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Abstract: Sea eutrophication is a natural process of water enrichment caused by increased 

nutrient loading that severely affects coastal ecosystems by decreasing water quality. The 

degree of eutrophication can be assessed by chlorophyll-a concentration. This study aims 

to develop a remote sensing method suitable for estimating chlorophyll-a concentrations in 

tropical coastal waters with abundant phytoplankton using Moderate Resolution Imaging 

Spectroradiometer (MODIS)/Terra imagery and to improve the spatial resolution of 

MODIS/Terra-based estimation from 1 km to 100 m by geostatistics. A model based on the 

ratio of green and blue band reflectance (rGBr) is proposed considering the bio-optical 

property of chlorophyll-a. Tien Yen Bay in northern Vietnam, a typical phytoplankton-rich 

coastal area, was selected as a case study site. The superiority of rGBr over two existing 

representative models, based on the blue-green band ratio and the red-near infrared band 

ratio, was demonstrated by a high correlation of the estimated chlorophyll-a concentrations 

at 40 sites with values measured in situ. Ordinary kriging was then shown to be highly 

capable of predicting the concentration for regions of the image covered by clouds and, 

thus, without sea surface data. Resultant space-time maps of concentrations over a year 

clarified that Tien Yen Bay is characterized by natural eutrophic waters, because the 

average of chlorophyll-a concentrations exceeded 10 mg/m3 in the summer. The temporal 

changes of chlorophyll-a concentrations were consistent with average monthly air 
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temperatures and precipitation. Consequently, a combination of rGBr and ordinary kriging 

can effectively monitor water quality in tropical shallow waters. 

Keywords: bio-optical properties; water quality; estimation algorithm; phytoplankton; 

ordinary kriging 

 

1. Introduction 

Chlorophyll-a (Chl-a) concentration is an effective measure of the trophic state of sea and land 

waters, because it is related strongly to aquatic phytoplankton abundance and biomass. Estimating  

Chl-a concentration is one of the most traditional and significant applications of remote sensing for 

evaluating aquatic ecosystems and monitoring eutrophication [1–5]. Recently, satellite imagery with 

high spectral resolution spanning the visible to thermal-infrared bands has become available for such 

estimations. The main targets of substantive case studies using such imagery are environmental 

assessments of ocean waters [6–9], open coastal and estuarine waters [10–15] and inland lakes [16–19]. 

In addition to these waters, eutrophication in coastal waters, shallow coastal bays and lagoons has been 

a notable issue threatening coastal ecosystems all over the world [20]. Despite the importance of Chl-a 

monitoring in such coastal areas by remote sensing, such applications have been limited, and the most 

suitable methods for estimating Chl-a concentrations from satellite imagery have not yet been 

identified. This lack of information is the result of several factors, including the difficulties associated 

with making atmospheric corrections and the influences of detritus and dissolved organic matter on 

water optical properties that may not co-vary with phytoplankton [21]. 

Based on the above conditions, this study aims to identify a suitable method for the estimation using 

representative satellite imagery, like the Moderate Resolution Imaging Spectroradiometer Terra 

(MODIS/Terra: MODIS in short hereinafter). The physical relationship between the Chl-a 

concentration and reflectance spectra of the MODIS bands, but not an empirical relationship, has been 

considered for the estimation. The MODIS imagery gives the best fit for Chl-a monitoring owing to the 

advantages of short revisit periods for the same scene (nearly every day) and the wide swath of the 

satellite [22]. These advantages also make the monitoring of coastal waters by MODIS more 

convenient in data collection and in comparisons of eutrophication conditions over the world. 

Tien Yen Bay in northern Vietnam was selected for the present study, because it is a typical closed 

and shallow coastal water body that contains a rich and diverse aquatic ecosystem, but one that has a 

high risk of eutrophication and water-quality degradation. To improve the spatial resolution of Chl-a 

concentration mapping through MODIS imagery (1 km), a geostatistical technique was adopted as a 

post-image process. Two common atmospheric correction procedures were compared also to identify 

the best method to be used with such a MODIS application for the monitoring of Tien Yen Bay waters 

under tropical weather conditions. 
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2. Materials 

2.1. Features of the Study Area 

Tien Yen Bay, adjacent to both Vietnam and China, covers an area of approximately 400 km2 and is 

connected to the South China Sea by five channels (Figure 1). The most remarkable feature of the bay 

is its shallowness: the sea depth generally ranges from 2 to 5 m; although it becomes deeper in the 

connecting channels, the maximum depth is still only 20 m. There are five short local rivers that 

usually transport small quantities of freshwater (the average water discharges of Tien Yen River and 

Ha Coi River are 22.1 and 7.4 m3/s, respectively) and sediments into the bay. The sediment quantity 

decreases further in the dry season to 4 mg/L of the total suspended solids. Therefore, the physical and 

aquatic environment of the bay is a typical closed sea environment, which is influenced mainly by 

oceanographic factors, such as tide, waves and near-shore currents. 

Figure 1. Location of Tien Yen Bay in northern Vietnam and the positions of 40 sampling 

points for measuring Chl-a concentrations. 

 

According to the Vietnam Environmental Protection Agency [23], Tien Yen Bay is a nationally 

significant site of biodiversity, because of the occurrence of 69 species of phytoplankton, 58 species of 

zooplankton, 33 species of seaweed and four species of seagrass that have been identified in the  

area [24]. The bay waters encompass a high density of phytoplankton ranging from 6,318 cells/L (dry 
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season) to 7,352 cells/L (rainy season) on average. The maximum density was recorded as 70,810 cells/L 

in the rainy season [25]. The most abundant phytoplankton is Bacillariophyta (162 species), which 

occupies 86% of the total species, and Chlorophyta (12 species), Cyanophyta (8 species) and 

Pyrrophyta (6 species) follow it in descending order [25]. Therefore, eutrophication may occur and 

threaten aquatic life in the bay, particularly in the rainy season (June to October). To observe this 

possibility and to preserve aquatic health, monitoring of water quality in terms of the water trophic 

state is indispensable. This state can be assessed primarily by Chl-a concentration. Satellite remote 

sensing, in particular using MODIS imagery with its above-mentioned advantages, is the most suitable 

procedure for this purpose. 

2.2. Collection of Sample Data 

Samples of Chl-a concentrations in Tien Yen Bay were collected at 40 locations using a speed-boat 

on 6 July 2010, with a Global Positioning System (GPS) receiver used to locate the points shown in 

Figure 1. These points were selected to representatively cover the whole bay. The samples were taken 

at a depth of 50 cm using a Van Dorn water sampler, preserved in one liter cleaned dark-color bottles, 

and then refrigerated. 

In the laboratory, the water samples were filtered by a pre-washed 47 mm glass fiber filter and then 

extracted into 90% acetone. The Chl-a concentrations in the extracts were determined 

spectrophotometrically using a Labomed UV-Vis RS model UV-2502 spectrometer with a 2 nm 

spectral bandwidth and optically matched 13 mm diameter cuvettes following the standard method of 

the American Public Health Association [26]. Table 2 in Section 4.2 below includes descriptive 

statistics of the resultant 40 concentration data, which indicates that the Tien Yen Bay waters have a 

wide variation (8.4 mg/m3 range), and most data (80%) exceed 10 mg/m3. 

The turbidity of the bay waters was also in situ measured on 6 July 2010 and ranged from 6 to 15 

NTU at the 40 survey sites. The turbidity of 10 NTU approximately corresponds to the 2-m Secchi 

disk depth [27]. Because the Secchi disk depths are mostly shallower than the water depths of the  

40 sites based on the bathymetric map [28], the effect of the bottom reflected radiance is negligible. 

2.3. MODIS Image Data 

The Terra spacecraft passes over Tien Yen Bay at about 3:20 GMT (10:20 local time) each day. 

This time is suitable for the acquisition of satellite imagery to compare with in situ water quality. 

MODIS level 1B image data acquired on the same date as the water sampling (6 July 2010), which 

were calibrated at-aperture radiances for the 36 bands and geo-located for WSG-84 N48 of the UTM 

system, were used to estimate Chl-a concentrations. 

The atmospheric correction of MODIS image data is a necessary part of pre-processing, because the 

contributions of radiant energy from the atmosphere and from specular reflections at the sea surface 

must be corrected for extracting the radiant energy from the water body only. The dark-object 

subtraction (DOS), a histogram minimum method proposed by Chavez [29], was compared with the 

Quick Atmospheric Correction (QUAC) that is a VNIR-SWIR atmospheric correction method [30] in 

this study. The DOS was demonstrated as the most effective method for monitoring water quality 

using visible bands [31,32], while QUAC showed accurate performance for infrared spectral  
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bands [30]. Ha and Koike [33] also identified that DOS was a more suitable atmospheric correction 

method for the MODIS image data of Tien Yen Bay than the near-infrared atmospheric correction and 

Fast Line-of-sight Atmospheric Analysis of Hyperspectral cubes (FLAASH). 

3. Methods for Estimating Chl-a Concentration 

3.1. Review of Estimation Algorithms 

Light is absorbed by algal pigments, but scattered by algal cells and non-algal particles. This 

phenomenon is used in most existing estimation algorithms for Chl-a concentration from optical satellite 

image data [34], which emphasize the difference between the absorption and scattering by a ratio of 

reflectances at two wavelength bands or in two certain wavelength ranges. The algorithms can be classified 

into two groups, depending on the wavelengths used in the ratio. The first uses a ratio of reflectance in the 

wavelength range between 440 and 510 nm in which Chl-a and carotenoid strongly absorb light and 

another reflectance in the minimum green pigment region between 550 and 555 nm [21,35]. The second 

uses a ratio of reflectance in the near-infrared (NIR) region between 685 and 710 nm, in which the water 

and pigment absorption and the chlorophyll fluorescence have a minimum correlation, and another 

reflectance in the red chlorophyll absorption band between 670 and 675 nm [4,36]. 

A representative algorithm for the first group is the blue-green band ratio, which was proposed first 

by Morel and Prieur [21] for discriminating ocean color. This simple ratio has a robust and sensitive 

relationship to the Chl-a concentration in ocean waters, but is known to be less sensitive for the  

30 mg/m3 or more of Chl-a [4]. The algorithm has been improved in order to make it applicable to 

coastal waters [7–9,35,37,38]. OC3M developed by O’Reilly et al. [9] is the most widely used 

algorithm of such improvement for estimating global Chl-a concentrations, which is formulated as: ܥ஼௛௟௔ = 10௔బା௔భథା௔మథమା௔యథయା௔రథర (1)

where CChla is the Chl-a (mg/m3) concentration, φ = log{max[Rrs(443):Rrs(488)]/Rrs(551)}, Rrs(λ) is 

reflectance at λ nm and a0, a1, a2, a3, a4 are constants derived empirically as 0.283, −2.753, 1.457, 

0.659 and −1.403, respectively.  

The red-NIR band ratio algorithm (RNIR) of the second group has been applied to monitoring Chl-a 

in inland and coastal waters [13,14,17,18,36,39] and in turbid productive waters using mainly MODIS 

imagery [34]. A representative algorithm of this group was formulated by Gilerson et al. [40] as: ܥ஼௛௟௔ = ܿଵ ܴ௥௦ (748)ܴ௥௦ (667) + ܿଶ (2)

where c1 and c2 are constants determined by the relationship between the MODIS image data and the 

measured Chl-a concentration data. 

3.2. New Algorithm Development 

The OC3M and RNIR algorithms have been derived empirically and are known to be of low 

accuracy in coastal waters, such as those present study areas. To improve the accuracy, we have 

developed a new versatile algorithm that considers the fundamental physics of the relationship between 

MODIS image data and in situ Chl-a concentrations. 
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First, we recall that reflectance at the wavelength, λ, observed by remote sensing, Rrs(λ) is the ratio 

of water-leaving radiance, Lw(λ) to down-welling irradiance and Ed(λ) just above the sea surface. 

Rrs(λ) is directly proportional to the backscattering coefficient, b(λ) and inversely proportional to the 

sum of the absorption a(λ) and b(λ) as observed in the next equation, which is adapted from Lee et al. [41]: ܴ௥௦(ߣ) = (ߣ)ௗܧ(ߣ)௪ܮ = ଶ݊(ߣ)ଶܳݐ(ߣ)݂ × (ߣ)ሾܽ(ߣ)ܾ + ሿ (3)(ߣ)ܾ

where f(λ) is an empirical factor averaging about 0.32–0.33 [21,42–44], Q(λ) is the upwelling 

irradiance-to-radiance ratio Eu(λ)/Lu(λ), t is the transmittance of the air-sea interface and n is the real 

part of the index of refraction of seawater. 

As an application to the MODIS wavebands in blue to green spectra, the f(λ)t2/Q(λ)n2 is 

appropriately assumed to be constants (const) based on the relationship between the f(λ)t2/Q(λ)n2 and 

the backscattering by the sea-viewing wide field-of-view sensor (SeaWiFS) at the wavelengths 443, 

490 and 555 nm by Barnard et al. [45] and the Chl-a algorithm for coastal waters by Carder et al. [46]. 

Additionally, many studies have confirmed that b(λ) is usually much smaller than a(λ) and can thus be 

safely removed from the denominator of Equation (3) [21], except for highly turbid waters. In the case 

of phytoplankton-dominated waters, like Tien Yen Bay, Equation (3) can be greatly simplified to: ܴ௥௦(ߣ) ≅ ݐݏ݊݋ܿ × (ߣ)ሾܽ(ߣ)ܾ + ሿ(ߣ)ܾ ≈ ݐݏ݊݋ܿ × (ߣ)ܽ(ߣ)ܾ  (4)

The total backscattering coefficient, b(λ) can be calculated as the sum of two components 

originating from pure seawater, bw(λ), and particles, bp(λ), as: ܾ(ߣ) = ܾ௪(ߣ) + ܾ௣(ߣ) (5)

where bw(λ) is constant [47] and too small in comparison to bp(λ) [48,49]; thus b(λ) is equal nearly to 

bp(λ). Therefore, Equation (4) can be transformed into: ܴ௥௦(ߣ) = ݐݏ݊݋ܿ × (ߣ)ܽ(ߣ)ܾ ≅ ݐݏ݊݋ܿ × ܾ௣(ߣ)ܽ(ߣ)  (6)

The term “const” in Equation (6), then, is eliminated in the ratio of two reflectances at visible blue, 

443 nm, and visible green, 551 nm. This ratio, R, can be expressed simply by the absorption factor 

when b(443)/b(551) is assumed to be 1.  ܴ = ܴ௥௦(443)ܴ௥௦(551) = ܾ௣(443). ܽ(551)ܽ(443). ܾ௣(551) = ܽ(551)ܽ(443)  (7)

The appropriateness of the assumption that b(443)/b(551) is equal to 1 was proven through the 

measurement results of inherent optical properties of phytoplankton-rich coastal waters [37,50,51]. In 

addition, the values of b(443) and b(551) are almost the same in the coastal waters containing  

Chl-a > 2 mg/m3 [52,53], which is supported by the observation of Schalles [4], that the effect of 

particle backscattering on reflectances from blue to green wavelengths can be negligible for waters 

containing Chl-a > 2 mg/m3. In situ data in Tien Yen Bay in July 2010, showed that the Chl-a 

concentrations ranged from 8.1 to 16.5 mg/m3. Therefore, the above assumptions can be applied to the 

waters of Tien Yen Bay. 
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In the case of water with an unknown range of in situ Chl-a concentration, b(443)/b(551) is not 

assumable as 1. Then, in situ spectroradiometric measurement is necessary to determine the water surface 

reflectance and inherent optical properties, such as the a(λ) and b(λ) coefficients. After this 

determination, Chl-a concentration can be calculated directly using the backscattering algorithms [37,54]. 

For general ocean water, a(λ)	can be spectrally divided into four absorption components originating 

from pure water (aw), phytoplankton (ap), detritus or non-algal particles (aNAP), and gelbstoff or colored 

dissolved organic matter (aCDOM) [34] as: ܽ(ߣ) = 	ܽ௪(ߣ) + ܽ௣(ߣ) + ܽே஺௉(ߣ) + ܽ஼஽ைெ(ߣ) (8)

Based on the measurement results of ap(λ), aNAP(λ) and aCDOM(λ) at the 350 stations in various 

coastal waters around Europe, it was concluded that the aNAP(λ) and aCDOM(λ) were negligibly small, 

and the aw(λ) was constant regardless of ߣ  [55]. Accordingly, Equation (8) can be simplified as  

a(λ) ≅ ap(λ) + const, and Equation (7) is transformed into: ܴ = 	ܽ(551)ܽ(443) = ܽ௣(551) + ௣(443)ܽ.ݐݏ݊݋ܿ + (9) .ݐݏ݊݋ܿ

In this equation, Chl-a concentration is a function of ap(λ)	only: ܽ௣(ߣ) = ܽ௣∗ (ߣ) ∙ ஼௛௟ି௔ (10)ܥ

where a*
p(λ) denotes a chlorophyll-specific absorption coefficient of phytoplankton (m2/mg) at a unit 

concentration of Chl-a (1 mg/m3), as shown in Figure 2. Equation (8) can be rewritten as: ܴ = ܽ(551)ܽ(443) = ܽ௣∗ (551) ∙ ஼௛௟ି௔ܥ + ∗௣ܽߙ (443) ∙ ஼௛௟ି௔ܥ + ߚ (11)

஼௛௟ି௔ܥ ቀܴ ∙ ܽ௣∗ (443) − ܽ௣∗ (551)ቁ = ߙ − ܴ ∙ (12) ߚ

where α, β are constants. 

As a*
p(551) is negligible, i.e., a*

p(443) >> a*
p(551) ([4]; Figure 2), the following approximation holds: ܴ ∙ ܽ௣∗ (443) − ܽ௣∗(551) ≅ ܴ ∙ ܽ௣∗ (443) (13)

Consequently, Chl-a concentration can be estimated by: ܥ஼௛௟௔ = 	 ߙ − ܴ ∙ ܴߚ ∙ ܽ௣∗ (443) = ߱ ∙ ܴିଵ + ߝ = ܴ߱௥௦(551)ܴ௥௦(443) + (14) ߝ

where ω	and ε are constants inversely proportional to a*
p(443) and determined by the relationship 

between the MODIS data and in situ Chl-a data. This algorithm, using the reflectance ratio of the green 

and blue bands, is termed “rGBr” hereafter. The performance of rGBr is evaluated for Tien Yen Bay 

by comparing the two existing algorithms, OC3M and RNIR, as described below. 

From the absorption spectra of the phytoplankton classes in different sizes, the use of blue and 

green bands (443 and 511 nm, respectively) has been demonstrated to be valid for Chl-a concentration 

in tropical or low latitude waters, because micro-phytoplankton is mostly accumulated in the surface 

layer [54–56]. This condition is applicable to Tien Yen Bay. 

Furthermore, bottom reflectance tends to affect Rrs(λ) significantly 	 in usual coastal shallow  

waters [57,58]. A Rrs(410)/Rrs(670) algorithm then was proposed to estimate Chl-a concentration 

instead of the traditional blue-to-green band-ratio algorithm [57]. This new algorithm was proven to be 
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accurate only for the waters with low Chl-a concentration <1 mg/m3 [58]: its availability for the 

eutrophic waters with Chl-a > 10 mg/m3 has been uncertain. Therefore, in situ measurement of turbidity 

or water transparency is necessary to monitor Chl-a concentration in shallow waters using rGBr. 

3.3. Geostatistical Methods 

Pixel-based satellite images of the Earth’s surface are often composed of spatially and temporally 

irregular datasets due to missing swaths or cloud coverage. Additionally, due to limitations in spatial 

resolution, maps produced directly from satellite image data may lack the detail and accuracy required 

for environmental monitoring. To compensate for missing image data and to improve the spatial 

resolution of MODIS image data, geostatistics has been adopted. The effectiveness of geostatistics has 

been demonstrated by many case studies for improving the spatial resolution of satellite imagery [59–63] 

and mapping distributions of Chl-a and total suspended solids concentrations [33,64–68]. Therefore, 

geostatistics must be the most promising for the present purpose. 

Geostatistics uses the semivariogram, γ(h), to quantify the spatial correlation of a regionalized 

variable by the mean variability between two points: 

γ(ℎ) = 12ܰ(ℎ) ෍{ܼ(ݔ௜) − ௜ݔ)ܼ + ℎ)}ே(௛)
௜ୀଵ  (15)

where Z(xi) is the estimated Chl-a concentration at pixel i, h is the lag distance between two pixels of 

the image and N(h) is the number of pixel pairs of (x, x + h) separated by h. The experimental γ(h) in 

Equation (15) is then approximated by a model, such as the spherical model, and the parameters that 

describe the structure of spatial variation, range, sill and the nugget effect are determined. 

Spatial interpolation using γ(h) is termed kriging. Of the various methods, ordinary kriging (OK), as 

shown in the next equation, is the most widely used univariate, non-biased method: 

۔ۖەۖ
௣൯ݔ൫∗ܼۓ =෍ߣ௜ܼ(ݔ௜)௡

௜ୀଵ෍ߣ௝ = 1௡
௝ୀଵ

 (16)

where Z*(xp) is a satisfactory estimate of OK, λi is the weight of Z(xi) and n is the number of data used 

for the interpolation. λI can be obtained by solving the linear equation related to γ(h). 

4. Results and Discussion 

4.1. Atmospheric Correction 

The atmospheric correction methods, DOS and QUAC, were applied to the MODIS 36 band data to 

obtain Rrs(λ) at the locations involving the sampling points. Table 1 summarizes the descriptive 

statistics of Rrs(λ) at the five primary ocean color bands (Bands 9, 10, 12, 13 and 15). Almost all 

electromagnetic reflectances are absorbed by water in the wavelength of visible red, near infrared and 

short-wave infrared regions. The QUAC-corrected spectra in these regions are known to become 

similar spuriously to water body spectra [63]. In fact, the Rrs(λ) data was not obtained for Bands 12, 13 
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and 15, corresponding to part of the visible red and near-infrared regions by QUAC, as shown by the 

mark “not a number (NaN)”. Therefore, QUAC is not applicable to the MODIS image data of tropical 

coastal waters. The suitability of DOS to Tien Yen Bay is proven by this study in addition to Ha and 

Koike [33]. The DOS gives an effective cross-calibration for Bands 9, 10 and 12 particularly, because 

there are no pixels that cannot be corrected in the sampled 40 pixels (Table 1). 

Table 1. Descriptive statistics of reflectance data obtained at 40 pixels of the Moderate 

Resolution Imaging Spectroradiometer (MODIS) image data corresponding to the locations 

of water sampling points. Two atmospheric correction methods, dark-object subtraction 

(DOS) and Quick Atmospheric Correction (QUAC), were used to determine the reflectance 

at primary ocean color bands. NaN stands for “not a number”. 

Data Obtained from DOS for Bands  Data Obtained from QUAC for Bands 

 9  10  12  13  15   9  10  12  13  15  

Average 0.043  0.040  0.042  0.022  0.036   0.117  0.039  NaN  NaN  NaN  

Maximum 0.077  0.082  0.090  0.036  0.010   0.147 0.072  NaN  NaN  NaN  

Minimum 0.026  0.021  0.015  0.010  0.024   0.065  0.039  NaN  NaN  NaN  

Out of 40 pixels 0  0  0  13  8   0  0  40  40  40  

4.2. Estimation Algorithm for Chl-a Concentrations 

The 443 and 551 nm wavelengths used for estimating Chl-a concentration are equivalent to MODIS 

Bands 9 and 12, respectively. Using Rrs(443) and Rrs(551) obtained through DOS and the least squares 

method for the relationship between their ratio (R in Equation (7)) and the Chl-a concentrations at the 

40 points (Figure 2a), the rGBr of Equation (14) was determined as: ܥ஼௛௟௔ = 8.843 ∙ ܴ + 4.093 (17) 

The descriptive statistics of the Chl-a concentrations estimated at 392 pixels by rGBr are shown in 

Table 2, which are similar to those of the sample data. In addition, the estimated values are well fitted 

to the measured values with a correlation coefficient r = 0.78, as confirmed in Figure 2b. The relative 

error of this estimation ranges from zero to 15%, and the root mean square error (RMSE) is small at 

1.13 mg/m3 (Table 3) against the data average of 12.5 mg/m3 (Table 2). 

Table 3 compares the prediction accuracy of rGBr with that of OC3M of Equation (1) and RNIR of 

Equation (2). These equations were also determined by Rrs and the measured concentration data using 

the least squares method. It is evident that rGBr has the largest ݎ and the smallest mean standard error 

(MSE) and RMSE. 

The capabilities of the three models can be evaluated, as seen in Figure 3, which shows the 

relationship between the measured and estimated Chl-a concentrations. As estimated from the ݎ value, 

this relationship is the weakest in RNIR: in particular, the high and low concentrations cannot be 

estimated. This result proves the overestimation problem of RNIR for the waters containing  

Chl-a ≥ 6 mg/m3 by Gilerson et al. [40]. The difference between OC3M and rGBr is remarkable in the 

region with concentrations higher than 14 mg/m3, in which the trend of the underestimate is stronger in 

OC3M than rGBr. Consequently, rGBr was identified as the best model for estimating Chl-a 

concentrations over Tien Yen Bay with small errors. 
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Figure 2. (a) The relationship between chlorophyll-a (Chl-a) concentration of the water 

sample and the ratio of two reflectances at MODIS Band 12 (551 nm) vs. Band 9 (443 nm). 

A regression line is drawn to show the relationship. (b) Scattergram of Chl-a concentrations 

between the sample value and estimation by the ratio of green and blue band reflectance 

(rGBr) of Equation (17). The 45-degree dotted line denotes perfect estimation. 

Table 2. Descriptive statistics of three datasets of Chl-a concentrations (mg/m3): water 

samples, estimations from the MODIS image data by rGBr and predictions at the MODIS 

pixels by cross-validation of ordinary kriging (OK). 

Sample Data Estimation from MODIS Prediction by OK  
Number of data 40  392  392  
Mean 12.5  13.3  13.3 
Median 12.7  13.3  13.3  
Maximum 16.5  16.6  16.1  
Minimum 8.1  9.0  9.9  
Standard deviation 1.8  1.4  1.3  
Range 8.4  7.6  6.3  

Table 3. Comparison of three algorithms for estimating the accuracy of Chl-a 

concentrations. The accuracy is evaluated by the linear correlation coefficient (r), mean 

square error (MSE) and root mean square error (RMSE) for the 40 sample values. RNIR, 

red-near-infrared band ratio algorithm (RNIR). 

Algorithm  Models with Empirical Coefficients  r  
MSE (mg/m

3
)  RMSE 

(mg/m
3
) Average Max  Min  

OC3M 

(O’Reilly et al., 2000) 

஼௛௟௔ܥ = 10ଵ.ଵ଴ି଴.ସଶథା଻.଴ଽథమିଵଷ଴.ଵଷథయିସଶଵ.ଶ଺థర  
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Figure 3. Scattergram of Chl-a concentrations between the sample value and estimation by 

three algorithms. The 45-degree dotted line denotes perfect estimation. 

 

4.3. Spatial Distribution of Chl-a Concentrations 

The spatial distribution of Chl-a concentrations within Tien Yen Bay was estimated by applying 

rGBr to the MODIS image data, as illustrated in Figure 4. Although a rough trend of the distribution is 

apparent in this 1 km interval estimation of the 392 pixels (e.g., the locations of the highest and lowest 

values), there is no precise variation near the shoreline. Additionally, estimation is inevitably 

impossible for areas covered by clouds, as shown in black in Figure 4. It can be confirmed therefore 

that using only MODIS image data is not effective for monitoring the spatial-temporal changes of  

Chl-a concentrations that may have large variation in bad weather conditions. 

Next, the MODIS-based estimation was transformed by OK into a more precise distribution with a 

100-m grid. Usually, in situ sample data are used for OK, but Chl-a concentrations cannot be estimated 

on the day without sample data by this usual procedure. Instead, estimates of Chl-a concentrations 

using only MODIS image data enable Chl-a monitoring on the image acquisition day. The histogram 

of the 392 Chl-a concentration data is not far from a normal distribution (Figure 5). Therefore, this 

dataset is suitable for geostatistical analyses that require normal distribution of regionalized random 

variables as OK. 

Experimental γ(h) produced from the dataset was approximated best by the exponential model with 

a nugget effect of zero, a sill of 1.6 mg/m3 and a range of 17.9 km (Figure 6a). To check the spatial 

estimation accuracy of OK with a cross-validation, a scattergram that represents the relationship 

between the original CChla-value at a particular MODIS pixel (estimations in Table 1) and the predicted 

OK value using the CChla 	 data around the target pixel (predictions in Table 2) was produced 

(Figure 6b). The resultant mean error of the prediction is close to zero (0.017 mg/m3), and the RMSE is 

relatively low (0.43 mg/m3), which confirms the high capability of OK. The resultant OK distribution 
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of Chl-a concentration and the kriging variance map are depicted in Figure 7. The kriging variances are 

negligible over the entire bay. Only the zone covered by clouds has a relatively high variance, but its 

value is smaller than 3% of the estimated CChla. Such a variance trend also supports the correctness of 

the OK estimation. 

Figure 4. Spatial distribution of Chl-a concentrations over Tien Yen Bay on 6 July 2010, 

with a 1-km interval using MODIS image data and rGBr. 

 

Figure 5. Histogram of Chl-a concentrations estimated from MODIS/Terra image data  

and rGBr. 

 

The OK map in Figure 7 presents much more precise spatial characteristics than the original CChla 

distribution in Figure 4 and also clarifies the eutrophic conditions in the waters of Tien Yen Bay. The 

Chl-a concentrations on 6 July 2010, ranged from nine to 16.6 mg/m3, which are four to 7.5 times of 
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the eutrophic level, 2.21 mg/m3 [71:Table 4]. Generally, concentrations of Chl-a over 14.5 mg/m3 

occur in local estuaries at the mouths of the Ha Coi and Dam Ha Rivers and along the coast from 

Mong Cai to Hai Ha. The middle bay also contains high Chl-a from 13.5 to 14.5 mg/m3 from Cai Chien 

to Hai Ha districts. On the contrary, the concentrations become low toward the west near Cai Bau 

Island, with a minimum of 9 mg/m3 in the channels connected with the outer sea. 

Figure 6. (a) Omnidirectional experimental semivariogram and exponential model (curve) 

of the Chl-a concentrations estimated from MODIS data and rGBr. (b) Scattergram for 

cross-validation of ordinary kriging prediction. The 45-degree dotted line is superimposed. 

(a) (b) 

Figure 7. (a) Spatial distribution of Chl-a concentrations produced by interpolating the 

MODIS image-based estimation in Figure 4 using OK and a 100-m grid size. (b) Kriging 

variance for representing the uncertainty of estimation of Chl-a concentrations by OK. in 

the image, no space before and after en dash representing ranges. 
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Figure 7. Cont. 

 
(b) 

Those spatial characteristics conform to the hydrodynamic system in the bay that is generated by 

the interaction of regional surface currents ([72]; Figure 4), tides and waves. The local river estuaries 

and central bay are shielded by the islands (Van Nuoc, Cai Chien and Vinh Thuc) and the tortuous 

coastline, and therefore, the hydro-energy related to currents and waves is weak there. Under such 

conditions, phytoplankton, the main source of high Chl-a concentrations, accumulate and grow. In 

contrast, in the connection channels and the largely movable waters affected directly by the outer sea, 

the hydro-energy is strong. These waters contain high amounts of re-suspended material, which 

prevent the accumulation and growth of phytoplankton. Accordingly, Chl-a concentrations become 

low in such high-energy zones. 

4.4. Eutrophication Processes over the Course of a Year 

To clarify the eutrophication process and the seasonal change of Chl-a concentrations in the waters 

of Tien Yen Bay, the rGBr and OK were applied to 21 scenes of MODIS image data that were 

acquired under the lowest cloud coverage conditions from late May 2010, to middle May 2011. The 

resultant maps are shown in Figure 8. The general trend of the Chl-a concentrations is observed to be 

similar to Figure 7 in that higher concentrations are located in the near shore and the central bay 

waters, while lower concentrations are distributed in the waters connected directly to the outer sea. The 

map of 5 August 2010, reveals extraordinarily high concentrations over the whole bay, which may have 

been caused by the massive growth of phytoplankton, due to the strong solar energy in the midsummer. 

The seasonal trend is highlighted by the graphs in Figure 9 showing monthly averaged, maximum 

and minimum Chl-a concentrations over Tien Yen Bay calculated from the maps in Figure 8. The Chl-a 

concentrations (monthly averaged concentrations) reached a maximum of 16.6 mg/m3 in August 2010. 

After that, the concentrations declined toward the winter, with a minimum of 12.0 mg/m3 in January 2011, 

and then increased again toward a second maximum concentration (15.9 mg/m3) in March 2011.  
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Figure 8. Spatio-temporal changes of Chl-a concentrations for the year from May 2010, to 

May 2011, over Tien Yen Bay produced from 21 MODIS scene data, rGBr and OK.  

 

The monthly maximum and minimum draw similar trends to the average. These temporal changes 

are coincident with the monthly averaged air temperature and monthly precipitation [73]. Because 

solar energy input in the early spring is not great enough for the rapid growth of phytoplankton, the 

concentrations decline to a general level soon after the second peak. In many coastal waters, such as 

the southern coast of Hokkaido in northern Japan [74], Chl-a concentrations usually show a bimodal 

variation with the first peak in spring and the second peak in late summer to early autumn. This trend 

coincides with that observed in the waters of Tien Yen Bay. 

CSTT [75] defined 10 mg/m3 of Chl-a as the Environmental Quality Standard for coastal waters. If 

the Chl-a concentration of a water body frequently exceeds this criterion in the summer, it is regarded 

as having a eutrophic condition. Based on this criterion, the waters of Tien Yen Bay were considered 

to be eutrophic over the entire study period, with the degree of eutrophication being the strongest 

midsummer. However, undesirable eutrophication disturbances, such as algae blooms, generated in the 

water with Chl-a over 100 mg/m3 [76] have not been observed in Tien Yen Bay. This bay may be 

eutrophic by natural processes rather than by anthropogenic causes, such as wastewater, thereby 

maintaining a high ecological quality similar to other coastal areas [24]. The natural cause is suggested 

by the positive moderate correlation of the Chl-a concentrations with the meteorological factors as 

shown in Figure 9 (r = 0.57 and 0.54 for the air temperature and precipitation, respectively) and no 

specific accumulation of Chl-a concentrations in a certain area. 

Note that the remote sensing technique can detect Chl-a in surface waters only. However, Tien Yen 

Bay is a shallow water body; then, Chl-a concentrations may be relatively uniform over the depth 

except for the deep channels [28]. Phytoplankton, such as diatoms (Bacillariophyta), is often 

accumulated at the highest level in the surface water layer within the 1-m depth for photosynthesis.  



Remote Sens. 2014, 6 436 

 

Figure 9. Variations of monthly averaged, maximum and minimum Chl-a concentrations 

over Tien Yen Bay calculated from the maps in Figure 8 and their correlations with monthly 

averaged air temperature (a) and monthly precipitation (b). The r values denote the 

correlations of the monthly averaged Chl-a concentration with those meteorological factors. 

(a) 

(b) 

5. Conclusions 

To improve the accuracy of Chl-a concentration estimates in phytoplankton-rich coastal waters 

using MODIS image data, the most representative sea-observation satellite imagery, we developed an 

algorithm that considers the bio-optical properties of coastal waters and adopted geostatistics as a  

post-processing technique for down-scaling spatial resolution. The main results obtained are 

summarized as follows: 
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(1) Two widely-used atmospheric correction methods, DOS and QUAC, were compared to obtain 

reflectance at the sea surface by excluding atmospheric contributions from the MODIS image 

data. DOS was identified to be more suitable for tropical waters, such as those of Tien  

Yen Bay. 

(2) Consideration of the optical properties of water shows that the concentration of Chl-a can be 

physically calculated by the ratio of the reflectances of the seawater surface at the visible green 

and blue wavelengths. The Chl-a concentrations in phytoplankton-rich coastal waters estimated 

by the proposed algorithm, rGBr, fit the measured in situ concentrations better and with smaller 

errors than the two previous representative algorithms, OC3M and RNIR. 

(3) The effectiveness of OK to improve the spatial resolution of the MODIS image-based 

estimation of Chl-a concentration from 1 km to 100 m was demonstrated. This improvement 

was possible because the OK map clarified the variation of Chl-a concentration in detail, 

particularly in local estuaries. From that OK map, the hydrodynamic system in Tien Yen Bay is 

suggested to be a main factor controlling the distribution of Chl-a concentrations. 

(4) By applying the rGBr and OK to the 21 scenes of MODIS image data from May 2010 to  

May 2011, notable features and seasonal trends were detected. In particular, the Chl-a 

concentrations have a bimodal variation. Furthermore, the waters of Tien Yen Bay can be 

labeled as naturally eutrophic, because of Chl-a values higher than 10 mg/m3 in the summer. 

This natural cause is supported by the correlation of Chl-a concentrations with representative 

meteorological factors, air temperature and precipitation. 

In conclusion, the combination of the proposed rGBr and OK methods can contribute to monitoring 

water quality and the eutrophication process in tropical coastal areas having similar geomorphological 

conditions as Tien Yen Bay, particularly in the South China Sea coast, where this is recognized as the 

global marine center of shallow-water tropical biodiversity. 
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