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Abstract: Detecting and monitoring forest degradation in the tropics has implications for 

various fields of interest (biodiversity, emission calculations, self-sustenance of indigenous 

communities, timber exploitation). However, remote-sensing-based detection of forest 

degradation is difficult, as these subtle degradation signals are not easy to detect in the first 

place and quickly lost over time due to fast re-vegetation. To overcome these shortcomings, 

a time series analysis has been developed to map and monitor forest degradation over a 

longer period of time, with frequent updates based on Landsat data. This time series 

approach helps to reduce both the commission and the omission errors compared to, e.g., 

bi- or tri-temporal assessments. The approach involves a series of pre-processing steps, 

such as geometric and radiometric adjustments, followed by spectral mixture analysis and 

classification of spectral curves. The resulting pixel-based classification is then aggregated 

to degradation areas. The method was developed on a study site in Cameroon and applied 

to a second site in Central African Republic. For both areas, the results were finally 

evaluated against visual interpretation of very high-resolution optical imagery. Results 

show overall accuracies in both study sites above 85% for mapping degradation areas with 

the presented methods.  

Keywords: forest degradation; time series analysis; REDD+ monitoring system; SMA; 

gap detection  
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1. Introduction 

The need to conduct research on tropical forest degradation emerged in the 1990s as the spatial 

extent of selective logging and fire damage was found to be not accounted for in deforestation studies. 

Selective logging has a strong impact on the whole forest ecosystem with damage to remaining trees, 

changes in plant and animal species diversity, impacts on the soil, and also on carbon storage [1–4]. 

With regard to carbon storage, in the frame of the Kyoto protocol, reducing emissions from 

deforestation and degradation in developing countries (REDD) was adopted as a mechanism for the 

post-Kyoto reporting. The need to address and monitor degradation, along with deforestation, has been 

emphasized on numerous occasions, such as at the COP meeting in Bali, 2007 (FCCC/CP/2007/6), 

where the parties “acknowledge that forest degradation also leads to emissions, and needs to be 

addressed when reducing emissions from deforestation”. In the Congo basin, degradation is considered 

even more important than, for example, in Latin America or Asia, thus, the “COMIFAC (Commission 

de Forêts d’Afrique Central) position on the international issue on REDD” calls for “factoring of 

degradation as much as deforestation in emission calculations”. It has been noted that “estimating 

degradation is difficult because of the great variability in the forms, factors and degrees of human 

impact” [5]. Many definitions of forest degradation exist in the literature. A selection of definitions is 

provided on the FAO website [6]. As no common definition has yet been agreed upon within the 

REDD+ monitoring system [7], a forest degradation area in this study is defined as an area affected by 

forest canopy disturbance in terms of gaps, logging roads and skid trails, and where no distinction is 

made between man-made and natural gaps. The complex nature of forest degradation patterns, quick 

re-growth, and the frequent cloud cover in tropical areas, have been identified as the main obstacles 

when mapping tropical forest disturbances.  

2. State-of-the-Art 

Early studies in the Amazon basin investigated the degradation mapping potential of Landsat 

imagery by applying visual interpretation [1,8]. Extensive studies in Central Africa used Landsat 

imagery from three decades to derive area estimates of land cover change by combining a systematic 

regional sampling scheme, based on high-spatial-resolution imagery with object-based unsupervised 

classification techniques [9] to track the progression of logging roads. Higher resolution data has been 

used to track skid trails and tree felling [10]. An overview of different remote sensing methods tested 

and validated for degradation mapping is provided in the REDD Source Book [7]. Basic investigation 

work in the Congo Basin on the temporal and spatial resolution needed to detect selective logging from 

remote sensing data has been performed in the Central African Republic [11]. In Cameroon and the 

Republic of Congo, there has been some degradation monitoring work, based on SAR imagery, e.g., 

from CosmoSkyMed data using a 3D approach [12], with promising results.  

For mapping degradation from optical data, different indicators or features can be used: simple 

spectral band values, vegetation indices, proximity to new roads (context analysis as also described  

in [13]), or more advanced tools, such as spectral mixture analysis and related indices, such as the 

Normalized Difference Fraction Index (NDFI) [14], or also different combinations of these features are 

possible. A test series, using per-pixel individual band features from Landsat data over Amazonia [15], 
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found that bands 3, 5, and 7 were the most successful. Vegetation and infrared indices were tested  

by [16] again in the Amazon basin for the use in mapping selective logging. The “Ratio-Vegetation 

Index” (RVI) is based on the near infrared (NIR) and red bands, and has been used in [17]. Other 

often-used indices are the Normalized Difference Vegetation Index (NDVI) and the Transformed 

Vegetation Index (TVI). The “Soil-Adjusted Vegetation Index” (SAVI) was developed as it was found 

that rain can sometimes result in a false change in NDVI [18,19]. In order to reduce the effects of 

atmospheric influences, the Global Environment Monitoring Index (GEMI) has been created [18]. 

Similarly, Normalized Difference Infrared Indices (NDIIs) have also been used for vegetation studies 

and, as they are based on near and mid-infrared, these indices are less sensitive to atmospheric 

influences [20]. Similar tests have been performed for hyperspectral data from HYPERION 

(Hyperspectral Imager) and ALI (Advanced Land Imager) sensors by [21]. Different bands and 

vegetation indices of the CHRIS sensor have been investigated for their correlation with above ground 

biomass in the Amazon [22]. Promising results were achieved by deriving cover-type fraction images 

using Spectral Mixture Analysis (SMA) [23]. In subsequent studies, the SMA fraction images were 

combined with contextual analysis, which takes into account that logging is spatially bound to either 

logging decks [14] or skid trails [24]. The Normalized Difference Fraction Index (NDFI) was  

proposed [24] as a spectral index designed to indicate the intensity of degradation in one band. This 

index was modified [25] to allow usage even if no non-photosynthetic vegetation endmember can be 

found (mNDFI). In addition, there have been several attempts to map the world’s intact forest 

landscapes on a global scale. Some of these approaches use expert knowledge and geographic metrics, 

such as human population density and roads, (e.g., [26]), while another recent study is based on Landsat 

data [5] to perform this task by visual image interpretation. 

Aside from the literature with specific regard to tropical forest monitoring from high-resolution data, 

there is a wide range of studies dealing with time series analysis in general. We want to review only 

those dealing with forest monitoring, based on time series analysis. The first group of studies is based on 

medium resolution optical data, such as MODIS, MERIS, or SPOT VEGETATION data. There are 

studies on specific tropical areas: e.g., monitoring of forest changes in Borneo [27], drought forecasting 

in Somalia [28], or mapping selective logging activities in Brazil [29]. Similar work has also been done 

in non-tropical areas, e.g., mapping of insect defoliation from MODIS time series data in Norway [30] or 

forest disturbance detection in Northern Maine [31]. The second group consists of studies involving 

high-resolution time series data, as done in the present study. With regard to tropical forest monitoring, a 

supervised classification approach was followed in Indonesia [32]: individual epochs were classified and 

the changes in terms of tree cover were classified. Considerable thematic developments and mapping 

work was done using a denser time series (bi-annual to annual) [33–35]. The temporal segmentation 

algorithm developments are based on Landsat time series data and are implemented in the “LandTrendr” 

software [35]. A similar approach, called VCT (vegetation change tracker), was developed and applied 

on biennial Landsat data [36]. Another study on Landsat data for forest change and disturbance mapping 

has been done by [37]. They used very dense time-series data, i.e., between four and eleven images per 

year, for the analysis. Their study site is located in Alabama, USA, which makes phenological 

differences within one year more important than in the tropical areas. A similar data situation was also 

used for forest disturbance detection, done by [38], for a study site in the bordering area of South 

Carolina and Georgia. They employed over 60 images acquired from 2001 to 2004.  
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The objective of this study is to bring together the already existing methodological developments on 

time series analysis from medium- and high-resolution data, and to apply them to forest degradation 

monitoring in tropical regions in an operational mapping scenario. The main challenges are: the 

atmospheric conditions in the Tropics, the fast regrowth of vegetation after selective logging, the 

small-structured logging patterns, different logging practices, and very limited or missing field 

information in these tropical developing countries.  

3. Data and Study Sites 

Our approach to mapping forest degradation based on time series data was tested in two tropical 

countries in the Congo Basin within the project REDDAf (Reducing Emissions from Deforestation and 

Degradation in Africa, EC FP7) [28]. The first study site is located in Cameroon. For this study site, all 

the methodological developments, training, and also the derivation of the typical spectral behavior 

were done. The second study site is located in the Central African Republic, where the methods 

developed in Cameroon have been applied. The Cameroon site is characterized by dense moist forest, 

while the Central African Republic study site is partly situated in the transition zone to savanna 

woodland. The location of the two study sites is shown in Figure 1.  

The first study site comprises the hilly terrain in the Eastern Province of Cameroon, where selective 

logging is performed by a certified concessionaire. The area of the study site is 6,356 km2. According 

to the world forestry atlas [39], more than half of the area is allocated to concessions, which means 

these areas are typically subject to selective logging. Four VHR (Very High Resolution, i.e., pixel size 

of 1 m or less) image subsets were ordered for training and verification.  

Figure 1. Location of the two study sites in Cameroon and Central African Republic with a 

Congo Basin vegetation types map as background [40]. The areas marked in red represent 

the study sites.  

 

The second study site covers 16,702 km2 and is located in the Central African Republic (CAR). It 

shows degradation patterns, mainly in the southern part (dense humid forest). The area is mostly flat. 
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For the time series, Landsat data was used. For Cameroon, a period of twelve years was analysed 

(2000–2012). The data for CAR covers the epoch from 2001 to 2011. For training and accuracy 

assessment purposes, in Cameroon, four VHR sub-scenes were acquired. For CAR, also four, but 

smaller, VHR image subsets are available, in this case only used for accuracy assessment. A summary 

of the data sets used in this study is given in Table 1. 

Table 1. Imagery used for the two study sites in Cameroon and Central African Republic (CAR).  

Sensor Acquisition Date Extent Used for 

Test Area Cameroon 

Landsat ETM+ 5 December 2000 

6,356 km2 Time series mapping 

Landsat ETM+ 25 January 2002 

Landsat ETM+ 27 December 2002 

Landsat SLC-off 7 April 2005 

Landsat SLC-off 20 January 2006 

Landsat SLC-off 7 January 2007 

Landsat SLC-off 25 December 2007 

Landsat SLC-off 27 December 2008 

Landsat SLC-off 30 December 2009 

Landsat SLC-off 17 December 2010 

Landsat SLC-off 18 January 2011 

Landsat SLC-off 26 April 2012 

Quickbird 27 November 2007 6.2 × 5.7 km 

Training and accuracy assessment 
Quickbird 30 May 2008 8 × 11.2 km 

Quickbird 2 December 2010 5 × 5 km 

Worldview-2 12 June 2012 8.5 × 11.7 km 

Test Area CAR 

Landsat ETM+ 9 February 2001 

16,702 km2 Time series mapping 

Landsat ETM+ 1 April 2002 

Landsat ETM+ 15 February 2003 

Landsat SLC-off 1 January 2004 

Landsat SLC-off 19 November 2005 

Landsat SLC-off 7 February 2006 

Landsat SLC-off 9 January 2007 

Landsat SLC-off 27 December 2007 

Landsat SLC-off 29 December 2008 

Landsat SLC-off 30 November 2009 

Landsat SLC-off 6 December 2011 

Worldview 6 January 2011 5 × 5 km 

Accuracy assessment 
Quickbird 4 March 2010 5 × 5 km 

Quickbird 26 March 2011 5 × 5 km 

Quickbird 18 March 2011 5 × 3.5 km 
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4. Methods 

The overall process is illustrated in Figure 2. The individual processing steps are explained in 

Sections 4.1 and 4.2; the results are described in Section 5. 

Figure 2. Overview of processing steps.  

 

4.1. Data Preprocessing and Feature Selection 

Necessary pre-processing steps include geometric and radiometric adjustment. Clearly, both 

geometric and radiometric congruence are needed if the spectral behavior over time is to be analyzed. 

In this study, only Landsat data is used to build the time series; therefore, no geometric adjustment was 

necessary between the Landsat scenes, as these data sets are already well-registered. However, in order 

to analyze the suitability of different features in comparison with ground truth data obtained from 

VHR data, an adjustment of the VHR images to the Landsat data was performed. This was done using 

tie points and an affine transformation. For radiometric calibration of all multi-temporal Landsat 

images, one image of the stack was selected as the master image. This master image should have the 

following properties: (1) free of haze; (2) mostly cloud-free; (3) and, in terms of image acquisition, 

close to the VHR image (if available). In Table 1, the master image for each of the study sites is 

printed in bold. All other images were adjusted relative to this master image using the radiometric 

adjustment procedure developed in the GSE FM REDD (GMES (Global Monitoring for the 

Environment and Security) Service Element on Forest Monitoring for REDD) project [41]. The 

method is based on pseudo-invariant features (PIFs); the details can be found in [42].  

The aim of the next processing step is to select the best suitable feature for classification of the time 

series data. This was done for the Cameroon study site only. To this end, features, which have been found 

useful in the literature, were generated from the Landsat data. Features in this context are defined as  

pixel-based information, e.g., the original bands’ gray values, as well as derived values, such as vegetation 

indices. The list of features is given in Table 2. In order to select the best feature, all features were 

correlated to the reference data from VHR image interpretation (see Figure 3a). The features from the 

Landsat scene from 17 December 2010, were used for this analysis, as this data set was acquired at nearly 

the same time as the VHR image used for interpretation (2 December 2010). The result of this step is an 
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analysis of the features’ suitability to map areas of selective logging by their correlation coefficient with the 

VHR interpretation result (see Table 2 in Section 5.1). In order to avoid residual geometric differences and 

to reduce noise, the reference data were aggregated to 90 × 90 m cells. Only those cells were used which 

carry valid data in the Landsat image (no stripes due to scan line corrector (SLC) failure) and are fully 

interpretable in the VHR image (no clouds). A subset of the raster with percentage of gap is shown in 

Figure 3b and resulted in 1,589 squares available for correlation all over the VHR image. 

Table 2. R2 values (all 90 m squares, n = 1,589) for percentage of gaps free of vegetation 

as obtained from the Very High Resolution (VHR) image (17 December 2010) in 

comparison to different features generated from Landsat (2 December 2010). 

Feature Correlation Landsat—VHR 2010 (R2) 

SMA 45 Soil fraction 0.56 

NDII7 (Normalized Difference Infrared Index with Landsat band 7) 0.55 

TVI (Transformed Vegetation Index) 0.52 

SAVI (Soil-Adjusted Vegetation Index) 0.47 

NDVI (Normalized Difference Vegetation Index) 0.47 

NDII5 (Normalized Difference Infrared Index with Landsat band 5) 0.35 

Band 3 (red) 0.30 

Band 5 (short wave infrared) 0.19 

Band 4 (near infrared) 0.07 

mNDFI (Modified Normalised Difference Fraction Index) 0.05 

RVI (Ratio-Vegetation Index) 0.00 

GEMI (Global Environment Monitoring Index) 0.00 

Figure 3. (a) Visual interpretation result; (b) 90 × 90 m aggregated visual interpretation 

result (percentage of gaps for interpretable areas) superimposed on Landsat SLC-off image 

(bands 432). 
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4.2. Multi-Temporal Classification 

Based on the visual interpretation of VHR images, the temporal behavior of degradation areas (with 

varying intensity of degradation), as well as of intact forests, were extracted. The results of this 

interpretation and extraction process are detailed in Section5.2. For these identified degradation areas, 

the spectral behavior was obtained from Landsat time-series data in the Cameroon study site. These 

real behavior curves were then grouped into typical behavior curves for three different degradation 

classes: strong degradation, weak degradation, and permanent degradation. In addition, areas of intact 

forest were also interpreted from the VHR image and based on that interpretation; three different types 

of intact forest were identified. All these six typical behavior curves were used as training data. This is 

a similar approach as used by [37] with the main difference that they had a much denser time series to 

build on. This dense time series allows the adjustment of the fit, which was not possible in our case 

with only one image per year. We had two reasons for using annual data only: first, in tropical areas, 

the phenology can usually be neglected and second, cloud cover is usually high preventing the 

acquisition of many usable images per year. In contrast to using training curves for classification, a 

decision tree model can also be employed, as was done by [36] classify forest disturbances. 

Figure 4 illustrates the classification concept exemplarily for class “strong degradation” and a 

simplified annual update only. This figure is a schematic illustration and does not contain real data. 

The x-axis in Figure 4 shows the timeline with Tx being the acquisition date of the first image and 

theoretical annually repeated image acquisition. In reality, there are of course shorter and longer time 

intervals between the image acquisition dates. The y-axis shows the spectral response, which can be a 

single band, an index or whatever feature is selected (in our case soil fraction, see Section5.2). In order 

to keep Figure 4 generally valid, no units are given for the y-axis. The colored lines at the top show a 

typical behavior curve for class “strong degradation” at each image acquisition point in time. For the 

classification, the behavior of each pixel in the time series data (example: black line at the bottom of 

Figure 4) is compared to these typical behavior curves and the residuals in terms of least squares are 

calculated to each of the typical behavior curves. Based on the minimal residuals, each pixel is 

classified to one point in time. The classification is performed using a minimum distance classifier. 

The class which shows the smallest difference to the given typical curves at each image acquisition 

point in time (best fitting curve) is assigned. The example pixel in Figure 4 shows the best fit 

(minimum spectral distance) with the typical curve at the time Tx+14 and is, therefore, assigned to this 

class. The method is working exactly as if there was an image with y bands, y being the number of 

image acquisition points in time available.  

An additional dimension is added to the classification, as there is not only the class “strong 

degradation”, but five other classes: two more degradation classes and three intact forest classes. For 

each of them, the minimum distance has to be calculated for each image acquisition point in time. In 

our Cameroon study site with 12 available images, this added up to a sum of 72 classes (6 × 12). In a 

post-classification step, the classes were recorded to “degraded” and “non-degraded” for each image 

acquisition point in time leading to 24 classes. All pixels classified as “degraded” were then used as 

initial indicator pixels for each image acquisition point in time. In a next step, a context-analysis was 

performed. The roads and waterways were digitized and buffered by 1 km and non-forest areas, such 

as settlements, were buffered by 3 km. These distances were obtained from VHR data by analyzing the 
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largest distance between a visible degradation feature (e.g., a gap) and the nearest logging road. Only 

pixels lying within these buffers were kept as indicator pixels. Finally, aggregation of the indicator 

pixels to larger areas was applied to facilitate linking of the “activity data” to emission factors. The 

aggregation procedure is based on the ArcGIS aggregation tool “Aggregate”. The specific parameters 

were set individually for Cameroon and CAR, as different logging practices are used. In Cameroon, a 

minimum mapping unit of 5 ha and an aggregation distance of 300 m was applied. The aggregation 

distance means that all indicator pixels with a maximum distance of 300 m between them were 

aggregated to larger areas. The minimum mapping unit determines, that only those areas were kept, 

which are above the minimum size of 5 ha. Equally, remaining holes were only retained if they were 

larger than 5 ha. For CAR, the aggregation distance had to be adjusted due to different logging 

practices and based on visual interpretation of the imagery was set to 800 m. The minimum mapping 

unit was kept the same as in Cameroon, i.e., 5 ha. Aggregation was performed iteratively: starting with 

the detections from the first image acquisition point in time, the aggregated result was then combined 

with the detections from the next image acquisition point in time and again an aggregation was 

performed. This is necessary as roads are often built in one year, but logging activity might only take 

place in the following years. Compared to work done in temperate forests, where, e.g., a forest 

disturbance is only classified as such if it there are at least three consecutive years with a difference 

above a specific threshold [38], such an approach was not possible in our tropical study areas, as the 

disturbance is often already lost after two or three years due to fast re-growth. 

Figure 4. Schematically classification system for the multi-temporal stack of features (e.g., 

soil fraction). The soil fraction behavior of one example pixel (bottom: black line) is 

compared to typical behavior of degraded areas (top: colored lines) and classified to the 

best fitting line. 

 

5. Results and Discussion 

This section is divided into three parts: first, the results of the feature selection process; second, 

findings in terms of temporal spectral behavior after the logging event; and third, the final  

multi-temporal classification results including accuracy assessment for both study sites. 

i.e. best fit 
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5.1. Feature Selection Results 

The feature selection results are shown in Table 2. The highest correlation was achieved with  

SMA soil fraction leading to an R2 of 0.56, followed by the NDII7 and the TVI. In contrast to the 

literature [18], the use of SAVI instead of NDVI did not improve the correlation coefficient: both 

showed the same correlation coefficient of 0.47. The GEMI did not show any correlation with gaps, 

although it has been mentioned to be well suitable in the Amazon region [18]. The reason might be 

that this indicator is more sensitive to detecting re-vegetation than bare soil. In addition, the indicator 

mNDFI was calculated [25] but did not show a high correlation. In accordance with the literature, the 

TVI, NDII7, and SMA soil fraction features performed well in our analysis (compare Table 2). Our 

previous studies in the neighboring Republic of Congo (RoC) led to a similar ranking of features, 

although with generally higher R2 values (best result SMA soil fraction to gaps: 0.62). The reason for 

the lower correlation coefficients in Cameroon compared to the investigation performed in RoC can be 

found in the comparably smaller patterns of degradation in this certified logging concession. Based on 

these results, the SMA fraction soil was used in the multi-temporal classification. 

5.2. Typical Temporal Curves of Degradation Patterns 

The second result of this study is an improved understanding of the temporal behavior of the 

degradation areas after logging activities. For this purpose, all VHR images in Cameroon were 

interpreted and the mean soil fraction value for degradation patches over time were plotted (Figure 5). 

In order to complement the current findings, some results from our previous work in RoC are given 

here, as the results have not yet been published. In RoC, we found that the degradation signal  

(soil fraction) is lost within three to four years. Further, re-vegetation can be detected within the green 

vegetation fraction for longer time periods after the logging event. Immediately after the logging event, 

re-vegetation is sparse and therefore shows low GV fraction. After this initial re-vegetation period, 

approximately 2–10 years after the logging event, the GV fraction has been observed to be 

significantly above the average percentage of GV for intact forest.  

In the Cameroon study site, with its smaller structured degradation patterns, the soil fraction signals 

are not as persistent over time as has been observed in RoC. Using the three VHR reference data sets 

together, complemented by the degradation areas selected from Landsat data in the very beginning of 

the time series, it can be seen that the elevated soil fraction is only visible for about two years in the 

Landsat time series (Figure 5). After that, the signal becomes blurred and reliable classification does 

not seem possible anymore, based solely on the soil fraction image (see Figure 5). Similar time frames 

have already been found in many studies in Latin America [43,44].  

With regard to the behavior of the GV fraction, the same peak was found in the Cameroon study 

site as in RoC, but only after five years compared to about two to three years in RoC. These 

observations show that apparently re-vegetation has in general a clear peak after degradation activities, 

but the time of occurrence varies with logging practice or forest types. In the current classification 

scheme, the GV fraction is not yet integrated, as annual image coverage is available.  
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Figure 5. Performance of the temporal behavior of mean soil fraction values of 

degradation areas from different years in the Cameroon study site.  

 

5.3. Results of Multi-Temporal Classification 

Following the classification method described in Section 4.2, both test areas were classified into 

undegraded and degraded forest. Nonforest areas were masked out, the forest—nonforest classification 

was done by other consortium partners in the REDDAf project (methods and results given in [45]). 

The mapping result for the whole CAR study site is given in Figure 6; a detailed view is shown in 

Figure 7, where the typical selective logging pattern is visible in the Landsat image (left) and the 

resulting degradation map is shown on the right side. Accuracy of this result was assessed by means of 

systematic sampling in the areas, where VHR data is available. For each of the VHR image subsets, a 

regular grid of sampling points was generated. To calculate the number of sampling points 

respectively, the sampling distance for the regular grid, the following formula [46] was applied: 

݊௛ ൌ ௛݌ ሺଵି௣೓ ሻߪ௛ଶ  

where nh is the number of samples per class; ph is estimated error rate; σh is accepted absolute  

standard error. 

With an estimated error rate of 25% and an accepted absolute standard error of 2.5%, the minimum 

number of samples per class is 300 (and for both classes the total minimum number of sampling points 

is n = 600). In Cameroon, with a larger area covered by VHR data, more than 1,000 sample points 

could be interpreted. In CAR, the minimum number of sampling points was achieved, although large 

parts of the area covered by VHR data were located in the non-forest area. This is because, in CAR, 

the VHR image subsets were initially ordered for the accuracy assessment of a forest map.  
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Figure 6. Final degradation map for CAR study site. The different colors indicate the time 

of (first) degradation occurrence.  
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Figure 7. Detail of CAR result: (left) Landsat image 2001, (right) Landsat image 2001 

superimposed with nonforest areas (white) and forest areas affected by degradation (red). 

 

 

Two different problems had to be taken into account in the visual interpretation of the sampling 

points: (a) the geometric accuracy and (b) the acquisition data of the VHR data. With regard to the first 

issue, a buffer of approximately 30 m (one Landsat pixel) was used to assess the degradation, i.e., if 
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there is degradation visible within this buffer around the sample point in the VHR data, the sample 

point is labeled as “degraded”. For the proper validation of the results one has to consider that the 

acquisition date of the VHR image plays a decisive role and this aspect has to be taken into account. 

The time difference between the VHR scene and input image (Landsat) could create a false validation; 

for example, the sample points from the VHR image of 4 March 2010, in CAR only show the 

degradation up to this point in time (i.e., last Landsat observation before that time is 30 November 

2009). Thus, the validator can only validate the degradation map up to this time. If degradation 

mapping results are integrated from after this time, some points might falsely appear as commission 

error, because even though the map is correct the degradation has taken place after the acquisition date 

of the VHR image.  

In both study sites, the results show a very good overall accuracy of more than 87%  

(see Tables 3 and 4). The similar accuracy values are even more remarkable given that the system was 

developed in Cameroon and transferred to CAR. This proves the applicability and transferability of the 

developed system. The commission error (user’s accuracy of class “degradation”) is the main source of 

error. Two reasons could be identified for this error: (a) occurrence of swamp forest and (b) natural 

variances in the forest canopy. Swamp forests show—depending on the water level and/or  

season—varying spectral properties, which can be mistaken as degradation indicators. Due to the 

context analysis, which also includes waterways as possible routes for timber transport, these indicator 

pixels are kept and therefore wrongly included in the degradation map. In the verification areas in 

CAR, 46 sample points (7.6%) are located in swamp forest areas and most of them (37) are wrongly 

classified as degradation. In addition, natural variations in the spectral reflectance of the canopy, such 

as insect infestations, funghii, or the simple coincidence of a cluster of trees being temporarily leafless 

at the same time can also lead to minor commission errors.  

Table 3. Confusion matrix for Cameroon degradation map, 1,022 label points used. 

  Reference 

Classification 

 Undegraded Forest Degraded Forest Total User’s Accuracy 

Undegraded forest 697 25 722 96.5% 

Degraded forest 100 200 300 66.7% 

Total 797 225 1,022  

Producer’s accuracy 87.5% 88.9%  
Overall accuracy: 87.8% 

Kappa coefficient: 0.68 

Table 4. Confusion matrix for CAR degradation map, 603 label points used. 

  Reference 

Classification 

 Undegraded Forest Degraded Forest Total User’s Accuracy 

Undegraded forest 421 24 445 94.6% 

Degraded forest 44 114 158 72.2% 

Total 465 138 603  

Producer’s accuracy 90.5% 82.6%  
Overall accuracy: 88.7% 

Kappa coefficient: 0.7 
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Figure 8. Final degradation map for the Cameroon study site in comparison with the IFL 

map [5]. The different colors indicate the time of degradation occurrence mapped by our 

approach, the black hatched area represent the areas classified as IFL.  

 

This study is focused on forest degradation due to selective logging, as selective logging is the 

primary degradation driver in the given study sites. It is possible that degradation due to shifting 

cultivation might also have been detected to a minor extent in the frame of the classification process. 

There is a clear difference of our approach to common deforestation mapping, as most of the 

degradation areas still fall in the forest class according to most of the common forest definitions 
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(minimum mapping unit, minimum crown cover, etc.) Exceptions to this rule are probably new big 

roads and large logging decks, which can be considered as deforestation.  

In comparison to global attempts such as [5], the results of this study are much more detailed, both 

in terms of spatial detail (MMU), as well as in terms of thematic detail because the time of degradation 

is taken into account. A comparison with the intact forest land map (IFL) from [5] is shown in  

Figure 8. The black hatch shows the IFL areas according to [5], the colored patches are the detected 

degradation areas classified in this study. Aside from the spatial and thematic differences, there is also 

a difference in the time of data validity, which can be seen in the figure: most of the degradation 

detected by our approach for the year 2000 (red color) are also outside the IFL, which is based on 

imagery from 1990 and 2000. This means, the IFL map covers all forest landscapes, which still have 

been intact in 2000. More recent degradation appears in areas which still have been classified as IFL in 

2000. A good agreement between both maps can be found in the south-western corner, where both IFL 

and our approach did not detect signs of degradation. The comparison in the CAR study site shows a 

similar result.  

When the current results of the Cameroon study site are compared with the results of the 3D 

analysis based on Cosmo SkyMed (CSK) data [12], there is again a large difference in spatial detail. 

As with the VHR CSK data and the 3D approach, much smaller disturbances could be detected, but 

only for one point in time. In terms of operational applicability and costs, currently, the CSK data is 

still very expensive and has a small footprint. This means many CSK scenes would be needed to cover 

larger areas and, thus, our approach is currently the more economical alternative. On the other hand, 

the main drawback using optical data in the tropics is the risk of clouds and haze preventing the 

acquisition of high-quality imagery which is needed in our approach.  

6. Conclusions and Outlook 

The method presented in this study has been tested for mapping areas affected by selective logging 

in the Congo Basin. The method classifies time series data with annual coverage by applying typical 

curves of spectral behavior after logging events. These typical spectral curves have been obtained from 

visual interpretation of VHR imagery. The pixel-based results of this multi-temporal classification are 

then refined by context analysis and aggregated to larger areas of degradation. The results show similar 

outcomes in both the Cameroon and CAR study sites with overall accuracies around 87%. The main 

source of error is the commission error of degraded forest, i.e., natural variations in the spectral 

behavior of the canopy are mistaken as signals for degradation. For operational projects in the frame of 

REDD, knowledge of the extent to which forests have been degraded is crucial, as the carbon content 

is typically much lower than for pristine (undisturbed) forest. In comparison with an existing global 

map of intact forest land, there are the obvious differences in spatial detail due to different minimum 

mapping units and the time of data acquisition, but, generally, there is a good agreement.  

Further work will include the test of transfer to other regions, the integration of different, possibly 

higher-resolution data sets and the integration of the GV fraction as an indicator for re-vegetation, 

especially if an annual coverage is not feasible. The final processing step will be the integration of this 

activity data map with emission factors to achieve carbon estimates, estimates which are ultimately 

required in the REDD reporting.  
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