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Abstract: The frequency and severity of forest fires, coupled with changes in spatial and 

temporal precipitation and temperature patterns, are likely to severely affect the 

characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, 

are also an ecological factor in how forest ecosystems form and function, as they affect the 

rate and characteristics of tree recruitment. A better understanding of fire regimes and forest 

recovery patterns in different environmental and climatic conditions will improve the 

management of sustainable forests by facilitating the process of forest resilience. Remote 

sensing has been identified as an effective tool for preventing and monitoring forest fires, as 

well as being a potential tool for understanding how forest ecosystems respond to them. 

However, a number of challenges remain before remote sensing practitioners will be able to 

better understand the effects of forest fires and how vegetation responds afterward. This 

article attempts to provide a comprehensive review of current research with respect to 

remotely sensed data and methods used to model post-fire effects and forest recovery 

patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of 

post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the 

gaps in both field data and remotely sensed data, but also the complexity of far-northern fire 

regimes, climatic conditions and environmental conditions. We expect that the integration of 

different remotely sensed data coupled with field campaigns can provide an important data 

source to support the monitoring of post-fire effects and forest recovery patterns. 

Additionally, the variation and stratification of pre- and post-fire vegetation and 

environmental conditions should be considered to achieve a reasonable, operational model 

for monitoring post-fire effects and forest patterns in boreal regions.  
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1. Introduction  

Forests are subject to a variety of disturbances that are themselves strongly influenced by climate 

change and human activities [1]. Forest disturbance by fires is a major challenge for forest management 

in various ecosystems, due to the loss of lives and infrastructure, greenhouse gas emissions, soil 

degradation, soil erosion and the destruction of species, biomass and biodiversity [1–4]. On the other 

hand, forest fires constitute one major ecological process, especially during the initial stages of forest 

regeneration, which positively influences rapid growth in young trees, early and abundant seed 

germination and the dispersal of seeds [5]. Wildfire is also the most important factor controlling forest 

age structure, species composition, forming landscape pattern and influencing energy flows and 

biogeochemical cycles [6]. Forest fires and fire regimes, however, are severely underreported at a 

global and regional scale. Only 78 countries responding to fire effect surveys, representing 63 percent 

of the global forest area, reported that 60 million hectares of land, including forests and other wooded 

land, were burned per year throughout 2003–2007 [1]. According to the Food and Agriculture 

Organization [1], additional information is needed on the dynamics of fire in ecological forests, their 

direct and underlying causes and impacts and the desired long-term condition of ecosystems, such as 

forest structure and the composition and health of species.  

The boreal forest is the largest forest biome and accounts for one third of global forest cover [7] 

across Scandinavia, Russia, Alaska and northern Canada. Boreal regions store more carbon in trees, 

soil and peat than any other terrestrial ecosystem [6], so they contribute largely to forest products 

consumed by human populations and play a significant role in controlling global climate. These forests 

have been influenced and shaped by natural disturbances, such as fires, extreme weather and insect 

infestations [8–11]; of these, wildland fire is the most widespread, and yet, it is an important, natural 

part of maintaining boreal forest ecosystems [7,12]. However, the ecological effects of boreal forest 

fires are highly variable, difficult to predict and are influenced by fire regimes, vegetation cover, 

permafrost condition, topography, soil properties and local climate [7,13–15]. An example of this is 

the potential shift in dominant evergreen conifer forests to deciduous forests in North America due to 

high fire severity and frequency in the last two decades [16]. Such disturbance-driven changes have 

potential feedbacks that may exacerbate or mitigate regional and global climate change [12,16,17], as 

well as influence carbon cycle [18] and forest biodiversity [19]. Monitoring both the impact of boreal 

fires and how boreal forests respond to changing environmental conditions is therefore a key element 

of forecasting and mitigating the negative effects of global change. 

Remote sensing techniques for forest fire prevention, assessment and monitoring have been 

developing since the mid-1980s [20]. These techniques have been employed to address three different 

temporal fire-effects phases: pre-fire conditions, active fire characteristics and post-fire ecosystem 

responses [20–23]. Numerous algorithms and approaches for the first two phases have been  

developed [24–33]; little effort, however, has yet been dedicated to assessing suitable remote sensing 
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data and methods over the widely spatial and temporal ranges of post-fire-affected environments, 

particularly in characterizing and evaluating the patterns of how forest ecosystems respond to  

fire disturbances [2,20,34].  

This paper reviews the methods and remotely sensed data used for modeling post-fire effects and 

forest recovery patterns, with a greater focus on examples of boreal forests, as well as the existing 

optical remote sensing data and methods that can be potentially applied to the aftermath of fires in this 

ecosystem. This paper will first examine the terminology and the ecological impacts of fire in 

controlling the recovery of post-fire boreal forest ecosystems, then will look at the recent remote 

sensing methods and data that have been applied in the literature for mapping the post-fire effects of 

burned areas and burn severity in boreal forest regions. It will also focus on remote sensing methods 

and data for modeling post-fire recovery patterns, including forest successional stages, forest structural 

attributes and the trajectory of forest regrowth following fire disturbance in boreal eco-regions. In each 

review section, this paper assesses the advantages and benefits of applying the remote sensing 

approach in monitoring post-fire boreal forests. Last, it examines existing remote sensing studies on 

post-fire effects and forest recovery patterns, which allows for the anticipation of some sources of 

uncertainties and limitations of such research, then suggests opportunities and future directions of 

monitoring post-fire boreal forests through the use of remote sensing. 

2. Forest Fire/Forest Pattern Terminology and Review Method 

2.1. Forest Fire and Forest Pattern Terminology 

Climate condition, forest fuels, ignition agents, topography and human activities are five major 

factors that strongly influence forest fire activity and forest dynamics [35–38]. Forest fires, in turn, 

impact climate conditions, plant ecosystems and human life [2,3,39], and vegetation responds and 

adapts to changes in the environment by establishing an appropriate structure and composition as a 

consequence [40–43]. As with any endeavor involving different disciplines, an understanding of the 

terminology used throughout the study of the process and phenomenon of post-fire effects and forest 

patterns is essential within this review. 

Within the fire science community, there are a variety of terms used to describe the characteristics of 

fire and its effects. The current review is associated with some of these terms: pre-fire environment, fire 

environment, active fire, post-fire environment, fire regimes defined by fire intensity, fire and burn 

severity, season of burn, type of fire and burned size and shape. Here, the review follows Jain et al. [44] , 

Key and Benson [45], Lentile et al. [20], French et al. [21] and Veraverbeke et al. [46], who accepted 

these terms as follows (Table 1, [9,20,21,44,47–83]). A schematic representation of the fire-related 

environment’s relationship and assessment of post-fire effects on a forest’s condition is shown in 

Figure 1.  
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Table 1. Definitions of fire-related environments and parameters used to measure  

fire/post-fire effects and forest patterns. When assessing post-fire environments, there are 

some fire characteristics, such as fire frequency and fire season, which are necessary to 

take into account in order to understand post-fire effects and forest patterns. 

Fire-Related 

Environment 
Parameter Definition of Parameter 

Selected 

Study/Reference 

Pre-environment - The environmental characteristics of a site before the fire. [21,44,47–50] 

Fire environment: The 

environmental 

characteristics of a site 

during a fire. This is the 

state involved with active 

fire. 

Fire 

frequency/fire 

recurrence 

Number of fires per unit of time in a specified area. This is the 

temporal aspect of fire regimes. 
[51–55] 

Fire intensity 
A description of fire behavior quantified by energy release, such 

as temperature and heat from burning organic matter. 
[16,20,56–58] 

Post-environment:  

The environmental 

characteristics of a site 

after a fire, including both  

short- and  

long-term effects. 

Burned area 

and fire 

perimeter 

The measurement of post-fire effects in terms of dimension/area; 

affected area by fire or spatial extent of fire effect. 
[20,59–65] 

Fire severity 

The degree of environmental change caused directly by fire 

assessing immediately after a fire event (an initial assessment). 

This is the short-term severity assessment. 

[16,20,58,66–69] 

Burn severity 

The degree of environmental change caused by fire, assessed by 

a certain amount of time elapsed after a fire (an extended 

assessment). This includes both short- (e.g., pre-recovery phase 

after fire) and long-term post-fire severity (e.g., the observed 

changes in the characteristics of vegetation regrowth after fire, 

such as re-sprouting or regeneration); frequently used by remote 

sensing applications. 

[20,21,46,69–77] 

 Forest structure 

Post-fire arrangement and distribution of forest components (e.g., 

seedling density, tree height, tree diameter,  

Leaf Area Index) 

[74,78,79] 

 
Forest 

composition 
Post-fire characteristics of species richness and abundance [78,80] 

 Forest function Post-fire production of organic matter by the recovery forest. [78,81] 

 
Forest 

succession 
Different stages of vegetation recovery following fires. [9,82,83] 

As an agent of change to accelerate the modification of vegetation landscape, forest fires control 

both environments for vegetation establishment and vegetation succession [82,84,85]. In coupling 

regional climates with ecotope conditions, fire characteristics determine post-fire forest structure, 

composition and function [82,86,87] (Table 1). The spatial arrangement and distribution of forest 

components, such as the height of different canopies and tree diameter, define forest structure. Forest 

composition, however, is characterized by species richness and abundance as a description of forest 

biodiversity. Finally, forest function refers to the production of organic matter [78]. According to 

Franklin et al. [88] and Pommerening [79], the above structural, compositional and functional 

attributes of a forest are interdependent. For example, species composition and abundance can be 

surrogates of structural and functional attributes, such as canopy layering, decomposition and nutrient 
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cycling processes. This review uses a general term of forest pattern to represent the response of a 

forest ecosystem to disturbance by fire and climate change in which the forest pattern is formed by the 

forest structure and forest composition and is measured by the distribution, arrangement and number of 

different species or forest types after the disturbances. Furthermore, throughout this review, vegetation 

recovery, regrowth, regeneration and succession are occasionally used interchangeably. They all refer 

to the recovery process of a forest stand from a non-stand replacement fire disturbance or the 

reestablishment of a new forest stand from a stand-clearing fire disturbance. More specifically, forest 

succession is mainly observed in a broader context of forest ecosystem responses and that refers to the 

different stages of vegetation recovery post-disturbances in this review. Examples of some possible 

stages of forest recovery following fire disturbance are bare land, grass dominance species, forest tree 

germination and seedling and young, mature and old forest stands.  

Figure 1. Schematic representation of fire-related environments and assessment of  

post-fire effects on forest conditions concerning this comprehensive review. This review 

will particularly focus on studies of post-fire environments with respect to remote  

sensing approaches. 

  

Depending on the forest composition and structure, species ecology and climate and ecotope 

condition, boreal forest fire regimes influence post-fire recovery patterns (Figures 1 and 2). An 

example of this is how North American boreal conifer forests have gradually shifted to broadleaf 

deciduous forests as a result of high fire severity [16]. Regarding fire frequency, Sofronov and 

Volokitina [19] assumed that an absence of fires during a very long period may lead to a gradual 

degradation of forest vegetation, due to the increase in the moss and duff layer, which would 

subsequently exacerbate poor soil conditions. Rare fire frequency approximately once in a century can 

act as a natural factor on boreal forests that allows the existence of stable forest vegetation and 

relatively high biodiversity of plants in boreal forest ecosystems; high and very high fire frequency, 

occurring once in 20–30 yr and 3–5 yr, respectively, are likely to act as a destructive factor [19]. High 

fire frequency may lead to the replacement of the forest vegetation by nonarboreal vegetation, such as 
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meadow, shrub or tundra, or even take fifty to hundreds years to recover to pre-fire conditions [9,89]. 

Post-fire soil properties, soil organic layer depth and permafrost-related soil moisture are also major 

factors that help determine the patterns of boreal forest recovery. Kasischke et al. [90] found that  

post-fire black spruce seedling density positively correlated with the organic layer depth remaining 

after the fire, while the depth of organic layers negatively affected aspen recruitment and growth. 

These patterns of tree recruitment in post-fire boreal forests are further affected by soil moisture [90], 

soil burn severity and pre-fire spruce and aspen basal area and drainage [74]. The review based on 

those boreal fire characteristics, ecological factors and post-fire tree recruitment patterns (Figure 2) 

discusses some challenges and research opportunities using remote sensing data and methods for 

monitoring post-fire boreal forests. This review will therefore focus only on the previous studies of 

post-fire environments with respect to applications for remote sensing on mapping post-fire effects and 

forest recovery patterns. 

Figure 2. A brief schematic diagram of the relationships between ecological factors, fire 

effects and their influence on the recovery of post-fire boreal forests in permafrost 

ecosystems. Post-fire forest recovery patterns can be defined by factors directly available 

to the plant, such as light (e.g., solar radiation), water (e.g., soil moisture) and mechanical 

factors (e.g., fire regime). The review will focus on the interrelationship between those 

drivers in order to discuss the challenges and research opportunities in monitoring post-fire 

boreal forests using remote sensing.  

 

2.2. Review Methodology 

Some keywords were defined, such as burned area mapping, burn severity, post-fire, boreal forest, 

remote sensing and forest recovery, based on review objectives, fire- and forest-related environment 

terminology, remote sensing techniques and boreal forest regions. Consequently, more than 200 

articles published from 1989 to 2013 were chosen after thorough searches in several electronic 

databases, including ScienceDirect, Scopus, SpringerLink, GoogleTM Scholar and Web of Science. 

Almost all of the articles that were searched were published in journals related to remote sensing  

Local climate; topography 

Fire regimes: Fire frequency, fire 
type, fire intensity, fire season, fire 

severity, fire extent 

Forest recovery 
pattern/tree recruitment 

Solar radiation; 
hydrological regime 

Permafrost (active layer 
depth, continuous or 

discontinuous) 

Pre-fire forest: Composition, 
forest structure, species ecology 

Burn severity 
Soil texture/soil properties 

Soil organic layer depth 

Temperature regime of soil 
(including soil surface 

temperature) 
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(116 articles), as well as forest ecology and wildland fires (90 articles). Very few papers from 

conference proceedings have been taken into account. Each article was examined and catalogued by 

burned area and burn severity mapping, forest succession monitoring, forest structural attributes 

monitoring and trajectory of post-fire forest recovery. In each topic, we also grouped papers that 

examined similar remote sensing methods and data, as well as studies in different boreal zones, such as 

Alaska, Canada and Siberia, in order to discuss the strengths and limitations of studies related to  

post-fire boreal forests using remote sensing. Even though several of these studies were not conducted 

in post-fire boreal zones, they are included in this review, because their remote sensing techniques can 

be potentially applied to post-fire boreal forest research. Along with general conclusions and 

recommendations in the last section of this review, specific advantages, limitations, research gaps and 

solutions for both post-fire effects in boreal forests and the monitoring of forest patterns using remote 

sensing can be found at the end of each reviewed section. 

3. Monitoring Post-Fire Effects and Forest Recovery Patterns Using Remote Sensing 

3.1. Burned Area Mapping  

3.1.1. Remote Sensing Data and Derived Products for Burned Area Mapping 

In studies of post-fire effects, burned area mapping is one of the most common uses of remote 

sensing and is very well documented at a local, regional and global level. It provides timely,  

cost-effective and spatially comprehensive views of both areas that have been affected by fire and their 

pattern of occurrence [20,91]. At local scales in boreal regions, high to moderate resolution sensors, 

such as Landsat Thematic Mapper and Enhance Thematic Mapper Plus (Landsat TM/ETM+) [92–94] 

and radar imagery [95,96] have been employed for mapping burned areas. On the other hand, medium 

to coarse satellite data have been commonly used for regional and global analyses of burned areas, 

including boreal regions (Tables 2 and 3, [61,63–65,93–123]). The National Oceanic and Atmospheric 

Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) images, for example, 

were mainly used as data for assessing the effects of fires during the 1990s and early 

2000s [61,65,100,108,110,113–115,117,118,120,124]. The Moderate Resolution Imaging 

Spectrometer (MODIS) [64,98,99,121,122,125–130] and the Systeme Pour I’Observation de la Terre 

Vegetation (SPOT VEGETATION) [101,110,112,116,131–133] have been widely used more recently 

for both detecting active fires and mapping burned scars due to their high quality of temporal and 

spectral resolution and the availability of data since 2000 and 1998, respectively. In addition to the 

processing of raw satellite data for burned areas, several products derived from burned areas at a 

global scale are available to users, including the Moderate Resolution Imaging Spectroradiometer 

global burned area (MODIS MCD)45A1 and MCD64A1 products [102,123,126,127], Global Fire 

Emissions Database (GFED) [103,134], the global vegetation burned area product 2000–2007 

(L3JRC) [104,131], the Global Land Products for Carbon Model Assimilation (GLOBCARBON) 

[105,135], the Global Monitoring for Environment and Security integrating Earth Observation related 

to Land Cover and Vegetation (GEOLAND)-2 [106,136] and the Global Burnt Surface (GBS) 

product [104,137] (Table 2). 
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Table 2. Examples of optical remote sensing data for reconstructing and monitoring 

burned areas in boreal forest regions. All the derived products of burned areas are covered 

globally and can be downloaded from the web resources. The raw satellite data, such as 

Systeme Pour I’Observation de la Terre (SPOT), Landsat, Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR), 

require preprocessing and applying burn algorithms to derive burned areas. TM, Thematic 

Mapper; ETM+, Enhance Thematic Mapper Plus; ASTER, Advanced Spaceborne Thermal 

Emission and Reflection Radiometer; LAC, Local Area Coverage; LTDR, Long-Term 

Data Record; PAL, Pathfinder Land; GFED, Global Fire Emissions Database; NOAA, 

National Oceanic and Atmospheric Administration. 

Satellite/ 

Derived Product 
Sensor 

Temporal 

Coverage 

Temporal 

Resolution 

Spatial  

Resolution 

Spectral  

Bands (µm) 

Web  

Resources 

SPOT HRV 1986–present 26 days 2.5–20 m VIS–MIR (0.55–1.66) - 

Landsat 
MSS, TM,  

ETM+, 8 
1972–present 16 days 15–120 m 

VIS–MIR (0.44–2.2; 

TIR (10.9,12) 
[94] 

Terra ASTER 2000–present 16 days 15–90 m 
VIS–MIR (0.56–2.34); 

TIR (8.3,−11.3) 
[97] 

Terra and Aqua MODIS 2000–present Daily 
250 m, 500 m.  

1 km 

VIS–MIR (19 bands); 

TIR (17 bands) 
[98,99] 

NOAA 
AVHRR (LAC/HRPT,  

GAC, LTDR, PAL) 
1978–present Daily 

1.1 km, 4 km,  

5 km, 8 km 

VIS–MIR  

(0.63–3.74); TIR (11,12) 
[100] 

SPOT 
SPOT  

VEGETATION 
1998–present Daily 1.15 km VIS–MIR (0.55–1.62) [101] 

MODIS active fire 
MODIS (MOD14, 

MYD14) 
2000–present 

5 min, daily, 8 

day 
1 km - [98,99] 

MODIS burned 

area product 

MODIS (MCD45A1, 

MCD64A1) 
2000–present Monthly 500 m - [102] 

GFED 
MODIS 500, 

TRIM/VIRS, ATSR 
1995 to present 

Daily, monthly, 

annual 

0.25° (GFED4); 0.5° 

(GFED3) 
- [103] 

L3JRC SPOT VEGETATION 2000–2007 Daily 1 km - [104] 

GLOBCARBON 
SPOT VEGETATION, 

ATSR-2, AATSR 
1998–2007 Monthly 1 km - [105] 

GEOLAND-2 SPOT VEGETATION 1999–present 10 days 1 km - [106] 

GBS NOAA-AVHRR GAC 1982–1999 Weekly 8 km - [104] 

Currently, the Advanced Very High Resolution Radiometer (AVHRR) represents the only remote 

sensing dataset capable of reconstructing long-term burned areas (since 1978) for almost all forest 

regions [121]. Unfortunately AVHRR data, with their low spatial and spectral resolution, vary greatly 

in terms of radiometric stability, cloud cover, transmission problems and distortion among different 

regions and timelines [121]. Although Landsat TM/ETM+ data, which offers greater spectral, spatial 

and radiometric resolution than AVHRR, have been widely used for mapping burned areas [92,93,138], 

these data are not always available in most countries at a regional scale, in addition to the gap of data 

in 2011 and 2012. Thus, the MODIS [98,99] and ASTER [97] data, available from 2000 onward, with 

its higher spatial and spectral resolution and quality of data possibly make it suitable to combine with 
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AVHRR and Landsat data for reconstructing long-term burn trends at different spatial scales. This also 

requires examining a suitable method of remote sensing for gathering data in reconstructing long-term 

burned areas. 

Table 3. Summary of studies on mapping burned areas in local and regional boreal regions 

using the remote sensing approach. dNBR, Differenced Normalized Burn Ratio; NDVI, 

Normalized Difference Vegetation Index; SAR, spaceborne synthetic aperture radar; ERS, 

European Remote Sensing;VGT, Vegetation; RMSE, Root Mean Square Error. 

Study Boreal Zone 
Period of 

Burned Area 

Remote Sensing Data 

and Method 
Validation Method Results 

Kasischke  

et al. [107] 
Alaska 1990 

AVHRR-NDVI 

composite from single-

season 

Compared with data 

from the Alaska  

Fire Service 

Detected 89.5% of all fires greater 

than 2,000 ha; mapped only 61% of 

fires mapped by the field observers 

Cahoon  

et al. [108] 

Northern 

China and 

southeastern 

Siberia 

1987 

AVHRR-GAC and 

unsupervised minimum 

distance classification 

Compared with 

Landsat TM image 

Good agreement between the most 

intensively burned areas 

French et al. [109], 

Kasischke and  

French [65] 

Alaska 1990 and 1991 

AVHRR-NDVI 

composite from two-

season 

Compared with data 

from the Alaska  

Fire Service 

Detected more than 80% of fire 

greater than 2,000 ha; detected > 78% 

of the burned areas mapped by the 

field observers 

Bourgeau-Chavez  

et al. [96] 
Alaska 1979–1992 

ERS-1 SAR backscatter 

(1991–1994) and ground 

burn relationship 

Compared with data 

from the Alaska  

Fire Service 

Detected 58% of the total burn area; 

detected up to 91% of the burn area 

using combined method of ERS-1  

and AVHRR 

Fraser et al. [110] Canada 1995–1996 

AVHRR-HRPT Hotspot 

and NDVI Differencing 

Synergy (HANDS 

algorithm) 

Compared with 

official fire statistics 

Detected > 95% of the total burn area; 

provided a consistent means of 

mapping large burns (>10 km2) 

Remmel and  

Perera [111] 

Ontario, 

Canada 

1992,1993, 

1995 

AVHRR-NDVI change 

detection methods  

by [65,107] 

Assessed by the 

ground-truthed 

information 

Detected > 65% of all fires in 1992 

and 1993, but only 30% of fires 

detected in 1995 

Bourgeau-Chavez  

et al. [95] 

Sites in 

Canada and 

central 

Russia 

1989–1996 
C-band SAR backscatter, 

similar method in [96] 

Validated with fire 

service records 

RMSE = 7%–35% for the Canadian 

study sites; not validated for the 

Russian sites 

Fraser and  

Li [112] 

Canadian 

boreal forest 
1998–1999 

Normalize  

Shortwave-based 

Vegetation Index (SWVI) 

from SPOT 

VEGETATION 

Validated with 

official burn records 

Detected about 85% of the burned 

areas compiled by the Canadian Fire 

Centre 

Li et al. [113] Canada 1994–1998 
AVHRR-HRPT hotspots 

analysis 

Compared with 

official fire statistics 

Underestimated 35% of the total 

burned area 
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Table 3. Cont. 

Study Boreal Zone 
Period of 

Burned Area 
Remote Sensing Data and Method Validation Method Results 

Kajii et al. 

[114] 

Siberia and 

northern 

Mongolia 

1998 AVHRR-HRPT 12 hotspots - 

Large fires (>100 km2) 

accounted for 90% of the total 

burned area 

Kelha et al. 

[115] 

Eurasia boreal 

region 
1999–2000 

AVHRR-HRPT and ATSR hotspots 

analysis 

Evaluated by official fire 

records 

False alarm rate from 7%  

to 12% 

Soja et al. 

[117] 
Siberia 1996–2000 AVHRR-HRPT hotspots analysis 

Compared with Russian 

fires statistics 

Underestimated by an average 

of 213% 

Sukhinin  

et al. [118] 

Russia and 

Easter Russia 

1995–1997 

and 

1995–2002 

AVHRR-HRPT active-fire analysis; 

defined burned area by aggregating 

fire pixels into polygons 

Validated by official 

burned-area statistics 

Overestimated two to five times 

compared with the  

burned-area statistics 

George et 

al. [63] 
Central Siberia 1992–2003 

Combined MODIS SWIR and 

thermal anomaly data (STANDD) 

Compared with Landsat 

ETM+ dataset 

Overall accuracy of 81% with a 

kappa coefficient of 0.63 

Loboda et 

al. [119] 

Northern 

Eurasia 
2001–2004 

MODIS active fire and cluster 

identification to define burned areas 

Compared with Landsat 

ETM+ dataset and other 

studies 

Consistent results with the 

Landsat burned area and the 

other studies 

Loboda et 

al. [64] 
Central Siberia 2001–2002 

dNBR threshold from MODIS 

MOD09A1 images 

Compared with Landsat 

ETM+ dataset 

Kappa values from 0.35 to 0.79, 

depending on fire scar 

magnitude 

Pu et al. 

[120] 
North America 1989–2000 

AVHRR hotspots analysis applied 

to HANDS algorithm [110] 

Compared with official 

statistics 

Depending on the year;  

40%–75% for omission and 

18%–32% for commission error 

Chuvieco  

et al. [121] 

Western 

Canada 
1984–2006 

Ten-day composites of AVHRR-

LAC and two-phase approach 

Compared with official 

statistics and other studies 

10% and 50% of commission 

and omission error, respectively 

Potapov et 

al. [93] 

North America 

and Eurasia 
2000–2005 

Combination of MODIS and 

Landsat data to analyze forest cover 

loss 

Validated using the 

independently-derived 

Landsat burned area 

RMSE of 2.24% and R2 of 0.75 

Loboda et 

al. [122] 
Alaska 2004–2007 

Pre-season and post-season dNBR 

threshold from MODIS MOD09A1 

Compared with 

monitoring trends in burn 

severity products 

Overall accuracy of  

90%–93% and kappa of  

0.67–0.75 

Vivchar 

[123] 
Russia 2000–2008 

Analysis of MODIS MCD45 

burned area product 

Compared with other 

published results 

Varied depending on the 

observed year 

Moreno 

Ruiz et al. 

[61] 

Canada 1984–1999 
AVHRR-LTDR and Bayesian 

network classifier 

Compared with other 

products and fire 

perimeters 

Correlated well with fire event 

records, R2 = 0.65 

Because the accuracy of long-time series data of burned areas is important for modeling fire 

emissions and assessing feedback between fires and global climate change [139], the use of products 

derived from global burned areas, such as MODIS burned area products, GFED, L3JRC, 

GLOBCARBON and GEOLAND-2, at local and regional scales requires validation prior to applying the 

products at local and regional scales. Comparisons and critical reviews of the accuracy of those different 

burned areas’ products are well reported in the literature [62,129,140]. Giglio et al. [129] found that there 

were considerable differences in many regions among burned area products of the GFED, the L3JRC 

global data from burned areas, the GLOBCARBON burned area product and the Collection 5 MODIS 
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MCD45A1 burned area product. The burned area reported in the L3JRC product was much higher than 

all other datasets in almost all regions, except for Africa, while the GFED product was most closely 

similar to the MCD45A1 dataset. Kasischke et al. [62] also found that the GFED version 3 (GFED3) 

burned area product was the most consistent source of burned area when compared to the fire 

management data in North America, whereas L3JRC and GLOBCARBON products significantly 

overestimated burned areas. The MCD45A1 dataset underestimated and resulted in a higher fraction of 

burned area compared to the GFED3 data [62]. Similarly, Kukavskaya et al. [139] found that estimates 

of burned areas in the region of Siberia from 2000 to 2011 differed significantly and were inconsistent 

within the data sources. MODIS MCD64A1 reported the smallest area burned for almost the whole year 

from 2000 to 2011, whereas the estimates from the combination of AVHRR and MODIS burned area 

product (AVHRR/MODIS) [117,118] were consistently greater than the MCD45A1 and MCD64A1 

products by 6%–560% [139]. The great variation among burned area estimates in the region of Siberia 

have been accounted for through the instrument capabilities (e.g., resolution, cloud cover, fire types 

detection), differing methods of analysis and the absence of official data for the calibration and 

validation of burned areas [139]. These suggest that the use of global burned area products for local and 

regional scales should be validated and compared with other independent datasets (e.g., higher resolution 

datasets and official fire data) to quantify omission/commission errors. This also indicates a strong need 

to improve computer and Earth observation facilities to achieve a higher quality of burned area products 

using remote sensing for remote boreal regions.  

3.1.2. Remote Sensing Methods, Results and Limitations for Burned Area Mapping  

Changes in spectral signatures that occur following a fire can be surrogates for identifying patterns 

of burned areas. When vegetation is burned, there is a drastic reduction in visible-to-near-infrared 

reflectance and an accompanied increase in the short and middle infrared surface reflectance of most 

satellite sensors [20,141]. Burned patches are relatively easy to discriminate visually [142] for this 

reason. They are complex to detect automatically, however, because of the wide range of spectral 

signatures and spatial heterogeneity caused by fire regimes, the type of vegetation burned and the 

environmental conditions [59,122,142,143]. Table 3 summarizes studies on mapping burned areas in 

boreal forests to indicate some gaps in the research of burned areas in this region, as almost all studies 

used medium to coarse resolution data of AVHRR, MODIS and SPOT VEGETATION sensors to 

derive burned areas. Due to the absence of official data on burned areas, some studies in Eurasian 

boreal regions validated the derived burned area products using the higher resolution dataset of the 

Landsat satellite [63,64,116,119], while the results of the North American studies were compared with 

the official fire records [61,107,109,111,120,121].  

The accuracy of estimates for burned areas vary significantly among those studies, even in the same 

study area and period, and are confounded by differing methods of analysis and sources of data (Table 3). 

For example, Chuvieco et al. [121] generated a 23-yr period of burned areas in western Canada using 

10-day composites of AVHRR data and found that the results of mapping burned areas showed a 

significant underestimation compared with official statistics, due to a high omission error of 50%. 

Chuvieco et al. [121] reported a lower variation of omission and commission errors in the four 

sampled years (1989, 1994, 1995 and 1998), ranging from 47% to 65% for omission and 6% to 19% 
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for commission compared with 40% to 75% omission and 18% to 32% commission in Pu et al.’s [120] 

results for the same years. The proportion of total burned area in western Canada identified by the 

Chuvieco et al. study showed more consistency with the official records than that reported by the  

Pu et al. results, ranging from 50% to 68% and from 38% to 96%, respectively. Additionally,  

Moreno Ruiz et al. [61] compared the existing AVHRR burned area products in Canada and found that 

both AVHRR LTDR (Long-Term Data Record) and AVHRR LAC (Local Area Coverage) data 

substantially underestimated the total burned area in western Canada, both annually and throughout the 

year. The LTDR algorithm by Moreno Ruiz et al. [61] predicted 65% of total burned areas between 

1984 and 1999, compared to the LAC product by Chuvieco et al. [121] of 53% in the same sampled 

years. Both the LTDR and LAC products showed a high consistency with the Canadian Forest Service 

National Fire Database (CFSNFD) pattern in western Canada, while the global AVHRR-PAL 

(Pathfinder Land) burned area product [144] did not track the CFSNFD pattern.  

A number of techniques have been developed to map burned surfaces, ranging from visual 

interpretation with single channel or synthetic bands [145] to semi-automatic and automatic burned 

area classification algorithms [59,110,121,122,146]. In general, Chuvieco et al. [121] grouped 

algorithms for discriminating between burned areas into two categories: single processing chains and 

two-phase processing chains. The former commonly uses image classification techniques to 

discriminate burned and unburned areas, such as supervised and unsupervised classification, decision 

trees and differencing and thresholding of spectral indices [64,65,107–109,113,122]. However, in the 

two-phase approach, core burned areas are first defined from the most severe burn pixels based on 

active fire pixels or the threshold of vegetation indices, and then, contextual algorithms are employed 

to refine the classification of burn scars  [121,125,142,147,148]. As shown in Table 3, the use of 

satellite data, such as AVHRR and MODIS, to detect hotspots during the period of interest has been 

widely applied to monitor burn areas in many studies in the boreal regions, since the hotspots represent 

burn activity. The detection of hotspots can be seen as the first step in defining the most severe burn 

pixels in the two-phase approach that was first introduced by Fraser et al. [110] (Hotspot and NDVI 

Differencing Synergy (HANDS) algorithm) to map burned areas in boreal regions. In the HANDS 

algorithm by Fraser et al. [110], hotspots were detected using thresholds on the brightness temperature 

of AVHRR channel 3 [113] and the AVHRR NDVI difference of pre-fire and post-fire composites. 

The confirmed hotspots were then used to derive coarse, regional and local-level NDVI difference 

thresholds for mapping burned areas [110]. The inclusion of both hotspot and NDVI differencing 

strategies aimed to use the strengths of each method to compensate for their limitations when mapping 

burned areas. However, the authors noted that the use of NDVI differencing to confirm hotspots, as 

well as to develop burn thresholds in the HANDS algorithm may result in a high commission error 

caused by a decrease in NDVI unrelated to fire [110,121]. The decrease of NDVI in some areas might 

be due to background noise, such as snow cover and vegetation senescence [110]. In addition to 

NDVI, Chuvieco et al. [121] used Global Environmental Monitoring Index (GEMI), Burned Area 

Index (BAI) and near-infrared reflectance of 10-day composite AVHRR data to confirm hotspot 

pixels, as well as to analyze the context of the surrounding seed pixels for mapping a time series of 

burn areas in Canada using the two-phase approach. The results of the study by Chuvieco et al.’s 

showed a very low commission error of 10%, but a high omission error of 50%. According to 

Chuvieco et al. [121], this high omission tendency may be accounted for through the geometric and 
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radiometric quality of the AVHRR dataset, making it very difficult to apply a consistent algorithm to 

the whole time series. 

According to Bastarrika et al. [142], the two-phase approach can improve burn scar discrimination 

by solving contradictions between omission and commission errors in mapping burned areas, 

compared with the one-phase approach (Table 4). This approach, however, may not yield a consistent 

pattern when applying a long-time series of an AVHRR dataset for reconstructing burned areas, as 

shown in the study by Chuvieco et al. [121]. More studies are therefore needed in different regions 

using other satellite datasets to confirm the strengths of the two-phase approach. A quantitative 

comparison between the performance of the areas of the world with limited satellite and remote 

sensing applications are also needed (Table 4).  

Several studies in boreal forest regions noted that the mapping of burned areas in such high 

northern latitudes using remote sensing should account for the variations of fire season, vegetation 

phenomenon, timing of burned area measurement and climatic and environmental conditions in order 

to attain a high quality dataset of the burn area [59,61,64,92,122,149]. All information related to 

vegetation, fire and environment can be obtained from remote sensing data (e.g., fire regimes from 

MODIS products [7], vegetation phenology from AVHRR-NDVI analysis [150]) and can be 

subsequently incorporated into mapping algorithms to improve the accuracy of mapping burned areas 

(Table 4). Loboda et al. [64] developed a regionally adaptable MODIS dNBR (Different Normalized 

Burn Ratio)-based algorithm for mapping burned areas in the boreal forests of central Siberia with the 

consideration of regional specifics of fire occurrence and vegetation properties. The dNBR was 

calculated using the NBR values in the compositing period containing the fire scar and the same two 

compositing periods one year prior and then following the fire year in order to account for the 

phenology-driven intra-annual variability of the vegetation state [122]. Thresholds of dNBR for burned 

area mapping in central Siberia were also derived depending upon the percentage of tree cover in 

which dNBR thresholds were set at 300 (dNBR × 1,000) for areas with tree cover > 10% and 200 for 

areas with tree cover ≤ 10% [64]. Recent changes in Alaska in fire regimes showed that the amount of 

area burned during late-season fires increased over the past two decades and accounted for 35% of 

total burned areas in the 2000s [149]. These late-season fires also burned deeper surface organic layers 

in Alaska’s boreal forest that significantly affect a forest’s post-fire recovery [14,90,149]. For this reason, 

mapping burned areas caused by late-season fires is important in ecological studies of forest ecosystems, 

such as Alaska’s boreal forest. However, mapping late-season fires in such high northern latitudes is 

challenging, because of the limitations in data and environmental conditions [122]. A possible solution 

proposed by Loboda et al. [122] is an ecosystem-based burned mapping approach using pre-fire, fire and 

post-fire season spring composites to account for late-season fires and to fill in the gap left by the lack of 

sufficient clear land surface observations in high northern latitudes, due to cloud cover and cloud shadow, 

high aerosols in the atmosphere and the presence of snow on the ground. Similar to the employment of 

multi-temporal composite images by Loboda et al. [122], Moreno Ruiz et al. [61] calculated the 

differences of the AVHRR Burned Boreal Forest Index (BBFI) and AVHRR-GEMI from the year of the 

fire and the years before and after to detect burned areas in the Canadian boreal forest based on empirical 

thresholds and the Bayesian network classifier. The authors suggested that the application of the Bayesian 

network classifier for mapping burned areas should consider the recovery rate of forests, as well as the 

inclusion of high-to-moderate satellite imagery (e.g., Landsat) to ensure reliable training sites for the 
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algorithm. A similar methodology by Loboda et al. [122] and Moreno Ruiz et al. [61] can be applied to 

other boreal regions with the consideration of fire season and forest recovery rate to maximize the 

performance of burn algorithms. The overall strengths and limitations of remote sensing data and 

methods for mapping burned areas in boreal regions are given in Table 4. 

Table 4. Strengths and limitations of some remote sensing data and methods for mapping 

burned areas in boreal regions. 

Data/Method Strength Limitation and Notice for Use Reference 

High-to-moderate  

spatial resolution data  

(e.g., Landsat,  

ASTER, SPOT) 

-High accuracy compared with 

fire management data;  

-A number of developed 

algorithms; 

-Good independent dataset for 

validating burned area products 

from lower resolution data; 

-Local scale 

-Gap of data in some regions and some periods (e.g., 

Russian boreal forest); 

-Requires combination with lower spatial resolution data 

(e.g., MODIS and AVHRR) for reconstructing long-time 

burn series; 

-Necessary to find suitable algorithms for data integration 

[92,93] 

Moderate-to-coarse  

spatial resolution data  

and global burned area 

products (e.g., AVHRR,  

MODIS) 

-Long-time series with high 

temporal resolution; 

-Available to use derived 

products (e.g., MOD45A1, 

GFED, L3JRC, 

GLOBCARBON); 

-Regional-to-global scales 

-Considerable differences among burned area products;  

-High variation of omission/commission errors 

depending on the methods of analysis and regions; 

-Required calibration and validation with other 

independent datasets (e.g., higher resolution data) to 

apply to local and regional scales; 

-Required regional algorithms for mapping burned areas 

in high northern latitudes of boreal forest due to the 

limitations of data and environmental conditions. as well 

as complex fire regimes (e.g., fire season) 

[61,62,93,122,129,140] 

Single processing approach 

-A number of available 

algorithms to apply, such as 

supervised/unsupervised 

classification, object-based 

classification, decision tree and 

regression tree models; 

differencing and thresholding of 

vegetation indices; 

-Simple and time saving for  

data processing 

-Diverse omission and commission errors in different 

methods and ecosystems;  

-Result depends on the selection of the training dataset; 

-Proposed algorithms may be inapplicable to other study 

sites; 

-Required composite images of pre-fire year, fire year 

and post-fire year to account for variations of fire 

regimes and vegetation phenology 

 

Two-phase processing 

approach 

-Solved contradictions between 

omission and commission errors 

associated with over- and  

under-estimation; 

-An alternative to automate 

mapping burned areas at a 

country scale 

-Required strong detection of seed burned pixels for the 

first phase to ensure the lowest commission error; 

-The second phase depends on the spatial configuration 

of the seed pixels; 

-Uncertainty about low commission and omission errors 

using long-time series of datasets with low resolution 

data (e.g., AVHRR); 

-Need more studies in boreal ecosystems with different  

satellite datasets;  

-Need to compare with other methods 
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3.2. Burn Severity Assessment 

Burn severity is a function of physical and ecological changes caused by both short- and long-term 

post-fire effects [20,151]. It thus can be used to measure the levels of response from a post-fire forest 

ecosystem, as it is often assumed that areas with a high burn severity are positively correlated with the 

increasing mortality of vegetation and water repellency and, then, negatively correlated with the 

vegetation’s ability to rehabilitate [21,22,152]. The impact on ecosystem functions of burn severity, 

however, also depends on the pre-fire environment and vegetation types [20]. Therefore, the mapping 

of burn severity provides information that gives insight into the cover patterns of post-fire  

vegetation [153] and also helps to guide forest managers in conducting their restoration efforts [154].  

3.2.1. Field-Based Measurement of Burn Severity 

Lentile et al. [20] summarized that field-based measures of post-fire effects include an assessment 

of changes in soil color, soil infiltration and hydrophobicity and changes in vegetation cover, which 

can be consistent and quantifiable indicators in remotely sensed data. Key and Benson [45], for 

example, introduced the ground-based Composite Burn Index (CBI) to integrate a variety of those 

different post-fire effect indicators for assessing burn severity. This index was developed as an 

operational methodology for assessing burn severity on a national scale in the U.S., in the framework 

of the FIREMON (Fire Effects Monitoring and Inventory Protocol) project [73]. The CBI is based on a 

visual assessment of the quantity of fuel consumed, the degree of soil charring and the degree of tree 

mortality and is assigned into one numeric site index assessed over a plot (e.g., about 30–60 m in 

diameter) [76]. The severity based on CBI has often been fire effect variations estimated in low, 

moderate and high classes across regions and vegetation types, such as in temperate regions [155–158] 

and boreal regions [66,76]. In Alaskan boreal forests, Kasischke et al. [66] found that the CBI was an 

important variable for estimating mineral soil exposure, while there were low correlations between 

CBI and other measures of fire severity, including the post-fire depth of organic layers. These results 

indicate that the CBI approach may not be appropriate for measuring fire/burn severity in the Alaskan 

boreal forest ecosystem, since the consumption of the organic layer by fire is an important factor in 

evaluating the response from vegetation and tree recruitment after fire disturbance in this  

ecosystem [14,66,74]. More studies on the performance of CBI in other boreal regions of the world are 

needed to compare with the CBI-based assessment of burn severity in the Alaskan boreal region. 

Additionally, the CBI is also inconsistent with remotely sensed data in some ecosystems due either 

to spectral reflectance variation among different ecosystems or the performance of spectral indices 

used to determine CBI [67,158,159]. De Santis and Chuvieco [158] developed the Geo Composite 

Burn Index (GeoCBI) to improve the retrieval of burn severity from remotely sensed data. The 

modified version of the CBI takes into account the fraction of coverage (FCOV) of the different 

vegetation strata and changes in the Leaf Area Index (LAI) of the intermediate and tall tree data. For 

different ranges of burn severities, GeoCBI is more strongly correlative to spectral reflectance than  

CBI [158]. Recently, the Weighted Composite Burn Index (WCBI) [138,155] and the Post Fire Index 

(PFI) [160] have also been proposed to estimate burn severity and post-fire soil conditions from field 

measurements, as well as to validate remote sensing measurements. Burn severity can also be assessed 
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by visual interpretations and categorizing the characteristics of post-fire vegetation and soil, including 

the proportion of live trees, tree mortality, basal area [151,161,162], fuel biomass reduction and 

canopy mortality [163], Leaf Area Index [164] and the number of standing tree death and trees down, 

soil exposure and organic layer depth [66,74,77]. 

3.2.2. Remote Sensing Indices as Independent Variables to Estimate Burn Severity 

Recent studies have demonstrated the sensitivity of spectral bands and indices of remotely sensed 

data to changes in burn severity classes (Table 5 and Figure 3), similar to mapping burned areas. 

Spectral indices, such as the Normalized Burn Ratio (NBR) and NDVI have been widely used for 

assessing burn severity through remote sensing in boreal regions [67,69,76,165,166]. Analyses of burn 

severity and burned area using multi-temporal satellite data and bi-temporal image differencing 

techniques have also resulted in the numerous differenced indices for burn severity assessment in 

boreal regions, such as the Differenced Normalized Burn Ratio (dNBR) [69–71,76,83,165,167–169], the 

Differenced Normalized Difference Vegetation Index (dNDVI) [76,170] and a relative version of the 

dNBR (RdNBR) [138]. The above listed indices are often independent variables used to derive 

dependent field-based indices of burn severity, such as CBI and WCBI [71,76,138,165,168,171], and 

post-fire organic soil layer depth [67,166], to estimate burn severity at the pixel level. The correlation 

between remote sensing indices and field-based measurements of burn severity depends upon various 

factors, such as the timing of the assessment of fire and burn severity, local environment conditions 

and characteristics of the vegetation. For example, Epting et al. [76] evaluated 13 remotely sensed 

indices, including single bands, band ratios, vegetation indices and multivariate components across 

four wildfire burn sites in Alaska and found that the NBR was the best for estimating burn severity. 

However, the NBR was useful as an index of burn severity for only forested sites in Alaska, since the 

correlation between NBR and CBI was low in non-forested classes. Similar results were also 

investigated by other studies in boreal forests that indicated a significant correlation between 

NBR/dNBR and CBI with respect to the surface plant community [71,77,166], the severity of  

canopy-layer fire rather than the severity of ground-layer [69], pre-fire conditions [83] and topographic 

conditions [75]. These results suggest that the assessment of burn severity based on the correlation 

between field-based burn severity indices and remote sensing indices should account for variations in 

the conditions of pre- and post-fire vegetation. 

As noted by many studies, regression models that are used to determine the relationships between 

readings of burn severity from remote sensing and field measurements are data- and site-specific and, 

thus, may not be applied to other sites with different cover types and conditions [155,165,172]. 

However, compared with linear regression, both Cansler and McKenzie [155] and Hall et al. [165] 

found that exponential and second-order polynomial models calibrated better relationships between 

field-based CBI and dNBR/RdNBR across different ecoregions of temperate forest and boreal forest in 

North America, respectively. Hall et al. [165] mentioned the possibility of a single, non-linear  

CBI-dNBR model for estimating burn severity over the western Canadian boreal forests. All these 

authors suggested that land cover and the stratification of similar ecological areas should be applied to 

improve the prediction of burn severity over large areas. 
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As a characteristic of fire and burn severity in permafrost regions, the consumption of the organic 

layer’s depth is the most important effect on how a post-fire ecosystem functions in boreal  

forest [14,66,74]. Some studies suggested that approaches based on remote sensing bands and indices 

were unreliable, that they mapped fire and burn severity inconsistently and were unable to account for 

the depth of the post-fire organic layer [69,70,166]. These results suggest that new approaches, which 

include other predictors, such as topography, solar elevation and plant phenology [75,159] into indices 

based on remote sensing are necessary in order to successfully model fire and burn severity in dynamic 

boreal regions, such as the Alaskan boreal forests. Consequently, Barrett et al. [67] found that the 

incorporation of topographic position, remote sensing indices related to soil and vegetation properties, 

the timing of fire events and meteorological data using regression tree models significantly improved 

the modeling of burn severity in black spruce stands in the Alaskan boreal forest.  

Table 5. Summary of studies using remote sensing data for mapping burn severity in boreal 

regions; NBR, Normalized Burn Ratio; dNBR, Differenced Normalized Burn Ratio; RdNBR, 

Relative Differenced Normalized Burn Ratio; dNDV, Differenced Normalized Difference 

Vegetation Index; BCI, Burn Class Index; SRI, Surface Roughness Index; VCI, Vegetation 

Cover Index; CBI, Composite Burn Index; ∆α0, post-fire spring albedo change. A differenced 

index, such as dNBR, is calculated by subtracting the post-fire index from the pre-fire index. 

Study Boreal Zone Year of Image 
Remote 

Sensing Approach 
Field Based Indices Results 

Bourgeau-

Chavez et al. 

[162] 

Black spruce, 

Alaska 
1992 (fire in 1990) 

ERS-1 SAR backscatter; 

multiple linear regression 
BCI, SRI, VCI 

R2 depends on season:  

R2 = 0.92 (spring);  

R2 = 0.64−0.78 (summer);  

R2 = 0.298 (autumn) 

Michalek  

et al. [77] 

Black spruce, 

Alaska 

1995 (fire in 1994) Supervised classification 

of Landsat TM 

Three classes of burn 

severity from field 

observation and aerial 

photo 

Three classes of burn 

severity: light, moderate, 

severe 

Epting  

et al. [76] 

Mixed species, 

Alaska 

2001 (fire in 2001) Landsat TM bands and 

indices; linear regression 

CBI R2 = 0.6 (highest correlation 

between NBR and CBI) 

Epting and 

Verbyla [83] 

Black and white 

spruce, Alaska 

1988 (fire in 1986) Decision tree 

classification  

of Landsat TM dNBR 

Adjusted dNBR 

threshold from [76] 

Three burn severity classes: 

high (dNBR ≥ 620); 

moderate  

(250 ≤ dNBR ≤ 620); low  

(85 ≤ dNBR ≤ 250) 

Sorbel and 

Allen [171] 

Mixed species, 

Alaska 

1999-2002 Landsat TM dNBR;  

linear regression 

CBI R2 = 0.46−0.84, depending 

on fire events 

Duffy  

et al. [75] 

Conifer and 

broadleaf, 

Alaska 

1994, 1999, 2000, 2002 

(24 fires from 1993 to 

2002) 

Landsat TM NBR;  

statistical analysis of  

NBR (ANOVA, 

variogram) 

n/a Burn severity (represented 

by NBR) depends on 

topography and type of 

vegetation 

Allen and 

Sorbel [71] 

Conifer and 

broadleaf, 

Alaska 

1999–2003 (fires from 

1999 to 2002) 

Landsat TM dNBR, linear 

regression 

CBI R2 = 0.45−0.88, depending 

on fire events 
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Table 5. Cont. 

Study Boreal Zone Year of Image Remote Sensing Approach 
Field Based 

Indices 
Results 

Hall et al. 

[165] 

Western Canada 2004, 2005 (fires in 

2003 and 2004) 

Landsat TM dNBR, linear  

and non-linear regression 

CBI R2 > 0.7; non-linear model performed 

better than linear model 

Hoy et al. 

[69] 

Black spruce, 

Alaska 

2004 (fires in 

2004) 

Landsat TM/ETM+ bands  

and indices; linear regression 

CBI Low correlation between the satellite 

and field measurement of severity;  

R2 = 0.52 for highest correlation 

between dNBR and CBI 

Murphy  

et al. [70] 

Black and white 

spruce, Alaska 

2005 (6 fires in 

2003 and 2004) 

Landsat TM dNBR, 

 linear regression 

CBI Low correlation between dNBR and 

CBI; R2 = 0.11−0.64, depending on fire 

events 

Verbyla 

and Lord 

[166] 

Conifer and 

broadleaf, 

Alaska 

1985 (fire in 1983) 
Landsat TM NBR,  

linear regression 

Post-fire organic 

soil depth 

(measured in 

2006) 

Low correlation between NBR and 

organic soil depth; average  

R2 = 0.26 for all sites; R2 = 0.65 for 

black spruce sites 

Barret  

et al. [67] 

Black spruce, 

Alaska 
2005 (fire in 2004) 

Landsat TM/ETM+ indices  

and ancillary data for  

regression tree model 

Organic layer 

depth 

Significantly improved efforts to map 

organic layer depth representing for fire 

severity; model fit with R2 = 0.8 

Soverel  

et al. [138] 
Western Canada 

2005-2008 (fires 

from 2005 to 2007) 

Landsat TM/ETM+ dNBR  

and RdNBR 
CBI 

RdNBR no more effective than dNBR 

in estimating burn severity, 65.2% and 

70.2% classification accuracy, 

respectively 

Soverel  

et al. [168] 
Western Canada 

2005–2008  

(10 fires from  

2005–2008) 

Landsat TM/ETM+ dNBR;  

non-linear regression 
CBI Overall model with R2 = 0.69 

Jin et al. 

[167] 
North American 2001–2009 

Classification of MODIS 

dNBR  

and albedo change (∆α0) 

n/a 

dNBR and ∆α0 values between 20%–

45%, 45%–75%, >75% percentiles were 

classified as low, moderate and high 

severity classes, respectively 

Wu et al. 

[170] 

Boreal forest, 

northeastern 

China 

2010 (fire in 2010) 
Classification of  

Landsat TM dNDVI 
n/a 

Higher dNDVI values indicated higher 

burn severity 

Cai et al. 

[169] 

Boreal forest, 

northeastern 

China 

2000 (fire in 2000) 

Classification of Landsat TM 

dNBR (3 months after fire) to 

study tree recruitment 11 years 

after fire 

n/a 
High severity: dNBR ≥ 743; low 

severity: dNBR < 743 

The stratification of the conditions of pre- and post-fire vegetation, as well as the inclusion of 

different predictors related to the environment are necessary when mapping burn severity using remote 

sensing approaches (Figure 3), which is now possible through the development of remote sensing 

capabilities. Such capabilities, for example, include the classification of Landsat or MODIS imagery 

for vegetation properties [93], the ASTER digital elevation model for topography [173] and the 

MODIS active fire and/or AVHRR products for fire regimes [7]. Additionally, all the above 

characteristics of fire and burn severity have been very well documented in the boreal regions of North 
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America. However, to the best of our knowledge, there have been no similar studies conducted in other 

boreal regions, such as Eurasian boreal forests. Because the types of fire and vegetation properties are 

quite different from boreal forests in North America and Russia [7], similar patterns of burn severity 

may not be found among these boreal regions. Therefore, these approaches and suggestions require 

interpolating and validating for boreal forest regions around the world to improve the modeling of burn 

severity using remote sensing (Figure 3).  

Figure 3. Summary of field-based and remote sensing-based measurements of burn 

severity along with potential challenges and gaps in research in boreal forest ecosystems; 

LAI, Leaf Area Index; SAVI, Soil Adjusted Vegetation Index; dSAVI, Differenced Soil 

Adjusted Vegetation Index.  

 

3.2.3. Classification of Remotely Sensed Data to Burn Severity Classes 

Even though field-based indices, such as CBI and GeoCBI, and spectral indices, such as NBR, 

dNBR and RdNBR, are the most widely adopted combination in the investigation of burn severity, 

they are not yet standard methods for evaluating burn severity in either the remote sensing or fire 

science communities [21,160]. The assessment of burn severity from both in situ and remotely sensed 

data is also not always available. As a result, there are a variety of methods beyond the models of CBI 

and vegetation regression indices to evaluate burn severity using remote sensing data, and the results 

differ widely. For example, percentile classifications of MODIS dNBR and the change of spring 

albedo (∆α0) were employed by Jin et al. [167] to assign classes of low (20%–45% percentile), 

moderate (45%–75% percentile) and high (>75% percentile) severity in North American post-fire 

boreal forests. The authors mentioned that an alternative approach to measuring burn severity is to 

Field-based measurements: 
-Composite Burn Index; 
-Geo Composite Burn Index; 
-Weighted Composite Burn Index; 
-Post Fire Index; 
-Characteristics of post-fire vegetation and 
soil: LAI, % live tree, tree mortality, basal 
area, standing death tree, etc. 

Remote sensing-based measurements: 
-Vegetation indices: e.g., NBR, NDVI, SAVI 
-Differenced vegetation indices: e.g., dNBR, 
dNDVI, dSAVI 
-Band ratio; 
-Albedo changes 

-Define burn severity prior to assessment; 
-Find suitable methods/indices to use operationally over ecosystems 
and time series data; 
-More studies required in Eurasian boreal regions; 
-Need stratification of similar conditions of pre- and post-fire 
environments (e.g., vegetation, topography, fire regime, organic 
layer depth); 
-Integrate different predictors to improve accuracy; 
-Methods to overcome limitations of field data required; 
-Reconstruct long time series data. 

BURN SEVERITY ASSESSMENT 

Calibration & 
Validation 
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monitor the change in spring albedo, since it depends on the mortality and recovery rate of post-fire 

vegetation. Epting and Verbyla [83] applied similar Landsat dNBR threshold values (90, 275 and 680), 

calculated by Epting et al. [76], to classify low, moderate and high classes of burn severity in their 

Alaskan boreal forest study site. However, Cai et al. [169] evaluated burn severity in Chinese boreal 

forests according to the histogram of dNBR values with high severity (dNBR ≥ 743) and low severity 

(dNBR < 743). All these results confirmed that the above proposed indices, spectral thresholds and 

methods of assessing burn severity can possibly be adjusted to local conditions, but it is not clear 

whether they can be extended to other study sites.  

It is strongly recommended in the reviews by Lentile et al. [20] and French et al. [21] that 

researchers should properly define the need for the assessment of burn severity and clarify the amount 

of presumption in the methods for measuring burn severity (Figure 3). For example, Boer et al. [164] 

defined burn severity in the southwestern Australian forest as a fire-induced change in LAI (dLAI), 

since LAI is a clear indicator of the attributes of biophysical vegetation that can be objectively 

measured in the field. Boer et al. [164] concluded that simulating remotely sensed indices, such as 

NBR, NDVI and the simple ratio, with well-defined biophysical attributes like LAI, is a very objective 

and rapid way to measure and interpret post-fire effects within the context of fire and forest 

management. Thus, these assumptions would be alternatives to assessing burn severity based on CBI 

and GeoCBI, especially for areas with significant gaps in field-based data of burn severity, as well as 

the areas with a low correlation between CBI and remote sensing indices alone, like the Alaskan boreal 

forest. However, there is still a need to assess how such methods work with the wide range of 

environments that are affected by fires in regions of boreal forest (Figure 3). Finally, in addition to the 

long-time series of burned areas, the long-time series of burn severity is also necessary to characterize 

vegetation’s response to fire under different climatic conditions, but very few studies in the literature 

have attempted to reconstruct this in either boreal forests or other ecosystems. One example was 

presented by Sunderman et al. [174], who applied Landsat-dNBR thresholds to reconstruct fire severity for 

a 28-yr period in temperate regions. Some field-based and remote sensing-based indices, as well as some 

challenges and gaps in research for mapping burn severity in boreal regions, were summarized in Figure 3. 

3.3. Remote Sensing-Based Assessment of Post-Fire Forest Patterns  

Much of the work described above entails mapping the location, size and severity of disturbance by 

forest fire. However, the causes and consequences of spatial variability in post-fire effects become 

increasingly significant to our understanding of how forest ecosystems respond. The spatial variability 

of post-fire forests can be characterized by stages of forest succession, forest structure and the 

regrowth of forest composition since disturbance. Remote sensing of disturbances for the express 

purpose of quantifying forest patterns enables the extraction of independent variables to predict 

dependent variables, such as successional stages, stand age, tree diameter and height, biomass, canopy 

closure, species diversity and other structural parameters over large areas of post-fire forest. The 

overall review of remote sensing in monitoring the recovery of post-fire vegetation in nature was 

conducted by Gitas et al. [175], and remote sensing of the biophysical parameters of boreal forests was 

conducted by Lutz et al. [176]. The review by Gitas et al. [175] discussed remote sensing studies of 

monitoring post-fire vegetation in general, including tropical, temperate, Mediterranean and boreal 
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ecosystems, while Lutz et al. [176] did not focus on studies about monitoring post-fire effects and 

recovery patterns of boreal forests. Therefore, this section is largely focused on remotely sensed data 

and methods for monitoring post-fire forest patterns, including successional stages, the attributes of 

forest structure and the trajectories of forest recovery in regions of post-fire boreal forest. This review 

will also discuss the data and methods from other ecosystems that can be potentially applied to help 

understand boreal forest patterns following fire disturbance. 

3.3.1. Monitoring Successional Stages  

Forest succession is an important ecological process that determines the biophysical, biological and 

biogeochemical characteristics of forest ecosystems [177]. Patterns of forest succession vary among 

fire perimeters depending on many factors, such as site conditions before and after a fire, the extent of 

the fire and the severity of the fire. In boreal larch forest ecosystems, the size and severity of fires, 

coupled with climatic condition, are among the principal factors influencing post-fire dynamics and 

patterns of succession [82,178]. For example, three classes of forest successions were determined after 

climate change and fire in the taiga larch forest in central Siberia, including succession with no 

replacement of tree species, succession with replacement of a tree species and succession with open 

larch stands replaced by shrubby tundra [82]. Furthermore, the length of complete stages of succession 

in Siberian boreal forests strongly depends on fire intervals and species characteristics, ranging from  

five years as the first stage of succession, in which pine regenerates successfully, to more than 180 yr 

as the last stage of succession, represented by old pine stands [82], and from two years to 90 yr as the 

first and last stages of succession in larch stands, respectively [9]. Similarly, the influences of fire 

severity on the succession of the Siberian larch forest illustrates that during a surface fire with low 

severity, conditions of pre-fire vegetation can recover after 5–8 yr, while the dominant, pre-fire trees 

are restored within 7–15 yr and 15–20 yr after moderate and high larch fire severity, 

respectively [179]. Pioneer species of herbs and grasses are dominant in the larch forest during the first 

four years after high fire severity [179]. Through the periodic measurement of post-fire tree density 

over several decades, Johnstone et al. [180] found that North American boreal tree recruitment occurs 

within a short (3–10 yr) period after fires. Additionally, the observation of patterns of stand density 

and composition within five years after fires can be used to predict forest patterns observed two or 

three decades after fires [180]. 

The identification and classification of the successional stages of forests over large areas are 

challenging to conduct based on field surveys alone. Combining field plots with remotely sensed data, 

however, provides an alternative approach for monitoring successional stages of forests across large 

spatial extents [177] (Table 6, [83,177,181–186]). In boreal forest ecosystems, there are very few 

studies using optical sensors, such as Landsat TM/ETM+, to characterize post-fire patterns of 

succession [83,187–189]. One known study of burn severity and post-fire succession through remote 

sensing was conducted by Epting and Verbyla [83] over a 16-yr post-fire period in interior Alaska. 

Landsat TM/ETM+ images were used to categorize two successional classes of self-replacement and 

relay floristic with respect to burn severity and pre-fire vegetation. In this study, both pre- and post-fire 

images were classified using an unsupervised method of classification to identify six types of 

vegetation, including closed needle-leaf forest, open needle-leaf forest, needle-leaf woodland, 
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broadleaf forest, mixed forest and shrub land. The strategy for monitoring successional stages by 

Epting and Verbyla relied on a similar approach with change detection using post-classification maps. 

Pixels exhibiting the same class of vegetation in both pre- and post-fire images were classified as self-

replacement succession, whereas areas that changed classes of vegetation from spruce-dominated to 

broadleaf-dominated were classified as relay floristic areas [83]. The result showed that post-fire 

patterns of succession in Alaskan boreal forests strongly depended on the types of pre-fire vegetation 

and burn severity. For example, most of the high burn severity areas with closed needle-leaf, open 

needle-leaf and mixed forest classes shifted to woodland or shrubland, sixteen years after the fire [83]. 

However, Epting and Verbyla noted that the study only focused on one burn in the late growing season 

and that the result may not represent patterns of burn severity and the succession of post-fire 

vegetation across the Alaskan boreal region. Discrimination of spectral bands and vegetation indices 

by Landsat TM/ETM+ imagery has been the more commonly used approach to identify the 

distribution of successional forest stages in temperate regions, compared with boreal 

regions [177,181,190–193]. Song et al. [181] demonstrated that the temperate conifer forest’s 

successional stages can be differentiated using a linear regression analysis between the Landsat 

Tasseled Cap classes of brightness, greenness and stand age. Liu et al. [177] found that using forest 

inventory plot data and Tasseled Cap with two other predictive models, such as decision trees and 

neural networks, were more successful than linear regression models in predicting a forest’s 

successional stages. This is due to the fact that these models are not necessary data with normal 

distributions, and they can eliminate the spectral noise of forest samples. Both Song et al. [181] and 

Liu et al. [177] used a chronosequence approach that substitutes space for time, and they concluded 

that multi-temporal Landsat imagery clearly improved the discrimination of young, mature and old 

temperate forest stands. This is due to the fact that multi-temporal data can take advantage of annual 

phenology to improve the classification of different successional stages and pathways [182]. With the 

different coverage and the availability of Landsat data from 1972 to the present at local-to-continental 

scales, these multispectral data are valuable for producing classifications of stages of forest succession 

at these different scales (Table 6). 

In addition to optical sensors, LiDAR (Light Detection and Ranging) imagery has proven 

particularly useful to estimate forest structures, as well as to characterize stages of forest succession, 

since LiDAR measures the three-dimensional arrangement of forest canopies. In Eurasian boreal 

forests, LiDAR data have been used to separate different types of forest sites in general, ranging from 

poor (xeric heath forest) to very rich forest [184], and to identify stands of boreal forests with high 

herbaceous plant diversity [185]. As mentioned by Falkowski et al. [186], that classifications of forest 

succession should reflect all potential stages of forest development, the authors successfully used 

LiDAR height metrics to classify six stages of forest succession across a structurally diverse and 

mixed-species conifer forest. Six stages of succession were characterized using LiDAR data in 

conjunction with a non-parametric Random Forest algorithm, resulting in an accuracy greater than 

95% overall. The use of nonparametrics, such as the Random Forest classification algorithm, can 

incorporate a number of continuous and categorical predictors, develop robust predictions and account 

for uncertainty when mapping successional classes [186,194]. The LiDAR-based techniques of data 

analysis are applicable to the detection of different post-fire stages of succession in boreal forests, 

because of specifically slow recovery rates of boreal tree saplings combined with extensive shrub 
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regrowth for the first several decades following fires in boreal forests. However, it is noted by 

Falkowski et al. [186] that LiDAR data is associated with very high costs for mapping at regional and 

continental scales and is not available at all footprints [186]. To our knowledge, there have been no 

similar studies, either in general or in sites specific to post-fire environments, conducted in boreal 

regions to identify all potential successional stages using LiDAR imagery. A similar approach to 

Falkowski et al. [186] can be conducted to develop and evaluate methods for mapping post-fire forest 

succession in boreal forest ecosystems (Table 6). 

Spaceborne synthetic aperture radar (SAR) data also provides an alternative approach for 

monitoring the regrowth of post-fire forests, since backscatter is also sensitive to forest structural 

parameters. The backscatter coefficient typically increases with forest biomass, and SAR wavelengths 

are able to differentiate among grass, shrub, young and mature forest stands [195], commonly 

represented in secondary forests following fires. Based on the advantage of SAR cross-polarized 

backscatter, which is more sensitive to forest structure and different stages of forest regrowth,  

Tanase et al. [183] used X-, C- and L-band cross-polarized backscatter to monitor forest regrowth in 

both Mediterranean and boreal forests affected by fires. The authors found that up to four different 

stages of post-fire regrowth in boreal forest could be distinguished, whereas five phases of regrowth in 

Mediterranean forests were discerned using L-band SAR data. However, compared with the NDVI 

from optical sensor, the reliable differentiation of regrowth phases using NDVI could only be observed 

for the most recent stages of development (10–20 yr after disturbance), because NDVI responded 

positively to changes in canopy recovery and then saturated prior to the point where an ecosystem fully 

recovers from disturbance [183]. These results suggest the usefulness of SAR data for monitoring 

forest regrowth after disturbances. However, Kasischke et al. [196] reported that L-band microwave 

backscatter was the most sensitive to variations in aboveground biomass and soil moisture in boreal 

forests. More specifically, soil moisture did significantly change the correlation between the L-band 

backscatter and the aboveground biomass typically found in boreal forests that are regenerating, and 

the influence of soil moisture is dependent on the biomass [196]. Therefore, the consideration of soil 

moisture conditions over the study area is important when using SAR backscatter to monitor post-fire 

forest regrowth and forest structure [183,196] (Table 6).  

Generally, the classification of forest successional stages is different from the types of land cover 

classification, as forest succession involves ecological processes and requires viewing the vegetation 

community as a continuum rather than as discrete classes [184,197,198]. Classification of forest 

succession, therefore, not only benefits sustainable forest management, but also effectively quantifies 

ecological responses and relationships in wildlife habitats [199,200]. Additional studies should be 

performed on whether optical remote sensing data and methods can be confidently applied to monitor 

post-fire succession of boreal ecosystems, since these data can be archived, historically corresponding 

to each stage of forest succession. Optical remote sensing data, such as Landsat, AVHRR and MODIS 

imagery, are also freely accessible online. The capabilities of remote sensing data and methods often 

used in the literature to identify successional stages in boreal forests and other regions were 

summarized in Table 6 as follows. 
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Table 6. Selection of data and methods commonly used for mapping successional stages in 

boreal forests and other regions. Selected studies were found in both Alaskan (e.g., Epting 

and Verbyla [83] and Tanase et al. [183]) and Eurasian (e.g., Vehmas et al. [185] and 

Vehmas et al. [184]) boreal regions. However, studies conducted in Eurasia are not 

specific to post-fire recovery sites. Therefore, conducting more studies in this region  

is required. LiDAR, Light Detection and Ranging. 

Data Method Identified Stage Advantage Disadvantage Selected Study 

Optical 

sensor: 

Landsat 

TM/ETM+ 

-Chronosequence approach; 

-Supervised/unsupervised 

classification; 

-Linear regression of spectral 

bands/indices (e.g., NDVI, 

Tasseled Caps) and stand age 

classes; 

-Non-parametric methods 

(e.g., decision trees and neural 

networks) 

-Identified 

different stages of 

forest succession, 

such as young, 

mature and old 

forest; or  

self-replacement 

and relay floristic 

-Multi-temporal data 

can represent annual 

phenology to improve 

discrimination of 

successional stages; 

-Available to classify 

forest successional  

stages at regional-to-

continental scales 

-Limited in measuring  

three-dimensional structural 

attributes related to  

forest succession; 

-Limited in identifying some 

understory successional 

classes, since the overstory 

canopy blocks the understory 

signal; 

-Insignificant spectral 

signature response to low 

regrowth rate and unreliable 

differentiation of mature and 

old regrowth phases due to the 

saturation of the spectral 

signature  

(e.g., NDVI)  

[83,177,181–183] 

LiDAR: 

LiDAR 

pulse height 

metrics 

-Chronosequence approach; 

-Non-parametric methods 

(e.g., logistic regression and 

random forest algorithm): 

LiDAR metrics used as 

independent predictors 

-Identified all 

potential stages of 

forest stand 

development, such 

as open stem, 

stand initiation, 

understory 

initiation, young 

multistory, mature 

multistory and  

old multistory 

-Incorporated  

three-dimensional 

structural attributes to 

accurately monitor 

different vegetation 

growth stages; 

-Able to capture a 

broad range of 

vegetation 

characteristics in a 

consistent and  

transparent manner; 

-Unaffected by solar 

illumination and 

visibility (e.g., 

clouds); 

-Limited in differentiating 

seedling and saplings (first 

stages of forest formation) 

from other understory 

components; 

-Still influenced by very dense 

canopy forests that limits 

direct characterization of 

understory components and 

species (canopy penetration); 

-Currently limited in mapping 

forest succession at regional to 

continental scales due to small 

footprint and high cost; 

[184–186] 
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Table 6. Cont. 

Data Method Identified Stage Advantage Disadvantage Selected Study 

SAR: Cross-

polarized and 

co-polarized 

backscatter 

-Chronosequence approach; 

-Descriptive statistics, 

analysis of variance 

(ANOVA) and pair-wise 

comparison to discern 

between forest recovery 

stages using SAR 

backscatter and coherence; 

-Linear and non-linear 

regression models 

-Differentiated regrowth 

phases, such as 

undisturbed forest, 

young, mature and old 

forest; or by stand age: 

20–40 yr,  

15–20 yr and  

<15 yr 

-Taking advantages of  

L-band backscatter 

sensitivity to forest 

structural parameters 

allowed the 

differentiation among 

young, mature and old 

forest stands; 

-Unaffected by solar 

illumination and 

visibility (e.g., clouds); 

-Able to monitor forest 

succession over 

regional and 

continental scales 

-Sensitivity of backscatter to 

soil moisture required the 

development of approaches 

to account for variations in 

soil moisture avoiding the 

misclassification of  

regrowth stages; 

-Limited in differentiating 

understory classes and early 

successional stages (e.g., 

areas with forest regrowth 

from recent disturbance) 

from other components; 

-Co-polarized repeat-pass 

coherence can only separate 

regrowth phases for the most 

recently affected sites (<15 

yr since disturbance) 

regardless of the radar 

frequency 

[183] 

3.3.2. Measurement of Other Variables in Forest Structure 

The structural attributes referring to the spatial arrangement and distribution of a forest are important 

surrogates to indicate the functional and compositional attributes of forests. The structural attributes used 

to characterize forest patterns, including successional stages, can be grouped into three main categories: 

(1) attributes of biophysical and spatial distribution, such as Leaf Area Index (LAI), crown 

closure/canopy cover, breast height diameter (DBH), height, basal area, volume or biomass, 

stem/seedling density and stem age/stage of development; (2) species diversity represented by diversity 

indices, such as the Shannon–Weiner and Simpson indices; and (3) complexity of forest structure (SCI) 

comprising variations of different spatial attributes, such as DBH, height, basal area and 

age [78,79,197,201]. Since post-fire forest environments and forest patterns are significantly different 

from pre-fire environments, the review of this section will focus more on remote sensing data and 

methods that have been applied to monitor structural parameters following disturbances in boreal 

forests. Some studies in other forest ecosystems and undisturbed environments that might be useful for 

measuring variables in post-fire boreal forests were also included and discussed in this review. 

Applications of remote sensing aimed at monitoring structural attributes of forests that were listed 

above have been driven largely by using empirical models to calibrate remotely sensed data with in situ 

data in either boreal or other forest ecosystems (Table 7, [8,28,112,187,196,202–213]). For example, 

regression-based prediction has been a widely accepted approach to mapping regional forest attributes 

using linear regression [196,203,204,213], nonlinear regression [187,209–211,214,215], partial least 

squares regression [216] and regression tree algorithms [26,217]. Recently, non-parametric regression 
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approaches, such as Reduced Major Axis (RMA) regression, k-Nearest Neighbor (k-NN), Gradient 

Nearest Neighbor (GNN) and Random Forest (RF) regressions, have received considerable attention 

for the estimation of structural forest attributes, because these approaches can account for mapping 

uncertainty and involve a large number of response variables with analytical and operational 

flexibility [28,209,218].  

Many studies have demonstrated that correlation between independent bands/indices of optical 

imagery and dependent, site-based forest biophysical variables have a high variation, depending upon 

derived variables, spectral bands/indices, vegetation properties and disturbance regimes. In post-fire 

Canadian boreal forest, Zhang et al. [187] modeled stand age distribution using a Shortwave 

Vegetation Index (SWVI) calculated from SPOT VEGETATION imagery. The dated fire scars were 

based on historic fire data, and the stand age was by pixels of each type of land cover since the fire 

derived based on the polynomial relationship between stand age and the mean SWVI, with the highest 

correlation for the mixed coniferous forest (R2 = 0.53) [187]. However, the result showed that using 

SWVI to estimate stand age was limited due to systematic bias with an overestimation of the stand age 

of about five years for young stands and an underestimation of up to 15 yr for old stands. This index 

also saturated at different points, depending on the types of land cover and the number of years since 

the fire. For example, the SWVI of coniferous forests saturated at the value of about 0.25 after  

37–42 yr since the fire, while the saturated value of deciduous forest was 0.35 at a post-fire 

regeneration age less than 10 yr. These findings were similar to Fraser and Li’s [112] based on a 

sample of fires across Canada. Fraser and Li [112] also found that an artificial neural network (ANN) 

model performed better than multiple regression in predicting the age of regenerating boreal forests 

after fire. Both studies mentioned that an understanding of burn severity and the spatial heterogeneity 

of fire disturbance will improve the prediction of forest stand age regenerating after fire with a high 

level of accuracy. Similarly, some studies were conducted in Siberian boreal regions to monitor forest 

variables after fires using a moderate resolution dataset [202,205,219]. For example, Chen et al. [202] 

validated the collection 4 MODIS LAI product (MOD15) and Landsat ETM+-derived LAI in different 

post-fire sites and found that the MODIS LAI product correctly represented the summer site 

phonologies, but significantly underestimated the LAI value of the site, with a 100-year-old post-fire 

deciduous forest during the winter period. Compared with the Landsat ETM+-derived LAI, the 

MODIS LAI overestimated values in the low LAI deciduous forests (LAI < 5) and underestimated 

values in the high LAI conifer forests (LAI > 6). Additionally, the Landsat ETM+-reduced simple ratio 

(RSR) significantly improved the LAI prediction, while the Enhanced Vegetation Index (EVI) had the 

poorest performance in the estimating LAI (R2 = 0.89 and R2 = 0.61, respectively). Because of the high 

variation of the MODIS LAI product, further comparison with field datasets and other LAI products 

(e.g., CYCLOPES LAI product [205]) from other boreal forest sites is necessary to improve LAI 

quantification in disturbed forest landscapes. 
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Table 7. Some common remote sensing approaches used to estimate post-fire forest patterns 

in boreal regions; RSR, Reduced Simple Ratio [202]; SWVI, Shortwave Vegetation Index; 

GLAS, Geoscience Laser Altimetry System on ICESAT. Other examples of remote sensing 

approaches for monitoring forest structure in undisturbed boreal forests, as well as other 

post-fire forest ecosystems can be found in [8,28,203–207]. 

Satellite/Sensor  
Independent 

Variable 

Derived Forest  

Parameter 
Method Result/Accuracy Study 

Landsat TM/ETM+ 
NDVI, EVI and 

RSR 
LAI Linear regression models 

R2 = 0.61 and R2 = 0.69 for 

EVI and NDVI model, 

respectively; R2 = 0.89 for 

the RSR model  

[202] 

SPOT 

VEGETATION 
SWVI and NDVI Stand age 

Non-linear regression and 

artificial neural network 

R2 = 0.29−0.53;  

RMSE < 10 yr 
[112,187] 

MODIS MODIS LAI LAI 

Compared with field-based LAI 

and the finer resolution data of 

LAI (Landsat ETM+) 

Overestimated in the low 

LAI (LAI < 5); 

underestimated in the high 

LAI (LAI > 6) 

[202] 

LiDAR (airborne 

and spaceborne- 

GLAS) 

Year since fire Canopy height Forward-stepwise regression R2 = 0.78 [208] 

Airborne LiDAR  

height metrics  

Canopy height,  

vegetation fill,  

crown closure,  

volume and  

total biomass 

Subtracting the ground surface 

elevation profile from 

corresponding LiDAR 

measurements for canopy 

attributes; empirical model for 

volume 

R2 = 0.73−0.8 for volume 

estimates from canopy 

profile area; relative standard 

error of 7.3% for total 

biomass estimate 

[209–211] 

LiDAR (airborne 

and spaceborne- 

GLAS) 

Spaceborne (GLAS) 

LiDAR height 

metric  

Average tree height Linear regression R2 = 0.74 (RMSE = 5.7 m)  [212] 

SAR 

C-band backscatter Soil moisture 

Linear and polynomial 

regressions; principle component 

analysis 

R2 = 0.56−0.82  

(RMSE = 3.61) 
[213] 

L-band backscatter 
Aboveground 

biomass 
Linear regression 

R2 = 0.49−0.63  

(RMSE = 2.8−3.3 t/ha) 
[196] 

LiDAR + 

Landsat/MODIS 

LiDAR height 

metrics and Landsat-

derived layers (e.g., 

land cover and  

burn severity) 

Canopy/tree height, 

vegetation fill, crown 

closure, volume, and 

total biomass 

Linear regression between forest 

attributes derived from LiDAR 

and spectral indices; stratifying 

canopy height at different burn 

severity  

Spatially explicit 

identifications of forest 

regrowth; Strong positive 

correlation between  

post-fire conditions (burn 

severity and forest type) and 

canopy attributes  

(R2 = 0.5−0.7) 

[210–212] 

LiDAR + SAR + 

Landsat 

LiDAR height 

metrics, SAR 

backscatter and 

Landsat TM bands 

Aboveground 

biomass 

k-NN nearest-neighbor 

imputation to predict biomass 

within each grid cell, using 

LiDAR grid cells as the reference 

data and the Landsat/SAR data as 

the target data 

Substantial improvement of 

standard error from 7.3% to 

5.1% with the inclusion of 

Landsat and SAR data 

[209] 
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Similar to mapping forest succession, some studies mentioned that the inclusion of derived spectral 

indices, raw spectral bands, biophysical variables and time series data can improve the estimation of 

structural attributes of post-fire forests. Li et al. [217] used Landsat TM and ETM+ to model the height 

of young forests after fire disturbances in Mississippi, USA, and found that the inclusion of modeled 

stand age, Landsat raw bands and vegetation indices, such as forestness index (FI), NDVI and NBR, as 

predictors significantly improved model error over those based only on spectral models, especially with 

regression tree models rather than step-wise linear regression models. Pflugmacher et al. [206] found that 

live forest biomass estimated by using Landsat time series (LTS) data was of much higher accuracy than 

that by single-date Landsat data, and LTS models for the estimation of dead biomass above ground 

performed significantly better than those with either LiDAR data or single-date Landsat data. This 

suggests that long-term LTS metrics can reveal not only disturbance events, but also recovery progress 

that directly relates to current forest structure and, thus, finally, improved estimation of current structural 

attributes of forests. To our knowledge, there has been no evidence in the literature considering those 

approaches with optical sensors to determine structural attributes in boreal forests following fires. 

In addition to optical sensors, a number of studies have been conducted in boreal regions to 

determine the structural attributes of boreal forests using LiDAR and SAR data (Table 7). For 

example, Kasischke et al. [196] investigated the use of L-band SAR data for estimating aboveground 

biomass in post-fire Alaskan boreal forest sites and found that the backscatter from SAR data was a 

reliable predictor for estimating aboveground biomass using a linear model, especially in the area with 

highest soil moisture (R2 = 0.63, RMSE = 3.2 t/ha). The results suggested that the estimation of 

biomass in post-fire biomes using L-band SAR should account for variations in soil moisture, since 

soil moisture did change the correlation between L-band microwave backscatter and aboveground 

biomass in sites with a low level of vegetation regrowth [196]. Additionally, Magnussen and  

Wulder [208] assumed that post-fire forest patterns are typically composed of both post-fire 

regeneration and elements of pre-fire vegetation, so that the measurement of post-fire structural 

attributes requires a separation of the burned and unburned structural elements. Consequently, 

Magnussen and Wulder [208] successfully separated post-fire and recovered canopy heights from  

pre-fire canopy heights in Canada’s boreal forests using a sequential statistical procedure with LiDAR 

data. The study also indicated that the mean regenerated post-fire canopy heights had a positive high 

correlation with the number of years since the fire.  

Although airborne LiDAR and SAR data have been successfully used to derive structural attributes 

of vegetation, an alternative approach to mapping forest attributes is to use these measurements in 

combination with remotely sensed optical imagery [207,209–212,220]. This synergistic use of active 

and passive sensors provides opportunities to fully characterize the structural attributes and dynamics 

of forests with regard to disturbance regimes (e.g., burn severity) and pre- and post-fire vegetation 

types (Table 7). Wulder et al. [210] demonstrated that the overall trend in changes of forest attributes 

derived from airborne LiDAR height profiles were stable during a five-year period in Canada’s boreal 

forests without segmented spectral information from Landsat imagery. On the other hand, a local 

approach for measuring changes in forest attributes over time, using spectrally homogeneous segments 

derived from Landsat ETM+ data to stratify the LiDAR transect, showed explicit indications of spatial 

forest growth and depletion. The difference in the magnitude of the changes was greater for 

degradation, but was less extensive spatially than it was for growth [210]. Wulder et al. [210] 
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suggested that a local approach was more appropriate for characterizing the heterogeneity of dynamic 

forest ecosystems over broad areas, due to the fact that growth tends to occur incrementally over broad 

areas, whereas degradations are dramatic and are constrained spatially. Regarding the relationship 

between post-fire conditions and post-fire forest structure, Wulder et al. [211] analyzed forest 

structure, derived from airborne LiDAR height metrics, and post-fire conditions, as measured in burn 

severity from Landsat data, and found that the structural attributes of post-fire forests were strongly 

correlated to post-fire NBR, dNBR and RdNBR. However, there were no marked differences in the 

performance of post-fire NBR, dNBR and RdNBR for characterizing post-fire effects. The relationship 

between post-fire structure and post-fire condition was strongly dependent on the types of post-fire 

vegetation [211]. These findings were consistent with a recent study by Goetz et al. [212] that explored 

post-fire canopy height in Alaska using the integration of spaceborne LiDAR, MODIS and Landsat 

imagery. Goetz et al. [212] suggested that the consideration of post-fire conditions derived from 

optical imagery, such as burn severity and types of regenerated vegetation, was important for modeling 

forest regrowth using spaceborne LiDAR height metrics data acquired from the Geoscience Laser 

Altimetry System (GLAS) on ICESAT. Similarly, Andersen et al. [209] also found that the integration 

of Landsat TM, LiDAR and SAR data improved significantly in the precision of estimating total 

biomass in the boreal forests of interior Alaska via nearest-neighbor imputation over the single use of 

LiDAR data modeling (reduction in relative standard error from 7.3% to 5.1%). This is probably 

because the inclusion of both spectral and L-band SAR backscatter provided information that 

contained the two most important attributes of three-dimensional forest structure and species 

composition in quantifying aboveground biomass [209].  

In general, regarding remote sensing data and methods for modeling forest variables, Powel et al. [28] 

assumed that it is difficult to conclude outright that one modeling technique outperforms the other. The 

performance of each method depends on measures and scales of validation. As a result of disturbances, 

the prediction of a forest’s structural parameters also depends upon the nature and level of the 

disturbances, and so, linkage with accurate maps of forest disturbance might provide a more reliable 

interpretation of variations in forest structure relative to the process of disturbance and regrowth. In the 

case of approaches using remote sensing for monitoring boreal forest variables following fire 

disturbance, this suggests that stratification of post-fire conditions and the inclusion of disturbance 

regimes, such as fire frequency, burned area and fire/burn severity [211,212], in modeling post-fire 

forest patterns might have the potential to improve the accuracy and interpretation of models. 

3.3.3. Tracking Patterns of Forest Recovery after Fire 

Remote sensing with time series data offers considerable potential in the trajectory of post-fire forest 

dynamics, beyond monitoring forest succession and current structural attributes of forests after fires. 

Many studies have addressed this issue by using moderate-to-low resolution time series NDVI, SAVI, 

EVI, albedo, NDVI-based Net Primary Productivity (NPP), fraction of absorbed photosynthetically 

active radiation (fAPAR) and, recently, the vegetation optical depth (VOD) parameter from the 

Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E) sensor as 

surrogates representing the recovery of vegetation after fire disturbances in both the Siberian boreal 

forest [219,221] and North American boreal forest [81,83,167,183,208,222–226] (Table 8).  
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Table 8. Observations of the recovery of post-fire forests using time series vegetation 

indices in boreal regions. The recovery period is determined by the recovery period of the 

vegetation index value from the burn year to either its maximum value or its pre-fire value, 

depending on the study; VOD, Vegetation Optical Depth parameter from NASA;  

AMSR-E, Advanced Microwave Scanning Radiometer for EOS sensor; fAPAR, fraction of 

absorbed photosynthetically active radiation; NDSWIR, Normalized Difference Shortwave 

Infrared Index. 

Boreal Zone Sensor/Resolution Index/Method Recovery Period Reference 

Alaska/white and 

black spruce 
AVHRR (1.1 km) NDVI 

Maximum at 25 yr for black spruce; 50 yr 

for white spruce following a fire 
[222] 

Alaska Landsat TM/ETM+ (30 m) NDVI, NBR 
8–14 yr for NDVI recovery to the  

pre-burn level 
[83] 

Alaska MODIS 

Albedo, EVI and Simple Ratio 

(SR); time series and 

chronosequence approach 

Maximum of summer albedo, EVI and SR 

at 25–30 yr since fire 
[223,224] 

Alaska SAR 
L-band backscatter; 

chronosequence approach 

Recovery of L-band backscatter at  

burn sites to the backscatter level of 

undisturbed forests after 60 yr  

since fire  

[183] 

Canada AVHRR PAL (8 km) NPP/NDVI 
About 9 yr for NPP recovery to the  

pre-burn level 
[81] 

Canada 
AVHRR GIMMS and 

AVHRR PAL (8 km) 
NDVI >5 yr for NDVI recovery to pre-burn level [225] 

Canada  MODIS (1 km) 

Albedo, EVI (monitoring 

changes in early succession 

only) 

Summer albedo and EVI significantly 

increase for the first 8 yr after fire 
[167] 

North America 

(Alaska and 

Canada) 

AMSR-E (25 km) VOD 
3–7 yr since the fire for VOD to  

recover fully  
[226] 

Canada LiDAR LiDAR canopy height 
Increased trend of canopy metrics for  

60 yr since fire 
[208] 

Siberia MODIS (1 km) fAPAR 
Very little change of fAPAR in the first  

3 yr following a fire 
[219] 

Siberia MODIS (1 km) NDVI, NDSWIR 
More than 13 yr since fire for NDVI and 

NDSWIR to recover fully  
[221] 

With respect to the post-fire recovery of NDVI [83,221,222,225,227], Normalized Difference 

Shortwave Infrared Index (NDSWIR) [221], NDVI-based NPP [81] and fAPAR [219], the 

observations of the recovery of vegetation from these analyses varied greatly, even in the same  

eco-region, depending upon data resolution, pre-burn vegetation, burn severity and the temporal and 

spatial variability of vegetation indices within burned and unburned areas (Table 8). Kasischke and 

French [222] used AVHRR-NDVI time series spanning over three years (1990–1992) to study 14 test 

sites in Alaska and found that patterns of forest recovery were defined by pre-fire vegetation and the 

timing of the wildfire during the growing season. The authors found that NDVI increased and reached 
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its maximum after 20–50 yr using the chronosequence approach to observe post-fire succession of 

three different types of vegetation, since fires depending on species following fires, followed by a 

decline of NDVI values. Goetz et al. [225] used two NDVI time series derived from the Pathfinder 

AVHRR Land (PAL) and the Global Inventory Modeling and Mapping Studies (GIMMS) AVHRR to 

investigate the recovery of vegetation after fires in the boreal forests of Canada. Their results indicated 

that the recovery rates based on NDVI of Canadian boreal forest were different between the PAL and 

GIMMS datasets, but both were consistently shorter than previous studies, e.g., [81,222]. This is 

probably because the previous studies in North America only emphasized the most impacted pixels 

within fire perimeters [225], which might require a longer period to return to pre-fire conditions [221]. 

In comparison with North American boreal forest, Cuevas Gonzalez et al. [221] found that it took 

more than 13 yr for the burned Siberian boreal forest to recover fully to pre-fire conditions with 

respect to NDVI and NDSWIR extracted from MODIS time series data. This recovery rate was longer 

than the five-year recovery period reported by Goetz et al. [225] and the four-year period investigated 

by Hicke et al. [81] in North America. Cuevas Gonzalez et al. [221] assumed that the differences in 

fire regimes and fire types, growing conditions, species composition and data resolution between the 

Siberian and North American studies might have influenced these results. Similarly,  

Alcaraz-Segura et al. [227] also mentioned that the low resolution data processing (1–8 km 

observation), such as GIMMS-NDVI data, may introduce a bias that tends to underestimate positive 

NDVI trends in the Canadian boreal forest. 

Surface albedo increases dramatically throughout the first decade after a fire due to the 

establishment and growth of grasses, shrubs and deciduous broadleaf trees [224]. Since tree canopies 

establish and typically succeed from broadleaf to conifer species in boreal forest ecosystems, post-fire 

forest recovery gradually decreases albedo [180]. Therefore, monitoring the change in albedo during 

vegetation’s recovery period following fire could be an alternative approach to determine the effects of 

fire on post-fire environments and also to understand the trends of vegetation recovery. Jin et al. [167] 

used MODIS data to derive burn severity, albedo and vegetation productivity and then analyzed the 

dynamics of the recovery of vegetation and albedo during the early stages of succession in Canadian 

boreal forests. They found that in spring and summer, the albedo increased during the first seven years 

after the fire and reached higher than the pre-fire level, with the larger increase of post-fire albedo in 

the site with higher burn severity. These changes of post-fire albedo followed consistently with both 

EVI changes that recovered to a pre-fire level for 5–8 yr after the fires depending on burn severity 

classes [167] and NDVI changes that were often higher than pre-fire levels between five to 15 yr after 

fires across Canada [225]. Compared with the result reported by Beck et al. [223], Jin et al. [167] 

assumed that spring and summer albedos following fires increase consistently with the development of 

stand age from early stages of succession to intermediate-aged stands. However, further studies are 

needed to assess and understand the inter-relationship between albedo change under the impact of fire 

and the stages of development in post-fire stands, with the inclusion of species composition, forest 

structural attributes, burn severity and vegetation productivity. A key challenge in this regard might be 

to quantify the change in magnitude and directionality of albedo and surface energy across successional 

stages and gradients of burn severity. 

Vegetation indices and products derived from them have been the most frequently used tool for 

monitoring, analyzing and mapping the temporal and spatial dynamics of post-fire environments. 
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However, these remotely sensed data, NDVI for example, usually reach saturation levels prior to the 

point where an ecosystem fully recovers its maximum biomass after disturbance [204,225,228] 

(Table 9). Therefore, tracking recovery patterns in vegetation using vegetation indices might limit and 

underestimate the rate of recovery after disturbance [183]. Similar to measuring a forest’s structural 

attributes and successional stages, SAR and LiDAR data have the potential to track the rate of a 

forest’s recovery following disturbance [183,208], since the signal from these data is sensitive and 

varied by the forest structure and stages of development [184,195] (Table 8). Magnussen and  

Wulder [208] used LiDAR pulse returns to estimate post-fire recovery rates measured by the mean 

growth rate of canopy height per year since the recorded fire, over burned areas in Canada’s boreal, 

forest with acceptable levels of precision. The authors also suggested that monitoring the regrowth of 

canopy height using airborne laser scanner data requires a separation of the burned and unburned 

structural elements within the perimeter of the fire. Tanaset et al. [183] successfully used SAR images 

to identify regrowth phases in Mediterranean forests and Alaskan boreal forest. The trajectories of 

forest recovery as seen by L-band HV SAR in both ecosystems showed that L-band backscatter was a 

negative response to the forest regrowth [183]. In terms of how the percentage of change following a 

fire shows the recovery rate, Tanase et al. [183] indicated that L-band SAR backscatter provided much 

longer monitoring intervals of 45–60 yr, compared with the analysis of the NDVI that saturated at 

about 10–20 yr after disturbance in boreal forest. Since forests may need decades to fully recovery to 

pre-fire conditions with respect to species composition and forest structure (90 yr for the Siberian larch 

forest, for example [9]), the longer intervals for monitoring L-band SAR data would be useful for 

tracking the rate of forest recovery. However, as noted by Kasischke et al. [196], using SAR data to 

measure biophysical parameters of a forest’s regrowth will require the development of methods to 

account for variations in soil moisture, particularly in the Alaskan boreal forest. 

Even though many current studies have used optical vegetation indices, such as NDVI, to describe 

forest recovery after disturbances, according to Frolking et al. [229], the assumption that the index of 

vegetation recovery equates to forest recovery may be inappropriate. Buma [230] examined this 

hypothesis using MODIS time series data from 2000 to 2010 in the area of burned forest in Colorado’s 

Routt National Forest, USA, and demonstrated that NDVI is poorly correlated with forest recovery 

represented by seedling density in burned areas. Therefore, studies on post-fire forest recovery should 

consider the inclusion of structural forest ground variables, such as seedling recruitment, percent of 

cover, tree diameter and height, directly to remotely sensed parameters [34,175,230] (Table 9). To 

date, however, very few studies in the literature have attempted to tie post-fire ground variables to 

remotely sensed data with different metrics and spatial scales in either boreal forests or other 

ecosystems. One example was presented by Roder et al. [52], who derived trajectories in post-fire 

vegetation change by exponential functions with the estimation of green vegetation cover from  

20 Landsat MSS, TM and ETM+ (covering 25 yr). These changes in trajectory were used to describe 

recovery phases following fires in the Ayora region in eastern Spain. In addition to field-based 

observations, the evaluation of satellite datasets in monitoring post-fire forest recovery should include 

comparisons of independent observations at the stage of results, for example, comparing detected 

trends of different optical datasets [225,227] and optical and SAR/LiDAR datasets in different 

regions [183]. Finally, as noted by some authors (e.g., [221,222,225,227]), analyzing patterns of 

vegetation cover in boreal forests using remote sensing data requires the development of approaches to 
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account for variations in spatial and spectral resolution of remotely sensed data, environmental 

conditions (e.g., clouds and haze, soil moisture, albedo, latitude, topography, climate), vegetation 

characteristics (e.g., species composition, land cover type, vegetation phenology) and disturbance 

regimes (e.g., fire and burn severity, fire type, fire frequency). A useful approach might be the 

stratification of those factors with similar conditions prior to applying remote sensing tools (Table 9). 

Table 9. Some limitations and possible solutions in the monitoring patterns of recovery in 

post-fire boreal forests. 

Limitation/Challenge Solution 
Selected Studies as 

References 

1. Saturation of vegetation indices in  

monitoring the progress of forest recovery  

and the recovery of vegetation indices  

may not equate to actual forest recovery  

with respect to composition and structure  

of pre-fire forest  

-Remotely sensed calibration and validation data with field 

observations of forest attributes; 

-Combination of optical and SAR/LiDAR imagery to account 

for both forest structure and forest composition in post-fire 

recovery. 

[52,183,209,210,230] 

2. Variations in the spatial and spectral resolution  

of remotely sensed data, environmental conditions,  

vegetation characteristics and disturbance regimes 

-Stratification of different conditions prior to applying remote 

sensing algorithms; 

-Application of multi-temporal and multi-sensor data, 

uncertainty based models (e.g., bootstrap based procedures, 

geospatial approach)  

[28,83,196,208] 

3. Diverse results and low accuracy in the  

prediction models of post-fire forest patterns 

-Inclusion of different predictors, such as spectral 

bands/indices, biophysical and environmental parameters in 

modeling forest patterns;  

[8,177,181,206,209,210,227] 

3. Diverse results and low accuracy in the  

prediction models of post-fire forest patterns 

-Inclusion of disturbance regimes, such as fire frequency, 

burned area and fire/burn severity in model prediction; 

-Utility of multi-temporal remote sensing imagery to account 

for temporal variations in forest patterns; 

-Application of uncertainty-based models to account for the 

uncertainty of mapping forest patterns; 

-Exploitation of the potential integration of optical and 

SAR/LiDAR imagery;  

-Application of high resolution spatial data, such as IKONOS 

and QuickBird; 

-Comparison of results derived from different methods  

and data 

[8,177,181,206,209,210,227] 

4. Operational models applied to monitor and  

reconstruct boreal forest patterns following fires 

-Exploitation of different image analysis techniques in order 

to develop robust, automated and transferable algorithms 
- 

4. Research Summary and Opportunities 

4.1. Limitations and Challenges of Monitoring Post-Fire Effects and Forest Patterns 

The influences of fire and climate change generate a wide range of temporal and spatial forest 

heterogeneity, and hence, the interpretation of fire and climate change effects, causal factors (e.g., fire 

regimes, soil properties, landforms) and ecological responses are a challenge to both scientists and 
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managers. As reviewed in the present paper, remote sensing has great potential applications to map 

burned areas, burn severity and forest patterns in post-fire environments. However, a number of 

challenges remain, such as how to understand the temporal and spatial dynamics of post-fire 

environments and ecological responses and to accurately evaluate the characteristics of post-fire boreal 

forests using a remote sensing approach (Tables 4, 6 and 9, and Figure 3). 

Monitoring fire regimes, including the burned area and burn severity, will help to accurately 

estimate fire emission and carbon sequestration in boreal forests, as well as to understand the  

short- and long-term ecological effects of fires. However, the availability and accuracy of burned area 

and burn severity products in boreal regions are often confounded by environmental conditions, 

limited instrument capabilities (e.g., resolution and cloud cover), the methods of analysis and the 

presence (or absence) of official data on the burned area and burn severity. As boreal forests are 

located in high northern latitudes (generally at latitudes from 50° to 70°N), with a very long period of 

snow and cloud cover annually, direct observation of a clear land surface for mapping the burned area 

and burn severity is thus limited by using remote sensing, particularly in using optical remote sensing. 

This problem is particularly challenging for the goal of mapping the burned area and burn severity 

during early and late-season fires, when the reflectance signatures of burned areas are altered by snow 

cover and vegetation phenology. Even though a number of mapping algorithms have been developed 

for boreal regions, ranging from visual interpretation to automatic burned area and burn severity 

classification algorithms, the accuracy of burned area estimates and burn severity assessments in 

boreal regions varied significantly among studies. Therefore, the selection of operational data and 

methods might be challenging within boreal regions, particularly for reconstructing long-time series of 

burned areas and burn severity. Remote sensing approaches for mapping burned areas and burn 

severity also require the overcoming of official fire statistics that are incomplete or biased, as well as 

the assessment of the severity of field-based burn, respectively. These data are urgently needed within 

some regions, such as boreal forests located in Eurasia. 

Mapping and modeling the complexity of post-fire forest patterns and their changes over time is a 

key issue in spatial forest ecology that is related to fire. Even though remote sensing has been 

acknowledged as one of the most powerful methods to map components of vegetation and to estimate 

their changes over time, this technique has sometimes been demonstrated as an unrealistic and biased 

representation of post-fire forest patterns. For example, optical remote sensing is less than ideal for 

understory studies, where the overstory canopy blocks the understory signal. Consequently, 

characterizing the stages of forest succession, including both early and late successional types, might 

be challenging using optical sensors. This problem, coupled with the saturation issues of vegetation 

indices, limits the monitoring of post-fire forest patterns that showed, in most reviewed studies, an 

underestimation of classes of forest succession and an overestimation of the forest recovery rate. 

Synthetic aperture radar systems and LiDAR systems are well designed to capture forest structure and 

may address some issues of passive optical systems; however, the application of these data may 

require higher costs and remain unavailable for mapping post-fire forest patterns at  

regional-to-continental scales, especially with LiDAR data. Additionally, the limitation of field 

observation, as well as the variations of environmental conditions (e.g., soil moisture, topography), 

vegetation characteristics (e.g., pre- and post- fire vegetation, species characteristic) and disturbance 

regimes (e.g., fire frequency, fire season and severity) also alter the accuracy of modeling the recovery 
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of post-fire forests, because the recovery process is determined by the complex interaction of those 

biotic and abiotic factors.  

4.2. Possible Solutions and Opportunities for Future Research 

Remote sensing offers an enormous amount of data when monitoring and studying forest 

ecosystems, and the selection of suitable datasets is crucial for maximizing accuracy and efficiency 

when doing so. Each sensor system has its own shortcomings and advantages in monitoring post-fire 

effects and patterns of forest recovery, so synergistic use of active and passive sensors provides 

opportunities to fully characterize post-fire effects and forest patterns that might be impossible with a 

single dataset. Additionally, many reviewed studies in this paper have emphasized the importance of 

multi-temporal optical datasets (e.g., Landsat imagery) for post-fire effects and monitoring forest 

patterns, since these data can be archived historically, corresponding to each stage of forest dynamics 

and changes. Therefore, the inclusion of time series datasets will account for the nature and level of 

disturbances that directly influence patterns of forest regrowth. Given that common generation sensors, 

such as AVHRR, Landsat, MODIS and SPOT, have both advantages and disadvantages in forest 

monitoring, there is a need for future research and investigation into the application of other sensors 

with high spatial resolutions (e.g., QuickBird, IKONOS, unmanned aerial vehicle (UAV)), 

hyperspectral optical sensors, LiDAR/SAR and even future generations of spaceborne LiDAR 

missions, such as NASA’s DESDynl, ICESat-II, and LIST for monitoring post-fire patterns  

and effects.  

Future research should also consider the suggestions in this paper concerning the methods of remote 

sensing to eliminate the uncertainties of monitoring post-fire patterns and effects. First, as has been 

stated by many other researchers (e.g., [20,21,56]), studying fire-related forest ecology using remote 

sensing involves many different disciplines, processes and phenomena. Researchers should properly 

define all related terminology, use it consistently and clarify the level of presumption in the methods of 

measuring post-fire effects and forest patterns through the use of remote sensing. Second, analyzing 

post-fire effects and forest patterns in boreal forests using remote sensing data requires the 

development of approaches to account for variations in the spatial and spectral resolution of remotely 

sensed data, environmental conditions, vegetation characteristics and disturbance regimes. Possible 

approaches might be either the inclusion of all independent variables in modeling post-fire effects and 

forest patterns (e.g., using non-parametric analysis) or the stratification of these with similar conditions 

prior to applying the methods of remote sensing for monitoring post-fire effects and forest recovery 

patterns. With the development of remote sensing capabilities, the extraction and stratification of those 

independent factors are possible to obtain freely from remote sensing systems, such as the 

classification of Landsat and MODIS imagery for vegetation classes [93], the ASTER digital elevation 

model for topography [173] and MODIS fire products for fire regimes [7]. Third, Rocchini et al. [194] 

recently noted that the methods of remote sensing for mapping ecosystems should account for 

uncertainty in an explicit manner by using uncertainty-related models, such as fuzzy set theory, 

spectral unmixing, Bayesian theory and bootstrap-based procedures. The uncertainty-related models 

will represent forest ecosystems as a manner of a continuum, rather than a discrete boundary, which 

might provide an unrealistic representation. These approaches are very useful, in particular using 
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remote sensing to monitor burn severity and patterns of forest recovery in which the community of 

post-fire vegetation is viewed in classes of a continuum, rather than discrete classes [184,197,198]. 

Finally, it is necessary to conduct more research on the post-fire effects and forest patterns for boreal 

regions in Eurasia, such as Russia, northeastern China and Mongolia, because of their considerable 

contribution to the regional and global balance of carbon and climate change, as well as incomplete 

and biased estimates on the post-fire effects and forest patterns in these regions. All studies on forest 

fires and forest patterns that are related to remote sensing are also in great need of field campaigns. 

Acknowledgements 

The authors would like to acknowledge the financial support of the Vietnamese International 

Education Development scholarship and the Department of Geography and Planning of the University 

of Saskatchewan. We also acknowledge the anonymous reviewers for their valuable comments and 

Colin Brown for the language revision to improve this manuscript. 

Conflict of Interest 

The authors declare no conflict of interest 

References 

1. Food and Agriculture Organization (FAO). Global Forest Resources Assessment 2010—Main 

Report. In Food and Agriculture Organization of the United Nations (FAO) Forestry Paper; 

FAO: Rome, Italia, 2010; Volume 163. 

2. European Association of Remote Sensing Laboratories (EARSEL). Disaster Management and 

Emergency Response in the Mediterranean Region. In Proceedings of the 1st International 

Conference on Remote Sensing Techniques in Disaster Management and Emergency Response 

in the Mediterranean Region, Croatia, 22–24 September 2008; Oluic, M., Ed.; EARSEL: Zagreb, 

Croatia, 2008. 

3. Flannigan, M.; Amiro, B.; Logan, K.; Stocks, B.; Wotton, B. Forest fires and climate change in 

the 21 st century. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 847–859. 

4. Carmenta, R.; Parry, L.; Blackburn, A.; Vermeylen, S.; Barlow, J. Understanding human-fire 

interactions in tropical forest regions: A case for interdisciplinary research across the natural and 

social sciences. Ecol. Soc. 2011, 16, 53–75. 

5. Babintseva, R.; Titova, Y.V. Effects of Fire on the Regeneration of Larch forests in the Lake 

Baikal Basin. In Fire in Ecosystems of Boreal Eurasia; Springer: Dordrecht, The Netherlands, 

1996; Volume 48, pp. 358–365. 

6. Goldammer, J.; Furyaev, V. Fire in Ecosystems of Boreal Eurasia. Ecological Impacts and Links 

to the Global System. In Fire in Ecosystems of Boreal Eurasia; Springer: Dordrecht, The 

Netherlands, 1996; Volume 48, pp. 1–20. 

7. de Groot, W.J.; Cantin, A.S.; Flannigan, M.D.; Soja, A.J.; Gowman, L.M.; Newbery, A.  

A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manag. 2012, 294, 

23–34. 



Remote Sens. 2014, 6 506 

 

8. Bélisle, A.C.; Gauthier, S.; Cyr, D.; Bergeron, Y.; Morin, H. Fire regime and old-growth boreal 

forests in central Quebec, Canada: An ecosystem management perspective. Silva Fenn. 2011, 45, 

889–908. 

9. Zyryanova, O.; Abaimov, A.; Bugaenko, T.; Bugaenko, N. Recovery of Forest Vegetation after 

Fire Disturbance. In Permafrost Ecosystems; Springer: Dordrecht, The Netherlands, 2010; pp. 83–96. 

10. McCullough, D.G.; Werner, R.A.; Neumann, D. Fire and insects in northern and boreal forest 

ecosystems of North America 1. Annu. Rev. Entomol. 1998, 43, 107–127. 

11. Volney, W.J.A.; Fleming, R.A. Climate change and impacts of boreal forest insects. Agric. 

Ecosyst. Environ.2000, 82, 283–294. 

12. Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S.; Mack, M.C. Changes in fire regime break the 

legacy lock on successional trajectories in Alaskan boreal forest. Glob. Chang. Biol. 2010, 16, 

1281–1295. 

13. Yoshikawa, K.; Bolton, W.R.; Romanovsky, V.E.; Fukuda, M.; Hinzman, L.D. Impacts of 

wildfire on the permafrost in the boreal forests of Interior Alaska. J. Geophys. Res.: Atmos. 2002, 

107, FFR 4:1–FFR 4:14. 

14. Kasischke, E.S.; Johnstone, J.F. Variation in postfire organic layer thickness in a black spruce 

forest complex in interior Alaska and its effects on soil temperature and moisture. Can. J. For. 

Res. 2005, 35, 2164–2177. 

15. Kane, E.; Kasischke, E.; Valentine, D.; Turetsky, M.; McGuire, A. Topographic influences on 

wildfire consumption of soil organic carbon in interior Alaska: Implications for black carbon 

accumulation. J. Geophys. Res.: Biogeosci. 2007, doi: 10.1029/2007JG000458. 

16. Barrett, K.; McGuire, A.; Hoy, E.; Kasischke, E. Potential shifts in dominant forest cover in 

interior Alaska driven by variations in fire severity. Ecol. Appl. 2011, 21, 2380–2396. 

17. Johnstone, J.F.; Chapin, F.S.; Hollingsworth, T.N.; Mack, M.C.; Romanovsky, V.; Turetsky, M. 

Fire, climate change, and forest resilience in interior Alaska Can. J. For. Res. 2010, 40,  

1302–1312. 

18. Kasischke, E.S.; Christensen, N.L., Jr.; Stocks, B.J. Fire, global warming, and the carbon balance 

of boreal forests. Ecol. Appl. 1995, 5, 437–451. 

19. Sofronov, M.; Volokitina, A. Wildfire Ecology in Continuous Permafrost Zone. In Permafrost 

Ecosystems; Springer: Dordrecht, The Netherlands, 2010; pp. 59–82. 

20. Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.;  

Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire 

characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. 

21. French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. 

Using Landsat data to assess fire and burn severity in the North American boreal forest region: 

An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. 

22. Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. The temporal dimension of 

differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 

Peloponnese wildfires in Greece. Remote Sens. Environ. 2010, 114, 2548–2563. 

23. Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Johnsson, A.M.; Merganicova, K.; 

Netherer, S.; Arpaci, A.; Bontemps, J.-D.; Bugmann, H.; et al. Modelling natural disturbances in 

forest ecosystems: A review. Ecol. Model. 2011, 222, 903–924. 



Remote Sens. 2014, 6 507 

 

24. Mulder, V.; de Bruin, S.; Schaepman, M.; Mayr, T. The use of remote sensing in soil and terrain 

mapping—A review. Geoderma 2012, 122, 66–74. 

25. Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using 

Landsat data. Remote Sens. Environ. 2012, 122, 66–74. 

26. Pierce, K.B., Jr.; Ohmann, J.L.; Wimberly, M.C.; Gregory, M.J.; Fried, J.S. Mapping wildland 

fuels and forest structure for land management: A comparison of nearest neighbor imputation 

and other methods. Can. J. For. Res. 2009, 39, 1901–1916. 

27. Boyd, D.; Foody, G. An overview of recent remote sensing and GIS based research in ecological 

informatics. Ecol. Inf. 2010, 6, 25–36. 

28. Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.;  

Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat  

time-series and field inventory data: A comparison of empirical modeling approaches. Remote 

Sens. Environ. 2010, 114, 1053–1068. 

29. Wang, S.; Miao, L.; Peng, G. An improved algorithm for forest fire detection using HJ data. 

Proced. Environ. Sci. 2012, 13, 140–150. 

30. Schroeder, W.; Prins, E.; Giglio, L.; Csiszar, I.; Schmidt, C.; Morisette, J.; Morton, D. Validation 

of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. 

Environ. 2008, 112, 2711–2726. 

31. Giglio, L.; Csiszar, I.; Restas, A.; Morisette, J.T.; Schroeder, W.; Morton, D.; Justice, C.O. 

Active fire detection and characterization with the Advanced Spaceborne Thermal Emission and 

Reflection radiometer (ASTER). Remote Sens. Environ. 2008, 112, 3055–3063. 

32. Wooster, M.; Xu, W.; Nightingale, T. Sentinel-3 SLSTR active fire detection and FRP product: 

Pre-launch algorithm development and performance evaluation using MODIS and ASTER 

datasets. Remote Sens. Environ. 2012, 120, 236–254. 

33. Justice, C.O.; Giglio, L.; Roy, D.; Boschetti, L.; Csiszar, I.; Davies, D.; Korontzi, S.; Schroeder, W.; 

O’Neal, K.; Morisette, J. MODIS-Derived Global Fire Products. In Land Remote Sensing and 

Global Environmental Change; Ramachandran, B., Justice, C.O., Abrams, M.J., Eds.; Springer: 

New York, NY, USA, 2011; Volume 11, pp. 661–679. 

34. Leon, J.R.R.; van Leeuwen, W.J.D.; Casady, G.M. Using MODIS-NDVI for the modeling of 

post-wildfire vegetation response as a function of environmental conditions and pre-fire 

restoration treatments. Remote Sens. 2012, 4, 598–621. 

35. Schoennagel, T.; Veblen, T.T.; Romme, W.H. The interaction of fire, fuels, and climate across 

Rocky Mountain forests. BioScience 2004, 54, 661–676. 

36. Johnson, E.; Miyanishi, K.; Bridge, S. Wildfire regime in the boreal forest and the idea of 

suppression and fuel buildup. Conserv. Biol. 2001, 15, 1554–1557. 

37. Chuvieco, E.; Congalton, R.G. Application of remote sensing and geographic information 

systems to forest fire hazard mapping. Remote Sens. Environ. 1989, 29, 147–159. 

38. Liang, J.; Zhou, M.; Verbyla, D.L.; Zhang, L.; Springsteen, A.L.; Malone, T. Mapping forest 

dynamics under climate change: A matrix model. For. Ecol. Manag. 2011, 262, 2250–2262. 

39. Conard, S.G.; A. Ivanova, G. Wildfire in Russian boreal forests—Potential impacts of fire 

regime characteristics on emissions and global carbon balance estimates. Environ. Pollut. 1997, 

98, 305–313. 



Remote Sens. 2014, 6 508 

 

40. Beuning, K.R.M.; Zimmerman, K.A.; Ivory, S.J.; Cohen, A.S. Vegetation response to  

glacial-interglacial climate variability near Lake Malawi in the southern African tropics. 

Palaeogeogr. Palaeoclim. Palaeoecol. 2011, 303, 81–92. 

41. Kayes, L.J.; Puettmann, K.J.; Anderson, P.D. Short term bryoid and vascular vegetation response 

to reforestation alternatives following wildfire in conifer plantations. Appl. Veg. Sci. 2011, 14, 

326–339. 

42. Voepel, H.; Ruddell, B.; Schumer, R.; Troch, P.A.; Brooks, P.D.; Neal, A.; Durcik, M.; 

Sivapalan, M. Quantifying the role of climate and landscape characteristics on hydrologic 

partitioning and vegetation response. Water Resour. Res. 2011, 47, W00J09. 

43. Russell-Smith, J.; Gardener, M.R.; Brock, C.; Brennan, K.; Yates, C.P.; Grace, B. Fire 

persistence traits can be used to predict vegetation response to changing fire regimes at expansive 

landscape scales—An Australian example. J. Biogeogr. 2012, 39, 1657–1668. 

44. Jain, T.B.; Graham, R.T.; Pilliod, D.S. Tongue-tied: Confused meanings for common fire 

terminology can lead to fuels mismanagement. Wildfire 2004, 6/7, 22–26. 

45. Key, C.H.; Benson, N.C. Landscape Assessment Sampling and Analysis Methods; General 

Technical Report RMRS-GRT-164-CD; USDA Forest Service, Rocky Mountain Research 

Station: Ogden, UT, USA, 2006.  

46. Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating Landsat Thematic 

Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in 

Greece. Int. J. Wildland Fire 2010, 19, 558–569. 

47. Paz, S.; Carmel, Y.; Jahshan, F.; Shoshany, M. Post-fire analysis of pre-fire mapping of fire-risk: 

A recent case study from Mt. Carmel (Israel). For. Ecol. Manag. 2011, 262, 1184–1188. 

48. Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; 

Martín, S.; Ibarra, P. Development of a framework for fire risk assessment using remote sensing 

and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. 

49. Chowdhury, E.H.; Hassan, Q.K. Use of remote sensing-derived variables in developing a forest 

fire danger forecasting system. Nat. Hazard. 2013, doi: 10.1007/s11069-013-0564-7. 

50. Akther, M.; Hassan, Q.K. Remote sensing-based assessment of fire danger conditions over 

boreal forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 992–999. 

51. Lutz, J.A.; Key, C.; Kolden, C.; Kane, J.; van Wagtendonk, J. Fire frequency, area burned, and 

severity: A quantitative approach to defining a normal fire year. Fire Ecol. 2011, 7, 51–65. 

52. Roder, A.; Hill, J.; Duguy, B.; Alloza, J.A.; Vallejo, R. Using long time series of Landsat data to 

monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora 

region (eastern Spain). Remote Sens. Environ. 2008, 112, 259–273. 

53. Senici, D.; Chen, H.Y.; Bergeron, Y.; Cyr, D. Spatiotemporal variations of fire frequency in 

central boreal forest. Ecosystems 2010, 13, 1227–1238. 

54. Dı́az-Delgado, R.; Pons, X. Spatial patterns of forest fires in Catalonia (NE of Spain) along the 

period 1975–1995: Analysis of vegetation recovery after fire. For. Ecol. Manag. 2001, 147,  

67–74. 

55. Brown, C.; Johnstone, J. How does increased fire frequency affect carbon loss from fire? A case 

study in the northern boreal forest. Int. J. Wildland Fire 2011, 20, 829–837. 



Remote Sens. 2014, 6 509 

 

56. Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. 

Int. J. Wildland Fire 2009, 18, 116–126. 

57. Heward, H.; Smith, A.M.S.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.M.; Morgan, P.;  

Lannom, K.O. Is burn severity related to fire intensity? Observations from landscape scale 

remote sensing. Int. J. Wildland Fire 2013, 22, 910–918. 

58. Barrett, K.; Kasischke, E.S. Controls on variations in MODIS fire radiative power in Alaskan 

boreal forests: Implications for fire severity conditions. Remote Sens. Environ. 2013, 130,  

171–181. 

59. Loboda, T.; French, N.; Hight-Harf, C.; Jenkins, L.; Miller, M. Mapping fire extent and burn 

severity in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation to 

wildland fire. Remote Sens. Environ. 2013, 134, 194–209. 

60. Veraverbeke, S.; Harris, S.; Hook, S. Evaluating spectral indices for burned area discrimination 

using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens. Environ. 2011, 115, 

2702–2709. 

61. Moreno Ruiz, J.A.; Riano, D.; Arbelo, M.; French, N.H.; Ustin, S.L.; Whiting, M.L. Burned area 

mapping time series in Canada (1984–1999) from NOAA-AVHRR LTDR: A comparison with 

other remote sensing products and fire perimeters. Remote Sens. Environ. 2012, 117, 407–414. 

62. Kasischke, E.S.; Loboda, T.; Giglio, L.; French, N.H.; Hoy, E.; de Jong, B.; Riano, D. 

Quantifying burned area for North American forests: Implications for direct reduction of carbon 

stocks. J. Geophys. Res. 2011, 116, G04003. 

63. George, C.; Rowland, C.; Gerard, F.; Balzter, H. Retrospective mapping of burnt areas in Central 

Siberia using a modification of the normalised difference water index. Remote Sens. Environ. 

2006, 104, 346–359. 

64. Loboda, T.; O’neal, K.; Csiszar, I. Regionally adaptable dNBR-based algorithm for burned area 

mapping from MODIS data. Remote Sens. Environ. 2007, 109, 429–442. 

65. Kasischke, E.S.; French, N.H. Locating and estimating the areal extent of wildfires in Alaskan 

boreal forests using multiple-season AVHRR NDVI composite data. Remote Sens. Environ. 

1995, 51, 263–275. 

66. Kasischke, E.S.; Turetsky, M.R.; Ottmar, R.D.; French, N.H.; Hoy, E.E.; Kane, E.S. Evaluation 

of the composite burn index for assessing fire severity in Alaskan black spruce forests. Int. J. 

Wildland Fire 2008, 17, 515–526. 

67. Barrett, K.; Kasischke, E.; McGuire, A.; Turetsky, M.; Kane, E. Modeling fire severity in black 

spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data. Remote 

Sens. Environ. 2010, 114, 1494–1503. 

68. Boby, L.A.; Schuur, E.A.; Mack, M.C.; Verbyla, D.; Johnstone, J.F. Quantifying fire severity, 

carbon, and nitrogen emissions in Alaska’s boreal forest. Ecol. Appl. 2010, 20, 1633–1647. 

69. Hoy, E.E.; French, N.H.; Turetsky, M.R.; Trigg, S.N.; Kasischke, E.S. Evaluating the potential of 

Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. Int. J. 

Wildland Fire 2008, 17, 500–514. 

70. Murphy, K.A.; Reynolds, J.H.; Koltun, J.M. Evaluating the ability of the differenced Normalized 

Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. 

Int. J. Wildland Fire 2008, 17, 490–499. 



Remote Sens. 2014, 6 510 

 

71. Allen, J.L.; Sorbel, B. Assessing the differenced Normalized Burn Ratio’s ability to map burn 

severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland 

Fire 2008, 17, 463–475. 

72. Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.L.; Quayle, B.; Howard, S. A project for 

monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–20. 

73. Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. Evaluation of pre/post-fire 

differenced spectral indices for assessing burn severity in a Mediterranean environment with 

Landsat Thematic Mapper. Int. J. Remote Sens. 2011, 32, 3521–3537. 

74. Johnstone, J.F.; Kasischke, E.S. Stand-level effects of soil burn severity on postfire regeneration 

in a recently burned black spruce forest. Can. J. For. Res. 2005, 35, 2151–2163. 

75. Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D. Analysis of Alaskan burn 

severity patterns using remotely sensed data. Int. J. Wildland Fire 2007, 16, 277–284. 

76. Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity 

in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. 

77. Michalek, J.; French, N.; Kasischke, E.; Johnson, R.; Colwell, J. Using Landsat TM data to 

estimate carbon release from burned biomass in an Alaskan spruce forest complex. Int. J. Remote 

Sens. 2000, 21, 323–338. 

78. McElhinny, C.; Gibbons, P.; Brack, C.; Bauhus, J. Forest and woodland stand structural 

complexity: Its definition and measurement. For. Ecol. Manag. 2005, 218, 1–24. 

79. Pommerening, A. Approaches to quantifying forest structures. Forestry 2002, 75, 305–324. 

80. Hollingsworth, T.N.; Johnstone, J.F.; Bernhardt, E.L.; Chapin, F.S., III. Fire severity filters 

regeneration traits to shape community assembly in Alaska’s boreal forest. PLoS One 2013,  

8, e56033. 

81. Hicke, J.A.; Asner, G.P.; Kasischke, E.S.; French, N.H.; Randerson, J.T.; James Collatz, G.; 

Stocks, B.J.; Tucker, C.J.; Los, S.O.; Field, C.B. Postfire response of North American boreal 

forest net primary productivity analyzed with satellite observations. Glob. Chang. Biol. 2003, 9, 

1145–1157. 

82. Furyaev, V.V.V.; Vaganov, E.A.; Tchebakova, N.M.; Valendik, E.N. Effects of fire and climate 

on successions and structural changes in the Siberian Boreal forest. Eurasian J. For. Res. 2001, 

2, 1–15. 

83. Epting, J.; Verbyla, D. Landscape-level interactions of prefire vegetation, burn severity, and 

postfire vegetation over a 16-year period in interior Alaska. Can. J. For. Res. 2005, 35,  

1367–1377. 

84. Schimmel, J.; Granstram, A. Fire severity and vegetation response in the boreal Swedish forest. 

Ecology 1996, 77, 1436–1450. 

85. Brown, P.M.; Kaufmann, M.R.; Shepperd, W.D. Long-term, landscape patterns of past fire 

events in a montane ponderosa pine forest of central Colorado. Landsc. Ecol. 1999, 14, 513–532. 

86. Flannigan, M.; Stocks, B.J.; Wotton, B. Climate change and forest fires. Sci. Total Environ. 

2000, 262, 221–229. 

87. Huang, F.; Wang, P. Vegetation change of ecotone in west of Northeast China plain using  

time-series remote sensing data. Chin. Geogr. Sci. 2010, 20, 167–175. 



Remote Sens. 2014, 6 511 

 

88. Franklin, J.F.; Spies, T.A.; Pelt, R.V.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.;  

Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.; Shaw, D.C. Disturbances and structural 

development of natural forest ecosystems with silvicultural implications, using Douglas-fir 

forests as an example. For. Ecol. Manag. 2002, 155, 399–423. 

89. Bergeron, Y.; Gauthier, S.; Kafka, V.; Lefort, P.; Lesieur, D. Natural fire frequency for the 

eastern Canadian boreal forest: Consequences for sustainable forestry. Can. J. For. Res. 2001, 

31, 384–391. 

90. Kasischke, E.S.; Bourgeau-Chavez, L.L.; Johnstone, J.F. Assessing spatial and temporal 

variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using 

spaceborne synthetic aperture radar imagery—Implications for post-fire tree recruitment. Remote 

Sens. Environ. 2007, 108, 42–58. 

91. Quintano, C.; Fernandez-Manso, A.; Stein, A.; Bijker, W. Estimation of area burned by forest 

fires in Mediterranean countries: A remote sensing data mining perspective. For. Ecol. Manag. 

2011, 262, 1597–1607. 

92. Loboda, T.V.; Zhang, Z.; O'Neal, K.J.; Sun, G.; Csiszar, I.A.; Shugart, H.H.; Sherman, N.J. 

Reconstructing disturbance history using satellite-based assessment of the distribution of land 

cover in the Russian Far East. Remote Sens. Environ. 2012, 118, 241–248. 

93. Potapov, P.; Hansen, M.C.; Stehman, S.V.; Loveland, T.R.; Pittman, K. Combining MODIS and 

Landsat imagery to estimate and map boreal forest cover loss. Remote Sens. Environ. 2008, 112, 

3708–3719. 

94. Earth Explorer. Available online:. Available online: http://earthexplorer.usgs.gov/ (accessed on 

15 September 2013). 

95. Bourgeau-Chavez, L.; Kasischke, E.; Brunzell, S.; Mudd, J.; Tukman, M. Mapping fire scars in 

global boreal forests using imaging radar data. Int. J. Remote Sens. 2002, 23, 4211–4234. 

96. Bourgeau-Chavez, L.; Harrell, P.; Kasischke, E.; French, N. The detection and mapping of 

Alaskan wildfires using a spaceborne imaging radar system. Int. J. Remote Sens. 1997, 18,  

355–373. 

97. ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer. Available online: 

http://asterweb.jpl.nasa.gov/ (accessed on 15 September 2013).  

98. MODIS. Available online: http://modis.gsfc.nasa.gov (accessed on 15 September 2013). 

99. Reverb|ECHO. Available online: http://reverb.echo.nasa.gov (accessed on 15 September 2013). 

100. NOAA’s Comprehensive Large Array—Data Stewardship System. Available online: 

http://www.nsof.class.noaa.gov (accessed on 15 September 2013). 

101. VEGETATION. Available online: http://www.spot-vegetation.com (accessed on 15 September 

2013). 

102. Modis Burned area Product Index. Available online: http://modis-fire.umd.edu/ 

Burned_Area_Products.html (accessed on 15 September 2013).  

103. Global Fire Emissions Database. Available online: http://www.falw.vu/~gwerf/GFED (accessed 

on 15 September 2013).  

104. GEM—Global Environment Monitoring. Available online: http://bioval.jrc.ec.europa.eu 

(accessed on 15 September 2013).  



Remote Sens. 2014, 6 512 

 

105. ESA—Data User Element. Available online: http://dup.esrin.esa.int/prjs/prjs43.php (accessed on 

15 September 2013). 

106. Geoland2. Available online: http://www.geoland2.eu (accessed on 15 September 2013). 

107. Kasischke, E.S.; French, N.H.F.; Harrell, P.; Christensen, N.L., Jr.; Ustin, S.L.; Barry, D. 

Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data. 

Remote Sens. Environ. 1993, 45, 61–71. 

108. Cahoon, D.R.; Stocks, B.J.; Levine, J.S.; Cofer, W.R.; Pierson, J.M. Satellite analysis of the 

severe 1987 forest fires in northern China and southeastern Siberia. J. Geophys. Res.: Atmos. 

1994, 99, 18627–18638. 

109. French, N.; Kasischke, E.; Bourgeau-Chavez, L.; Berry, D. Mapping the location of wildfires in 

Alaskan boreal forests using AVHRR imagery. Int. J. Wildland Fire. 1995, 5, 55–62. 

110. Fraser, R.; Li, Z.; Cihlar, J. Hotspot and NDVI differencing synergy (HANDS): A new technique 

for burned area mapping over boreal forest. Remote Sens. Environ. 2000, 74, 362–376. 

111. Remmel, T.K.; Perera, A.H. Fire mapping in a northern boreal forest: Assessing AVHRR/NDVI 

methods of change detection. For. Ecol. Manag. 2001, 152, 119–129. 

112. Fraser, R.; Li, Z. Estimating fire-related parameters in boreal forest using SPOT VEGETATION. 

Remote Sens. Environ. 2002, 82, 95–110.  

113. Li, Z.; Nadon, S.; Cihlar, J. Satellite-based detection of Canadian boreal forest fires: 

Development and application of the algorithm. Int. J. Remote Sens. 2000, 21, 3057–3069. 

114. Kajii, Y.; Kato, S.; Streets, D.G.; Tsai, N.Y.; Shvidenko, A.; Nilsson, S.; McCallum, I.; 

Minko, N.P.; Abushenko, N.; Altyntsev, D. Boreal forest fires in Siberia in 1998: Estimation of 

area burned and emissions of pollutants by advanced very high resolution radiometer satellite 

data. J. Geophys. Res. 2002, 107, ACH 4-1–ACH 4-8. 

115. Kelhä, V.; Rauste, Y.; Häme, T.; Sephton, T.; Buongiorno, A.; Frauenberger, O.; Soini, K.; 

Venäläinen, A.; Miguel-Ayanz, J.S.; Vainio, T. Combining AVHRR and ATSR satellite sensor 

data for operational boreal forest fire detection. Int. J. Remote Sens. 2003, 24, 1691–1708. 

116. Zhang, Y.H.; Wooster, M.J.; Tutubalina, O.; Perry, G.L.W. Monthly burned area and forest fire 

carbon emission estimates for the Russian Federation from SPOT VGT. Remote Sens. Environ. 

2003, 87, 1–15. 

117. Soja, A.; Sukhinin, A.; Cahoon, D., Jr.; Shugart, H.; Stackhouse, P., Jr. AVHRR-derived fire 

frequency, distribution and area burned in Siberia. Int. J. Remote Sens. 2004, 25, 1939–1960. 

118. Sukhinin, A.I.; French, N.H.; Kasischke, E.S.; Hewson, J.H.; Soja, A.J.; Csiszar, I.A.; Hyer, E.J.; 

Loboda, T.; Conrad, S.G.; Romasko, V.I. AVHRR-based mapping of fires in Russia: New 

products for fire management and carbon cycle studies. Remote Sens. Environ. 2004, 93,  

546–564. 

119. Loboda, T.; Csiszar, I. Reconstruction of fire spread within wildland fire events in Northern 

Eurasia from the MODIS active fire product. Glob. Planet. Chang. 2007, 56, 258–273. 

120. Pu, R.; Li, Z.; Gong, P.; Csiszar, I.; Fraser, R.; Hao, W.-M.; Kondragunta, S.; Weng, F. 

Development and analysis of a 12-year daily 1-km forest fire dataset across North America from 

NOAA/AVHRR data. Remote Sens. Environ. 2007, 108, 198–208. 



Remote Sens. 2014, 6 513 

 

121. Chuvieco, E.; Englefield, P.; Trishchenko, A.P.; Luo, Y. Generation of long time series of burn 

area maps of the boreal forest from NOAA—AVHRR composite data. Remote Sens. Environ. 

2008, 112, 2381–2396. 

122. Loboda, T.V.; Hoy, E.E.; Giglio, L.; Kasischke, E.S. Mapping burned area in Alaska using 

MODIS data: A data limitations-driven modification to the regional burned area algorithm. Int. J. 

Wildland Fire. 2011, 20, 487–496. 

123. Vivchar, A. Wildfires in Russia in 2000–2008: Estimates of burnt areas using the satellite 

MODIS MCD45 data. Remote Sens. Lett. 2011, 2, 81–90. 

124. Erdenesaikhan, N.; Erdenetuya, M. Forest and steppe fire monitoring in Mongolia using satellite 

remote sensing. Int. Forest Fire News 1999, 21, 71–74. 

125. Chuvieco, E.; Opazo, S.; Sione, W.; Valle, H.D.; Anaya, J.; Bella, C.D.; Cruz, I.; Manzo, L.; 

Lopez, G.; Mari, N. Global burned-land estimation in Latin America using MODIS composite 

data. Ecol. Appl. 2008, 18, 64–79. 

126. Roy, D.; Boschetti, L.; Justice, C.; Ju, J. The collection 5 MODIS burned area product—Global 

evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 

3690–3707. 

127. Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area 

mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. 

128. Loepfe, L.; Lloret, F.; Roman-Cuesta, R.M. Comparison of burnt area estimates derived from 

satellite products and national statistics in Europe. Int. J. Remote Sens. 2012, 33, 3653–3671. 

129. Giglio, L.; Randerson, J.; Werf, G.; Kasibhatla, P.; Collatz, G.; Morton, D.; DeFries, R. 

Assessing variability and long-term trends in burned area by merging multiple satellite fire 

products. Biogeosciences 2010, 7, 1171–1186. 

130. Chuvieco, E.; Giglio, L.; Justice, C. Global characterization of fire activity: Toward defining fire 

regimes from Earth observation data. Glob. Chang. Biol. 2008, 14, 1488–1502. 

131. Tansey, K.; Grégoire, J.M.; Defourny, P.; Leigh, R.; Pekel, J.F.; van Bogaert, E.; Bartholomé, E. 

A new, global, multi‐annual (2000–2007) burnt area product at 1 km resolution. Geophys. Res. 

Lett. 2008, 35, L01401. 

132. Grégoire, J.-M.; Tansey, K.; Silva, J. The GBA2000 initiative: Developing a global burnt area 

database from SPOT-VEGETATION imagery. Int. J. Remote Sens. 2003, 24, 1369–1376. 

133. Tansey, K.; Grégoire, J.M.; Stroppiana, D.; Sousa, A.; Silva, J.; Pereira, J.; Boschetti, L.;  

Maggi, M.; Brivio, P.A.; Fraser, R. Vegetation burning in the year 2000: Global burned area 

estimates from SPOT VEGETATION data. J. Geophys. Res.: Atmos. 2004, 109, D14S03. 

134. Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned 

area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res.: 

Biogeosci. 2013, 118, 317–328. 

135. Plummer, S.; Arino, O.; Simon, M.; Steffen, W. Establishing a earth observation product service 

for the terrestrial carbon community: The GLOBCARBON initiative. Mitig. Adapt. Strateg. 

Glob. Chang. 2006, 11, 97–111. 

136. Lacaze, R.; Balsamo, G.; Baret, F.; Bradley, A.; Calvet, J.; Camacho, F.; D’Andrimont, R.; 

Freitas, S.; Makhmara, H.; Naeimi, V. Geoland2-Towards an Operational GMES Land 

Monitoring Core Service; First Results of the Biogeophysical Parameter Core Mapping Service. 



Remote Sens. 2014, 6 514 

 

In Proceedings of the ISPRS TC VII Symposium—100 Years ISPRS, Vienna, Austria, 5–7 July 

2010; pp. 354–359. 

137. Carmona‐Moreno, C.; Belward, A.; Malingreau, J.P.; Hartley, A.; Garcia‐Alegre, M.; 

Antonovskiy, M.; Buchshtaber, V.; Pivovarov, V. Characterizing interannual variations in global 

fire calendar using data from Earth observing satellites. Glob. Chang. Biol. 2005, 11, 1537–1555. 

138. Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating burn severity from Landsat dNBR and 

RdNBR indices across western Canada. Remote Sens. Environ. 2010, 114, 1896–1909. 

139. Kukavskaya, E.A.; Soja, A.J.; Petkov, A.P.; Ponomarev, E.I.; Ivanova, G.A.; Conard, S.G. Fire 

emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel 

consumption. Can. J. For. Res. 2012, 43, 493–506. 

140. Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of 

global burned area products from spaceborne remote sensing—A review: Analysis of user needs 

and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. 

141. Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative 

version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. 

142. Bastarrika, A.; Chuvieco, E.; Martan, M.P. Mapping burned areas from Landsat TM/ETM+ data 

with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 

2011, 115, 1003–1012. 

143. Pereira, J.M.C. A comparative evaluation of NOAA/AVHRR vegetation indexes for burned 

surface detection and mapping. IEEE Trans. Geosci. Remote Sens. 1999, 37, 217–226. 

144. Riaño, D.; Moreno Ruiz, J.; Isidoro, D.; Ustin, S. Global spatial patterns and temporal trends of 

burned area between 1981 and 2000 using NOAA‐NASA Pathfinder. Glob. Chang. Biol. 2007, 

13, 40–50. 

145. Liew, S.C.; Lim, O.K.; Kwoh, L.K.; Lim, H. A Study of the 1997 Forest Fires in South East Asia 

using SPOT Quicklook Mosaics. In Proceedings of 1998 IEEE International Geoscience and 

Remote Sensing Symposium (IGARSS’98), Seattle, WA, USA, 6–10 Jul 1998; Volume 872,  

pp. 879–881. 

146. Lozano, F.J.; Suarez-Seoane, S.; de Luis, E. Assessment of several spectral indices derived from 

multi-temporal Landsat data for fire occurrence probability modelling. Remote Sens. Environ. 

2007, 107, 533–544. 

147. Morton, D.C.; DeFries, R.S.; Nagol, J.; Souza, C.M., Jr.; Kasischke, E.S.; Hurtt, G.C.; Dubayah, R. 

Mapping canopy damage from understory fires in Amazon forests using annual time series of 

Landsat and MODIS data. Remote Sens. Environ. 2011, 115, 1706–1720. 

148. Stroppiana, D.; Bordogna, G.; Carrara, P.; Boschetti, M.; Boschetti, L.; Brivio, P. A method for 

extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple spectral 

indices and a region growing algorithm. ISPRS J. Photogramm. Remote Sens. 2012, 69, 88–102. 

149. Kasischke, E.S.; Verbyla, D.L.; Rupp, T.S.; McGuire, A.D.; Murphy, K.A.; Jandt, R.;  

Barnes, J.L.; Hoy, E.E.; Duffy, P.A.; Calef, M. Alaskas changing fire regime implications for the 

vulnerability of its boreal forests. Can. J. For.Res. 2010, 40, 1313–1324. 

150. Delbart, N.; Le Toan, T.; Kergoat, L.; Fedotova, V. Remote sensing of spring phenology in 

boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data 

(1982–2004). Remote Sens. Environ. 2006, 101, 52–62. 



Remote Sens. 2014, 6 515 

 

151. Cocke, A.E.; Fule, P.Z.; Crouse, J.E. Comparison of burn severity assessments using differenced 

normalized burn ratio and ground data. Int. J. Wildland Fire 2005, 14, 189–198. 

152. Rodriguez-Alleres, M.; Varela, M.; Benito, E. Natural severity of water repellency in pine forest 

soils from NW Spain and influence of wildfire severity on its persistence. Geoderma 2012, 191, 

125–131. 

153. Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; van de Kerchove, R.; Goossens, R. 

Assessment of post-fire changes in land surface temperature and surface albedo, and their 

relation with fire/burn severity using multitemporal MODIS imagery. Int. J. Wildland Fire 2012, 

21, 243–256. 

154. Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and 

mapping wildfire severity: A comparison of methods. Photogramm. Eng. Remote Sens. 2005, 71, 

1311–1320. 

155. Cansler, C.A.; McKenzie, D. How robust are burn severity indices when applied in a new 

region? Evaluation of alternate field-based and remote-sensing methods. Remote Sens. 2012, 4, 

456–483. 

156. Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H. 

Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing 

spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int. J. 

Remote Sens. 2011, 32, 7905–7927. 

157. Harris, S.; Veraverbeke, S.; Hook, S. Evaluating spectral indices for assessing fire severity in 

chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne 

simulator data. Remote Sens. 2011, 3, 2403–2419. 

158. de Santis, A.; Chuvieco, E. GeoCBI: A modified version of the composite burn index for the 

initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. 

Environ. 2009, 113, 554–562. 

159. Verbyla, D.L.; Kasischke, E.S.; Hoy, E.E. Seasonal and topographic effects on estimating fire 

severity from Landsat TM/ETM+ data. Int. J. Wildland Fire 2008, 17, 527–534. 

160. Jain, T.B.; Pilliod, D.S.; Graham, R.T.; Lentile, L.B.; Sandquist, J.E. Index for characterizing 

post-fire soil environments in temperate coniferous forests. Forests 2012, 3, 445–466. 

161. Alleaume, S.; Hely, C.; Le Roux, J.; Korontzi, S.; Swap, R.; Shugart, H.; Justice, C. Using 

MODIS to evaluate heterogeneity of biomass burning in southern African savannahs: A case 

study in Etosha. Int. J. Remote Sens. 2005, 26, 4219–4237. 

162. Bourgeau-Chavez, L.; Kasischke, E.; French, N.; Szeto, L.; Kherkher, C. Using ERS-1 SAR 

Imagery to Monitor Variations in Burn Severity in an Alaskan Fire-disturbed Boreal Forest 

Ecosystem. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium 

(IGARSS’94)—Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and 

Interpretation, Pasadena, CA, USA, 8–12 August 1994; Volume 1, pp. 243–245. 

163. Walz, Y.; Maier, S.W.; Dech, S.W.; Conrad, C.; Colditz, R.R. Classification of burn severity 

using Moderate Resolution Imaging Spectroradiometer (MODIS): A case study in the Jarrah-

Marri forest of southwest Western Australia. J. Geophys. Res. 2007, 112, G02002. 



Remote Sens. 2014, 6 516 

 

164. Boer, M.M.; Macfarlane, C.; Norris, J.; Sadler, R.J.; Wallace, J.; Grierson, P.F. Mapping burned 

areas and burn severity patterns in SW Australian eucalypt forest using remotely sensed changes 

in leaf area index. Remote Sens. Environ. 2008, 112, 4358–4369. 

165. Hall, R.J.; Freeburn, J.T.; De Groot, W.J.; Pritchard, J.M.; Lynham, T.J.; Landry, R. Remote 

sensing of burn severity: Experience from western Canada boreal fires. Int. J. Wildland Fire 

2008, 17, 476–489. 

166. Verbyla, D.; Lord, R. Estimating post‐fire organic soil depth in the Alaskan boreal forest using 

the normalized burn ratio. Int. J. Remote Sens. 2008, 29, 3845–3853. 

167. Jin, Y.; Randerson, J.T.; Goetz, S.J.; Beck, P.S.A.; Loranty, M.M.; Goulden, M.L. The influence 

of burn severity on postfire vegetation recovery and albedo change during early succession in 

North American boreal forests. J. Geophys. Res. 2012, 117, G01036.  

168. Soverel, N.O.; Coops, N.C.; Perrakis, D.D.B.; Daniels, L.D.; Gergel, S.E. The transferability of a 

dNBR-derived model to predict burn severity across 10 wildland fires in western Canada. Int. J. 

Wildland Fire 2011, 20, 518–531. 

169. Cai, W.; Yang, J.; Liu, Z.; Hu, Y.; Weisberg, P.J. Post-fire tree recruitment of a boreal larch 

forest in Northeast China. For. Ecol. Manag. 2013, 307, 20–29. 

170. Wu, Z.; He, H.; Liang, Y.; Cai, L.; Lewis, B. Determining relative contributions of vegetation 

and topography to burn severity from LANDSAT imagery. Environ. Manag. 2013, 52, 821–836. 

171. Sorbel, B.; Allen, J. Space-based burn severity mapping in Alaska’s national parks. Alaska Park 

Sci. 2005, 4, 5–11. 

172. de Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of 

simulation versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. 

173. Hirano, A.; Welch, R.; Lang, H. Mapping from ASTER stereo image data: DEM validation and 

accuracy assessment. ISPRS J. Photogramm. Remote Sens. 2003, 57, 356–370. 

174. Sunderman, S.O.; Weisberg, P.J. Remote sensing approaches for reconstructing fire perimeters 

and burn severity mosaics in desert spring ecosystems. Remote Sens. Environ. 2011, 115,  

2384–2389. 

175. Gitas, I.; Mitri, G.; Veraverbeke, S.; Polychronaki, A. Advances in Remote Sensing of Post-Fire 

Vegetation Recovery Monitoring—A Review. In Remote Sensing of Biomass—Principles and 

Applications; Fatoyinbo, L., Ed.; InTech: Rijeka, Croatia, 2012; Chapter 7; pp. 143–176. 

176. Lutz, D.A.; Washington-Allen, R.A.; Shugart, H.H. Remote sensing of boreal forest biophysical 

and inventory parameters: A review. Can. J. Remote Sens. 2008, 34, 286–313. 

177. Liu, W.; Song, C.; Schroeder, T.A.; Cohen, W.B. Predicting forest successional stages using 

multitemporal Landsat imagery with forest inventory and analysis data. Int. J. Remote Sens. 

2008, 29, 3855–3872. 

178. Zhao, F.J.; Shu, L.F.; Wang, M.Y.; Liu, B.; Yang, L.J. Influencing factors on early vegetation 

restoration in burned area of Pinus pumila–Larch forest. Acta Ecol. Sinica 2012, 32, 57–61. 

179. Dorisuren, C. Post-Fire Successions of the Larch Forests in Mongolia. In Proceedings of the First 

International Central Asian Wildland Fire Joint Conference and Consultation, Ulaanbaatar, 

Mongolia, 2–6 June 2008; pp. 24–31. 



Remote Sens. 2014, 6 517 

 

180. Johnstone, J.F.; Chapin, F., III; Foote, J.; Kemmett, S.; Price, K.; Viereck, L. Decadal 

observations of tree regeneration following fire in boreal forests. Can. J. For. Res. 2004, 34, 

267–273. 

181. Song, C.; Schroeder, T.A.; Cohen, W.B. Predicting temperate conifer forest successional stage 

distributions with multitemporal Landsat Thematic Mapper imagery. Remote Sens. Environ. 

2007, 106, 228–237. 

182. Bergen, K.M.; Dronova, I. Observing succession on aspen-dominated landscapes using a remote 

sensing-ecosystem approach. Landsc. Ecol. 2007, 22, 1395–1410. 

183. Tanase, M.; de la Riva, J.; Santoro, M.; Pérez-Cabello, F.; Kasischke, E. Sensitivity of SAR data 

to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sens. Environ. 2011, 

115, 2075–2085. 

184. Vehmas, M.; Eerikäinen, K.; Peuhkurinen, J.; Packalén, P.; Maltamo, M. Airborne laser scanning 

for the site type identification of mature boreal forest stands. Remote Sens. 2011, 3, 100–116. 

185. Vehmas, M.; Eerikäinen, K.; Peuhkurinen, J.; Packalén, P.; Maltamo, M. Identification of boreal 

forest stands with high herbaceous plant diversity using airborne laser scanning. For. Ecol. 

Manag. 2009, 257, 46–53. 

186. Falkowski, M.J.; Evans, J.S.; Martinuzzi, S.; Gessler, P.E.; Hudak, A.T. Characterizing forest 

succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sens. Environ. 

2009, 113, 946–956. 

187. Zhang, Q.; Pavlic, G.; Chen, W.; Latifovic, R.; Fraser, R.; Cihlar, J. Deriving stand age 

distribution in boreal forests using SPOT VEGETATION and NOAA AVHRR imagery. Remote 

Sens. Environ. 2004, 91, 405–418. 

188. Hall, F.G.; Botkin, D.B.; Strebel, D.E.; Woods, K.D.; Goetz, S.J. Large-scale patterns of forest 

succession as determined by remote sensing. Ecology 1991, 72, 628–640. 

189. Steyaert, L.; Hall, F.; Loveland, T. Land cover mapping, fire regeneration, and scaling studies in 

the Canadian boreal forest with 1 km AVHRR and Landsat TM data. J. Geophys. Res. 1997, 102, 

29581–29529. 

190. Fiorella, M.; Ripple, W.J. Determining successional stage of temperate coniferous forests with 

Landsat satellite data. Photogramm. Eng. Remote Sens. 1993, 59, 239–246. 

191. Foody, G.M.; Palubinskas, G.; Lucas, R.M.; Curran, P.J.; Honzak, M. Identifying terrestrial 

carbon sinks: Classification of successional stages in regenerating tropical forest from 

Landsat TM data. Remote Sens. Environ. 1996, 55, 205–216. 

192. Jakubauskas, M.E. Thematic Mapper characterization of lodgepole pine seral stages in 

Yellowstone National Park, USA. Remote Sens. Environ. 1996, 56, 118–132. 

193. Vicente-Serrano, S.M.; Perez-Cabello, F.; Lasanta, T. Pinus halepensis regeneration after a 

wildfire in a semiarid environment: Assessment using multitemporal Landsat images. Int. J. 

Wildland Fire 2010, 20, 195–208. 

194. Rocchini, D.; Foody, G.M.; Nagendra, H.; Ricotta, C.; Anand, M.; He, K.S.; Amici, V.; 

Kleinschmit, B.; Förster, M.; Schmidtlein, S. Uncertainty in ecosystem mapping by remote 

sensing. Comput. Geosci. 2013, 50, 128–135. 
  



Remote Sens. 2014, 6 518 

 

195. Lucas, R.; Clewley, D.; Rosenqvist, A.; Kellndorfer, J.; Walker, W.; Hoekman, D.; Shimada, M.; 

de Mesquita, H.N., Jr. Global Forest Monitoring with Synthetic Aperture Radar (SAR) Data. In 

Global Forest Monitoring from Earth Observation; Achard, F., Hansen, M.C., Eds.; CRC Press: 

Boca Raton, FL, USA, 2012; pp. 287–312. 

196. Kasischke, E.S.; Tanase, M.A.; Bourgeau-Chavez, L.L.; Borr, M. Soil moisture limitations on 

monitoring boreal forest regrowth using spaceborne L-band SAR data. Remote Sens. Environ. 

2011, 115, 227–232. 

197. Franklin, S.E. Using Forest Successional Classes. In Remote Sensing for Sustainable Forest 

Management; CRC Press: Boca Raton, FL, USA, 2001; pp. 232–233. 

198. Ustin, S.L.; Gamon, J.A. Remote sensing of plant functional types. New Phytol. 2010, 186,  

795–816. 

199. Li, H.; Gartner, D.I.; Mou, P.; Trettin, C.C. A landscape model (LEEMATH) to evaluate effects 

of management impacts on timber and wildlife habitat. Comput. Electron. Agric. 2000,27,  

263–292. 

200. O’Hara, K.L.L., Penelope A.; Hessburg, P.; Smith, B.G. A structural classification for inland 

northwest forest vegetation. Western J. Appl. For. 1996, 11, 97–102. 

201. Wunderle, A.; Franklin, S.; Guo, X. Age class estimation of western red cedar using SPOT-5 

pan-sharpened imagery in British Columbia, Canada. Geocarto Int. 2009, 24, 47–63. 

202. Chen, X.; Vierling, L.; Deering, D.; Conley, A. Monitoring boreal forest leaf area index across a 

Siberian burn chronosequence: A MODIS validation study. Int. J. Remote Sens. 2005, 26,  

5433–5451. 

203. Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing 

post-fire vegetation recovery using red-near infrared vegetation indices: Accounting for 

background and vegetation variability. ISPRS J. Photogramm. Remote Sens. 2011, 68, 28–39. 

204. Berner, L.T.; Beck, P.S.A.; Bunn, A.G.; Lloyd, A.H.; Goetz, S.J. High-latitude tree growth and 

satellite vegetation indices: Correlations and trends in Russia and Canada (1982–2008).  

J. Geophys. Res. 2010, 116, G01015. 

205. Kobayashi, H.; Delbart, N.; Suzuki, R.; Kushida, K. A satellite-based method for monitoring 

seasonality in the overstory leaf area index of Siberian larch forest. J. Geophys. Res. 2010,  

115, G01002. 

206. Pflugmacher, D.; Cohen, W.B.; E. Kennedy, R. Using Landsat-derived disturbance history 

(1972–2010) to predict current forest structure. Remote Sens. Environ. 2012, 122, 146–165. 

207. Selkowitz, D.J.; Green, G.; Peterson, B.; Wylie, B. A multi-sensor lidar, multi-spectral and 

multi-angular approach for mapping canopy height in boreal forest regions. Remote Sens. 

Environ. 2012, 121, 458–471. 

208. Magnussen, S.; Wulder, M.A. Post-fire canopy height recovery in Canada’s boreal forests using 

Airborne Laser Scanner (ALS). Remote Sens. 2012, 4, 1600–1616. 

209. Andersen, H.E.; Strunk, J.; Temesgen, H.; Atwood, D.; Winterberger, K. Using multilevel 

remote sensing and ground data to estimate forest biomass resources in remote regions: A case 

study in the boreal forests of interior Alaska. Can. J. Remote Sens. 2011, 37, 596–611. 



Remote Sens. 2014, 6 519 

 

210. Wulder, M.A.; Han, T.; White, J.C.; Sweda, T.; Tsuzuki, H. Integrating profiling LIDAR with 

Landsat data for regional boreal forest canopy attribute estimation and change characterization. 

Remote Sens. Environ. 2007, 110, 123–137. 

211. Wulder, M.; White, J.; Alvarez, F.; Han, T.; Rogan, J.; Hawkes, B. Characterizing boreal  

forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sens. Environ. 2009, 113, 

1540–1555. 

212. Goetz, S.; Sun, M.; Baccini, A.; Beck, P. Synergistic use of spaceborne lidar and optical imagery 

for assessing forest disturbance: An Alaska case study. J. Geophys. Res.: Biogeosci. 2010,  

115, G00E07. 

213. Bourgeau‐Chavez, L.; Kasischke, E.; Riordan, K.; Brunzell, S.; Nolan, M.; Hyer, E.; Slawski, J.; 

Medvecz, M.; Walters, T.; Ames, S. Remote monitoring of spatial and temporal surface soil 

moisture in fire disturbed boreal forest ecosystems with ERS SAR imagery. Int. J. Remote Sens. 

2007, 28, 2133–2162. 

214. Heiskanen, J. Estimating aboveground tree biomass and leaf area index in a mountain birch 

forest using ASTER satellite data. Int. J. Remote Sens. 2006, 27, 1135–1158. 

215. Heiskanen, J.; Kivinen, S. Assessment of multispectral, -temporal and -angular MODIS data for 

tree cover mapping in the tundra–taiga transition zone. Remote Sens. Environ. 2008, 112,  

2367–2380. 

216. Wolter, P.T.; Townsend, P.A.; Sturtevant, B.R. Estimation of forest structural parameters using 5 

and 10 meter SPOT-5 satellite data. Remote Sens. Environ. 2009, 113, 2019–2036. 

217. Li, A.; Huang, C.; Sun, G.; Shi, H.; Toney, C.; Zhu, Z.; Rollins, M.G.; Goward, S.N.;  

Masek, J.G. Modeling the height of young forests regenerating from recent disturbances in 

Mississippi using Landsat and ICESat data. Remote Sens. Environ. 2011, 115, 1837–1849. 

218. Young, B.; Liang, J.; Stuart Chapin Iii, F. Effects of species and tree size diversity on recruitment 

in the Alaskan boreal forest: A geospatial approach. For. Ecol. Manag. 2011, 262, 1608–1617. 

219. Cuevas-González, M.; Gerard, F.; Balzter, H.; Riaño, D. Studying the change in fAPAR after 

forest fires in Siberia using MODIS. Int. J. Remote Sens. 2008, 29, 6873–6892. 

220. Benson, M.; Pierce, L.; Bergen, K.; Sarabandi, K.; Zhang, K.; Ryan, C. Forest Structure 

Estimation using SAR, Lidar, and Optical Data in the Canadian Boreal Forest. In Proceedings of 

IEEE 2011 International Geoscience and Remote Sensing Symposium (IGARSS’01), 

Vancouver, BC, USA, 24–29 July 2011; pp. 2609–2612. 

221. Cuevas Gonzalez, M.; Gerard, F.; Balzter, H.; Riaño, D. Analysing forest recovery after wildfire 

disturbance in boreal Siberia using remotely sensed vegetation indices. Glob. Chang. Biol. 2009, 

15, 561–577. 

222. Kasischke, E.; French, N. Constraints on using AVHRR composite index imagery to study 

patterns of vegetation cover in boreal forests. Int. J. Remote Sens. 1997, 18, 2403–2426. 

223. Beck, P.S.; Goetz, S.J.; Mack, M.C.; Alexander, H.D.; Jin, Y.; Randerson, J.T.; Loranty, M. The 

impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and 

albedo. Glob. Chang. Biol. 2011, 17, 2853–2866. 

224. Lyons, E.A.; Jin, Y.; Randerson, J.T. Changes in surface albedo after fire in boreal forest 

ecosystems of interior Alaska assessed using MODIS satellite observations. J. Geophys. Res. 

2008, 113, G02012. 



Remote Sens. 2014, 6 520 

 

225. Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using satellite time-series data sets to analyze fire 

disturbance and forest recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365. 

226. Jones, M.O.; Kimball, J.S.; Jones, L.A. Satellite microwave detection of boreal forest recovery 

from the extreme 2004 wildfires in Alaska and Canada. Glob. Chang. Biol. 2013, 19, 3111–3122. 

227. Alcaraz-Segura, D.; Chuvieco, E.; Epstein, H.E.; Kasischke, E.S.; Trishchenko, A. Debating the 

greening vs. browning of the North American boreal forest: Differences between satellite 

datasets. Glob. Chang. Biol. 2010, 16, 760–770. 

228. Idris, M.H.; Kuraji, K.; Suzuki, M. Evaluating vegetation recovery following large-scale forest 

fires in Borneo and northeastern China using multi-temporal NOAA/AVHRR images. J. For. 

Res. 2005, 10, 101–111. 

229. Frolking, S.; Palace, M.; Clark, D.; Chambers, J.; Shugart, H.; Hurtt, G. Forest disturbance and 

recovery: A general review in the context of spaceborne remote sensing of impacts on 

aboveground biomass and canopy structure. J. Geophys. Res. 2009, 114, G00E02. 

230. Buma, B. Evaluating the utility and seasonality of NDVI values for assessing post-disturbance 

recovery in a subalpine forest. Environ. Monit. Assess. 2012, 184, 3849–3860. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


