 

high probability will be larger. 

Despite the good results, the developed neural network does not have 100% accuracy and might fail 

in some cases. Figure 10a shows an example of the poor behavior of the network when dealing with a 

Type 2 target. This target represents an INSTALANZA II M-63 mortar grenade, which happens to be a 

rare target that appeared in only a few training samples. Because it has a pattern that is completely 

different from the AP and AT mines, the neural network appears to require additional training samples 

to be able to recognize it. This is not a failure of the algorithm itself, but is rather a failure of the 

training set, which is skewed for this type of target. 

However, although the network showed some uncertainty in the detection of this type of target 

(because the area is not completely marked as red), the entire area is not green. This means that the 

network “has intuition” that something dangerous might be buried in these windows. Thus, coloring 
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the area of uncertainty red serves the final goal of this tool, which is to advise demining personnel of 

potentially dangerous areas. 

Figure 9. Example of clutter detection at 2.3 GHz by (a) the logistic regression and (b) the 

neural network. 

 

The accuracy of the system therefore depends strongly on the quality of the training set. An ideal 

initial training set should contain as many of the possible targets of interest as possible or at least as 

many target geometries as possible. If not, the system will be initially skewed, as in this case. 

However, the system has the ability to learn as it is being used, so a nearly perfect system could be 

obtained once the network has “seen and learned” the patterns of interest.  

On the other hand, when the training samples are not skewed, the neural networks have shown the 

ability to learn beyond the scope of the targets that were labeled by the programmer. Figure 10b 

illustrates how the network is able to recognize the faint patterns of an anti-tank mine and a mortar 

grenade in this profile, even when the programmer discarded them for not being sufficiently clear. This 

demonstrates how these techniques might be useful for demining technicians to locate and identify 

potentially dangerous areas where ERW might be buried. 

The behaviors of both algorithms in terms of detection percentages are presented in Table 4. The 

accuracy represents the samples that were properly predicted, including samples that were labeled as 

targets, noise and clutter. The error rate refers to the samples that were misclassified both as targets 

and as noise or clutter. The error itself does not provide much information, so it has been divided into 

two error rates, the false positive rate and the false negative error rate, which are the critical parameters 

for demining applications. 
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Figure 10. (a) Examples of the misbehavior of the neural network when dealing with 

skewed samples and (b) neural networks detecting blurry and faint targets that were not 

marked in the test set by the programmer: AT (anti-tank) mine (1) and mortar grenade (2). 

 

The false positive rate is composed of those samples that contain noise and that are labeled as 

potential explosives. This misclassification would lead to additional work for the demining personnel, 

because they might have to investigate more areas than are needed, but this is not dangerous, because 

the areas are actually safe. However, the false negative rate represents the percentage of windows that 

contain an explosive artifact, but are classified as safe. This is the most important parameter for this 

application, because an area that has been labeled as safe when it is not represents a potential danger 

during the demining process. 

As is shown in Table 4, neural networks are more suitable for this type of problem. They show a 

high probability of detection, while reducing the probability of false positives and, more importantly, 

false negatives. The probability of a false positive remains at 4% for both frequencies. This might be 

due to the limited size of the training set, especially in terms of windows that contain the different 

types of clutter and special explosive remains, such as the INSTALAZA II M-63 mortar grenade 

described previously. This means that this problem could be easily solved by adding more samples to 

the training set to reduce the false positive rate. 

However, one of the advantages of machine learning systems over traditional programming is the 

ability to dynamically learn new features as they are used. Thus, this false negative rate should be 

considered a maximum-error rate that will only decrease with continued use of the system, thus 

validating the goal of this paper of using these techniques to automatically detect buried explosives. 
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Table 4. Percentages of accuracy for the 1-GHz and 2.3-GHz data. 

  
Accuracy 

Error Rate 

  False Positive False Negative 

Logistic 
Regression 

1 GHz 57% 28% 15% 

2.3 GHz 65% 17% 18% 

Neural 
Network 

1 GHz 89% 7% 4% 

2.3 GHz 92% 4% 4% 

The probabilities obtained demonstrate that this system could be useful in a true demining context, 

especially with the 2.3-GHz antenna, and demonstrate the superiority of the neural network method 

over other machine learning algorithms, such as logistic regressions. 

To improve the results, additional research could be conducted to characterize each type of clutter 

signal. This study focused on the mine detection algorithm, but to be able to distinguish among 

different types of UXOs, a more extensive measurement campaign should be carried out. 

One limitation of the developed system is that it was only trained with one type of soil. Therefore, 

an interesting improvement of the learning algorithm might consider the type of soil as an input feature 

for the system, which could be configured by the user. 

A possible solution to the lack of samples and targets might be using finite-difference time-domain 

(FDTD) simulation methods to increase the diversity (and quantity) of the training set by artificially 

creating targets and samples on-demand. However, this was not done in this study, because the main 

goal was to demonstrate how a system that is trained with real samples might be useful in a real 

demining scenario (Table 4). Because the FDTD signal is cleaner than real signals, better detection 

probabilities and lower error rates might be expected. 

4. Conclusions 

This study analyzed the effectiveness of a GPR system in detecting landmines and UXOs. Experimental 

grids were designed to simulate the most common landmine field scenarios. High-frequency antennas 

(2.3 GHz and 1 GHz) were used to characterize the most appropriate radar wave responses. In 

addition, an artificial intelligence approach based on machine learning techniques was considered with 

the goal of automatically detecting the targets. 

Using a methodical, but simple data processing technique, the GPR method is shown to be a 

suitable method for demining research. The obtained results demonstrate that the combination of  

2.3-GHz and 1-GHz frequencies allows for the best evaluation procedure. The 2.3-GHz antenna is the 

ideal choice for detecting shallow anti-personnel landmines. Deeper anti-tank mines are identified more 

clearly using the 1-GHz antenna. The experiment was carried out using inert material that did not contain 

ammunition and any metal components. Therefore, the detection and identification of the targets would 

increase in real scenarios, due to the larger dielectric contrast between the metal and the sandy  

soil environment. 

Although promising, this technology has limitations, because the resolution required to detect small 

objects involves GHz frequencies that have low soil penetration and high levels of image clutter. 

Therefore, the main challenge for detection is further reducing the rate of false alarms. In this sense, 

this paper presents a novel approach in GPR signal processing by using machine learning techniques to 
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detect buried ERW. Our goal was to develop an automated, fast and real-time detection tool to reduce 

the false alarm rates and increase the probability of detection to improve the efficiency of demining 

operations. The ability to extract patterns of clutter and explosive artifacts was tested using logistic 

regressions and neural networks. Both algorithms showed the ability to discriminate among potential 

targets and clutter, but the neural network technique is a more robust algorithm in terms of the 

accuracy and the false positive and false negative error rates. The results also showed the limitations of 

logistic regressions when dealing with GPR signals, although it is a commonly used classification 

technique in biostatistics and medicine. 

The study also showed that a larger set of training samples is needed to be able to discriminate 

between the different types of targets and clutter and to reduce the error rate. Finally, the accuracies of 

both machine learning techniques might improve as they are used, so the percentages shown in Table 4 

should be regarded as the lower limits of the capabilities of the algorithms, which addresses the goal of 

this paper. 

Finally, it must be noted that the main focus of this research was in developing a methodology 

specifically for sandy soil. In the future, this approach will be extended for other common 

environments involving mining and UXO clearance, namely mountainous terrain, marshy ground, 

clayey soil, etc. 
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