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Abstract: This study evaluated the accuracy of boreal forest above-ground biomass (AGB) 

and volume estimates obtained using airborne laser scanning (ALS) and RapidEye data in a 

two-phase sampling method. Linear regression-based estimation was employed using an 

independent validation dataset and the performance was evaluated by assessing the bias 

and the root mean square error (RMSE). In the phase I, ALS data from 50 field plots were 

used to predict AGB and volume for the 200 surrogate plots. In the phase II, the  

ALS-simulated surrogate plots were used as a ground-truth to estimate AGB and volume 

from the RapidEye data for the study area. The resulting RapidEye models were validated 

against a separate set of 28 plots. The RapidEye models showed a promising accuracy with 

a relative RMSE of 19%–20% for both volume and AGB. The evaluated concept of 

biomass inventory would be useful to support future forest monitoring and decision making 

for sustainable use of forest resources. 
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1. Introduction 

Forests play an important role in global carbon cycling, since the world’s forests sequestrate and 

conserve more carbon than all other terrestrial ecosystems, and account for 90% of the annual  

carbon flux between the atmosphere and the Earth’s land surface [1]. Accurate estimation of forest 

biomass is required for countries ratifying the Kyoto Protocol to the United Nations Framework 

Convention on Climate change [2]. Assessment of biomass within all compartments of forest 

ecosystems can be achieved by choosing the appropriate scientific techniques. The combination of 

remote sensing with ground surveys potentially offers way to guarantee accurate monitoring, reporting 

and verification of terrestrial forest biomass [3–5]. Southworth and Gibbes [6] reviewed the past, 

present and future directions of remote sensing applications in the forestry sector. They concluded  

that the fusion of different remote sensing techniques is promising for the monitoring and assessing of 

forest ecosystems. 

The estimation of forest carbon is still relatively uncertain considering the errors in regional carbon 

stock estimates. Houghton [7] mentioned that 89% of the carbon losses are due to the loss of living 

biomass; therefore, attempts have been centered on estimating the above-ground biomass (AGB) of 

vegetation [8]. Accurate large-scale estimation of AGB using active or passive remote sensing has 

been a significant challenge to forest scientists; however, it is crucial for future implementation of 

carbon credit verification in the Land-Use Change and Forestry (LUCF) sector [9]. The purpose of 

verifying forest biomass inventory is to establish their reliability and to monitor the accuracy of the 

numbers reported by independent means.  

Finland, the northernmost European country, has 73% of its land area forested [10]. In Finnish 

boreal forests, coniferous trees represent over 80% of the growing stock. Globally, boreal forests are of 

particular interest because among all the biomes, they may undergo the greatest climatically induced 

changes during the 21st century [11]. Boreal coniferous forests are the largest terrestrial biome on 

Earth and store 31 × 1012 kg of carbon in the trees alone [12]. Research indicates that the boreal forests 

are more significant as carbon sinks than has been thought previously [12,13]. 

A wide range of approaches have been proposed for quantifying forest biomass using active and 

passive remote sensing systems. Although many alternative remote sensing techniques have been 

suggested for the estimation of forest attributes such as AGB, the most promising one seems to be the 

airborne laser scanning (ALS) [14]. ALS sensors provide accurate information on the 3D structure of 

the vegetation, as they directly measure distances to the targets below. ALS has potential to increase 

accuracy and reduce costs in large-scale forest inventories [13–17]. The two established approaches for 

predicting forest biomass using ALS are the area-based method (ABM) and the individual tree 

delineation (ITD). Both approaches have been proven to provide competent results, but large-scale 

applications are usually conducted using the ABM [18]. In this approach, field-measured data and ALS 

metrics are used to make statistical models that describe the relationship between ALS metrics (used as 

predictors) and field-measured forest properties (e.g., AGB).  

The RapidEye is a multispectral satellite sensor launched on 2008 with an ability to acquire images 

with high spatial resolution (5 m) on five spectral bands. The RapidEye images have been used in 

several forestry operations, including cost-effective monitoring, harvesting and mapping [19,20]. The 

RapidEye data might be easier to obtain in many countries than other remotely sensed data, such as 
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ALS data. The drawback of all optical satellite images in the estimation of biomass is the saturation of 

predicted values at dense leaf canopies, which restricts the estimates to low biomass levels [21,22].  

The most commonly used features derived from the optical data to predict forest attributes are the 

spectral and textural features. Spectral features describe the tonal variation in portions of the 

electromagnetic spectrum. Textural features contain information about the spatial distribution of tonal 

variations within an image. Texture has qualities such as periodicity and scale; it can therefore 

describe, for example, the direction, coarseness, and contrast of image components [23]. The 

combination of spectral and textural features has provided better accuracy in the estimation of forest 

attributes than the use of any feature alone. Haralick et al. [24] presented the use of grey-level  

co-occurrence matrices in quantifying the texture. Their method has been widely used in remote 

sensing-based forestry applications [25,26]. 

Albeit the costs of ALS data have decreased considerably, it has relatively high cost compared to 

the optical sensors. Decreasing the number of field reference plots to minimize the costs of data 

collection is desirable, as the cost of field measurements was estimated to be around 100 € per sample 

plots (9 m radius) in Finland [27]. Tegel [28] mentioned that if the number of field reference plots is 

not sufficient, the accuracy of large-sale inventory results can be improved by combining satellite 

imagery with ALS data and field measurements, instead of using just the field plots. 

The objective of this study was to assess the AGB and volume using ALS data and RapidEye 

satellite data in a two-phase sampling procedure. ALS-estimated sample plots (called surrogate plots) 

were used as a simulated ground-truth instead of more expensive field sample plots. A small number of 

field sample plots were collected to create ALS-based models, which were applied to predict the AGB 

and volume for the surrogate plots. Finally, RapidEye image and the surrogate plots were used to 

generalize the predictions for the study area.  

The accuracy of the predictions was evaluated by means of root mean square error (RMSE) and 

bias. To our knowledge, there are few studies focused on using ALS data as a simulated ground-truth 

for the satellite-based forest inventory (e.g., [22]). This study is aimed at obtaining an overall view on 

the accuracy of two-phase biomass inventory using ALS and RapidEye satellite data.  

2. Materials 

2.1. Study Area and Field Data 

The study area is located in eastern Finland (62°31'N, 30°10'E) (Figure 1). The boreal forests of the 

area are managed for timber production and ecological sustainability. Scots pine (Pinus sylvestris L.) is 

the dominant tree species, representing 73% of the volume. Norway spruce (Picea abies L.) represents 

16% of the volume, and rest come from deciduous trees such as downy birch (Betula pubescens Ehrh.) 

and silver birch (Betula pendula Roth.), which usually occur as minor species.  

The field measurements were carried out in May to June 2010. Altogether, 78 field plots were 

placed subjectively into different stands in an attempt to record the species and size variation over the 

area. The field plots were placed into the area subjectively based on the development class and 

dominant tree species. The sizes of the field plots ranged from 20 × 20 to 30 × 30 m. Field sample 

plots were divided into training (n = 50) (phase I) and validation (n = 28) data sets; the training set 
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comprised the plots whose size was 25 × 25 m (0.065 ha). The other plots with varying sizes were used 

for validation. It is worth noting that the larger sample plots maintain a greater amount of spatial 

overlap, minimize the edge effects, and increase the sample variances [29]. 

Figure 1. Training, surrogate and validation plots location and administrative map of 

Finland (left side), and RapidEye image with study area marked (right side). 

A total of 200 surrogate plots (35 × 35 m) were placed to cover the study area using an  

ortho-rectified aerial photograph with the green, red and near-infrared portions of the spectrum. These 

plots were used as a simulated ground-truth and while training the RapidEye models in the phase II 

(described in Section 3.4). We used visual interpretation of aerial photographs in the placement of the 

surrogate plots. The idea was that the surrogate plots should cover all the variation (i.e., vegetation 

type, geographic location, species composition) in the study area.  

All trees with either diameter at breast height (DHB) ≥ 4 cm or height ≥ 4 m were measured in the 

field. The volumes of the individual trees were calculated as a function of diameter at breast height 

(DBH) and tree height using species-specific models [30]. The AGB of individuals trees was 

calculated by using the biomass Equations (1–3) developed by Repola [31,32], respectively, for Scots 

pine, Norway spruce and deciduous. Repola [31,32] applied a multivariate mixed linear model in 

biomass predictions and the equations are as follows: ln(ݕ௞௜) = ܾ଴ + ܾଵ ݀ௌ௞௜(݀ௌ௞௜ + 12) + ܾଶ ℎ௞௜(ℎ௞௜ + 20) + ௞ݑ + ݁௞௜ (1)

ln(ݕ௞௜) = ܾ଴ + ܾଵ ݀ௌ௞௜(݀ௌ௞௜ + 20) + ܾଶln (h௞௜) + ௞ݑ + ݁௞௜ (2)

ln(ݕ௞௜) = ܾ଴ + ܾଵ ݀ௌ௞௜(݀ௌ௞௜ + 12) + ܾଶ ℎ௞௜(ℎ௞௜ + 22) + ௞ݑ + ݁௞௜ (3)
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where yki is the total AGB (kg) of tree i in stand k, b0, b1 and b2 are the vectors of fixed effects 

parameters, dski is (2 + 1.25 × DBH), hki is the height (m) of tree, uk is the variance of random 

parameters, and eki is the residual error.  

Table 1 shows the multivariate model fixed parameters and residual errors values. Finally, total 

volume and AGB were calculated for each plot and stands per hectare. The characteristics of the 

training plots and validation stands are presented in Table 2. 

Table 1. Estimates of multivariate model fixed parameters, and variances of random stand 

parameters (uk) and residual errors (eki) [31,32]. 

Parameters Scots Pine Norway Spruce Deciduous 

Fixed effects    
b0 −3.1 −1.8 −3.6 
b1 9.5 9.4 10.5 
b2 3.2 0.4 3.0 

Random effects    
uk 0.009 0.006 0.00068 
eki 0.010 0.013 0.000727 

Table 2. The mean characteristics of the training plots and validation plots. 

 Minimum Maximum Mean SD 

Training plots, n = 50 
Total volume (m3/ha) 

AGB (ton/ha) 
96.1 433.8 209.3 74.9 
51.5 226.6 113.0 39.7 

Validation plots, n = 28 
Total volume (m3/ha) 103.6 382.5 219.1 69.0 

AGB (ton/ha) 55.9 182.2 115.7 31.5 

2.2. Remote Sensing Data 

The ALS data was collected on 18 July 2009 using an Optech ALTM Gemini laser scanning 

system. The nominal pulse density was about 0.65 per square meter. The test site was scanned from an 

altitude that is approximately 2000 m above ground level with a field view of 30 degrees and side 

overlap between transects of 20%. Pulse repetition frequency was set to 50 kHz. The swath width was 

approximately 1,050 m. 

The RapidEye satellite images were collected on 19 May 2012 for the test area. The  

RapidEye image index numbers were 2012-05-19T102327_RE5_3C-N05_9429301_137127 and  

2012-05-19T102330_RE5_3C-N05_9429336_137127. RapidEye imagery provides multispectral 

optical imagery of five bands (blue 440–510 nm, green 520–590 nm, red 630–685 nm, red-edge  

690–730 nm, and near infrared 760–850 nm). A total of two RapidEye images were collected with 

spatial resolution of five meters to cover the study area. All the RapidEye images were radiometrically 

and geometrically corrected (overall standard error was 0.53 m) according to the standard of  

RapidEye [33] and aligned to a cartographic map projection. The RapidEye satellite orbit altitude was 

630 km in sun-synchronous orbit with a swath width of 77 km.  
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3. Methods 

3.1. Preprocessing and Estimation of ALS Predictors 

First points were classified as ground and non-ground hits according to the approach described by 

Axelsson [34]. The height (z) values of the laser echoes were changed to the altitude above the DTM 

(Digital Terrain Model) surface instead of the altitude from the base geoid of the projection. A raster 

DTM was then obtained by interpolation using Delaunay triangulation. The spatial resolution of the 

DTM was 0.5 m. Corresponding DTM elevations were subtracted from the ellipsoidal heights of the 

ALS points to scale their elevations to the above ground heights used for analysis.  

The area-based method was used to model the relationships between field-measured variables (e.g., 

AGB) and canopy height/density metrics from the ALS data [35]. The first echo data included  

first-of-many and single echoes whereas the last echo data included last-of-many and single echoes, 

while all intermediate echoes were ignored. A total of 46 ALS explanatory variables were extracted 

based on ALS variables defined by Junttila et al. [36] and Næsset [37] with slight modification and are 

described in Table 3. 

Table 3. List of airborne laser scanning (ALS) explanatory predictors. 

Predictors 
Number 

ALS 
Predictors 

Description 

1...10 Hfp10–100 
Height for which the cumulative sum of ordered first and single echo heights is 

closest to 10%, 20%, 30%...100% of the total height sum. 

11...20 Hlp10–100 
Height for which the cumulative sum of ordered last and single echo heights is 

closest to 10%, 20%, 30%...100% of the total height sum. 

21...23 Ifp30-90 
Intensity for which the cumulative sum of ordered first and single echo intensities 

is closest to 30%, 60% and 90% of the total intensity sum. 

24...26 Ilp30-90 
Intensity for which the cumulative sum of ordered last and single echo intensities 

is closest to 30%, 60% and 90% of the total intensity sum. 

27 Hmean 
Mean height of first and single echo vegetation points (points over high 

vegetation threshold 5 m). 
28 Hstd Standard deviation of first and single echo heights. 

29 Dfp 
Ratio of the number of first and single echoes below 5 m (low vegetation) and the 

total number of first and single echoes. 

30 Dlp 
Ratio of the number of last and single echoes below 5 m (low vegetation) and the 

total number of last and single echoes. 

31...38 Dhlp0-7 
Ratio of last and single echoes with height lower than 1.5 m + i × 3 m for  

i = 0.7 and the total number of last and single echoes. 

39...41 Dfp10,30,50 
Ratio of first and single echoes with intensity I ≤ 0.5+i for i = 10, 30, 50 and the 

total number of first and single echoes. 

42...44 Dlp10,30,50 
Ratio of last and single echoes with intensity I ≤ 0.5+i for i = 10, 30, 50 and the 

total number of last and single echoes. 

45 Dflog 
Logarithm of the ratio of the number of first and single echoes below  
5 m (low vegetation) and the total number of first and single echoes. 

46 Hf3mean Mean of the largest three heights within first and single echoes. 
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3.2. RapidEye Image Preprocessing 

Before using the RapidEye images in the final calculation, the necessity of radiometric correction 

was examined according to the Ridge method [38]. The main idea is the linear relationship of the 

digital numbers (DNs) over pseudo-invariant features (PIFs) across these two images [39,40]. We 

made five feature space (for five RapidEye bands) images within these two images in the overlapping 

area. We used one band as the X axis and the same band in the other image as a Y axis to create the 

feature space image using the ERDAS IMAGINE software (version 10.1) and with the different colors 

representing histogram frequencies. We found that the slope and intercepts in the resulting feature 

space images (Figure 2a–e) were always one and zero, respectively. So, we determined that the 

radiometric correction was unnecessary. We also created the histograms and found a similar 

distribution in the overlapping area of these two images, which confirmed our previous results from 

the feature space images (e.g., blue band, Figure 3). 

Figure 2. Feature space images of each RapidEye band ((a–e)one to five band, consequently). 

 
(a) (b) (c) (d) (e) 

Figure 3. Digital numbers in the overlapping area of the RapidEye blue band. 

 

3.3. Estimation of RapidEye predictors  

The spectral and textural features were calculated from the RapidEye images and used as predictors 

for modelling. The extraction was done based on the field plot size and RapidEye image pixel size so 

that the extracted image value could properly represent the forest attributes (e.g., AGB) at the plot 

level. The spectral predictors were derived from each band of RapidEye image by taking the mean DN 
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values based on the plot size. Three spectral vegetation indexes were computed from the RapidEye 

images. Normalized Difference Vegetation Index (NDVI) (Equation (4)) is strongly related to the 

photo-synthetically active radiation intercepted by live vegetation, and is thus a robust method to 

identify live canopies in multispectral images [41]. NDVI has been widely used for estimating forest 

biomass [17]. NDVI is calculated from the visible (red) and near-infrared (NIR) bands of the RapidEye 

sensor (Equation (4)); 

NDVI1 = (NIR − Red)/(NIR + Red) (4)

NDVI thus varies between −1.0 and +1.0, i.e., green vegetation gives a positive value, snow and 

clouds tends to give negative values, whereas water and soil give values close to zero.  

Also, the red-edge and green band ratio in the RapidEye images has a good response to forest 

biomass. Thus, the second NDVI [42] was calculated from these individual measurements  

(Equation (5)). In addition, the third NDVI [43] was calculated from the red-edge and red channel of 

the RapidEye image (Equation (6)) and is well-known as Normalized Difference Red Edge Index 

(NDRE). Given the sensitivity of the NDRE, this index is used for a variety of forest applications 

including biomass mapping and forest health. 

NDVI2= (Red edge − Green)/(Red edge + Green) (5)

NDVI3= (Red edge − Red)/(Red edge + Red) (6)

We ran the Pearson correlation test to confirm which NDVI has the better correlation with AGB and 

volume. The Pearson correlation showed that the first NDVI and third NDVI had better correlations  

(r = −0.32 and −0.34, respectively) compared to the second NDVI (r = −0.12). A total of 14 textural 

features [24] were computed from the first and the third NDVI, separately. 

The Haralick textural features were derived from the RapidEye images by considering the mean 

DNs based on the plot size. The co-occurrence matrix was used as an input to compute the Haralick’s 

features. We used single spectral bands (mean), three vegetation indices (e.g., normalized difference 

vegetation index) and Haralick textural features from RapidEye satellite data. Finally, a total of  

36 RapidEye explanatory predictors (Table 4) including both spectral and textural features were 

available for the prediction of the volume and AGB. 

Table 4. List of RapidEye explanatory predictors. 

RapidEye Predictors Description 
B1 Blue (mean) 
B2 Green (mean) 
B3 Red (mean) 
B4 Red-edge (mean) 
B5 NIR (mean) 

NDVI1 First NDVI (mean) 
NDVI2 Second NDVI (mean) 
NDVI3 Third NDVI (mean) 
HR1 Angular second moment 
HR2 Contrast 
HR3 Correlation 
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Table 4. Cont. 

RapidEye Predictors Description 
HR4 Sum of squares 
HR5 Inverse difference moment 
HR6 Sum average 
HR7 Sum variance 
HR8 Sum entropy 
HR9 Entropy 
HR10 Difference variance 
HR11 Difference entropy 
HR12 Information measures of correlation 
HR13 Information measures of correlation 
HR14 Maximum correlation coefficient 

3.4. Two-Phase Sampling Method 

Figure 4 shows the flowchart of the two-phase sampling method. In the first phase of this approach, 

a regression model is generated based on the relationship between ALS-metrics and field-measured 

sample plots. In the second phase, the forest characteristics that are estimated for the “surrogate plots” 

from ALS data are applied as simulated ground-truth to generate a regression model between forest 

parameters (e.g., AGB) and features derived from RapidEye satellite imagery. 

Figure 4. Flowchart of the two-phase sampling design. 

 

3.5. Statistical Modeling 

Ordinary least squares (OLS) is the most commonly employed method for estimating the unknown 

parameters of a linear regression model. The OLS can be written as follows in Equation (7); 

௜ܻ = ௜ܺ́ߚ + ௜ (7)ߝ

where ௜ܻ = field values of volume/AGB, ߚ is a vector of regression coefficients; ௜ܺ́ is a matrix of the 

explanatory variables from ALS data as well as from RapidEye data; ߝ௜ is an unobserved error which 

account for the difference between the actually observed responses ௜ܻ and the predicted values ௜ܺ́ߚ. 

We did not employ non-parametric method due to the insufficient number of training plots. 
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As we had a large number of predictors, we used the leaps package (regsubsets algorithm) in R 

(Version 2.15.2) environment to select the best combination of predictors for the models [44].  

It performs an exhaustive search for the best subsets of the explanatory variables in X for predicting Y 

(dependent variable) in linear regression, using an efficient branch-and-bound algorithm. The selection 

criteria in the algorithm were Bayesian Information Criterion (BIC) and adjusted R2 (coefficient of 

determination) value. Since the algorithm returns the best model of each size (number of predictors), 

the results do not depend on a penalty model for model size. In addition to stepwise variable selection, 

we used the Pearson correlation techniques and the maximum R2 improvement variable selection 

techniques to select ALS/RapidEye-derived variables to be included in the models. During the variable 

selection, no explanatory variable was left in the models with a partial F statistic with a significance 

level greater than 0.05. It is worth noting that regsubsets algorithms might have many independent 

variables that could introduce multicollinearity problems, i.e., one independent variable is a linear 

combination of the other independent variables. The problem is that, as the independent variables (e.g., 

ALS height percentiles) become more highly correlated to the dependent variables (e.g., AGB), it 

becomes more and more difficult to determine which independent variable is actually producing the 

effect on the dependent variables. In this circumstance, we used maximum R2 improvement techniques 

to search for the “best” one-variable model, the “best” two-variable model, and so forth, although it is 

not guaranteed that in finds the model with the highest R2 for each size. We repeated the selection 10 

times by randomly selecting 50% of the observations for each repetition to produce stable models for 

our final regression models. Our final models contained the most frequently occurring ALS/ 

RapidEye-derived variables. Næsset et al. [45] and Latifi et al. [46] used similar predictor selection 

techniques for model building to predict forest biomass and volume. 

3.6. Model Accuracy Assessment 

The RMSE and relative RMSE (Equation (8)) have been widely used for validating the accuracy of 

forest parameters estimation. The accuracy of fitted models was measured by using leave-one-out 

validation (LOOV) techniques. Bias is the mean residual error between predicted and estimated model 

values (Equation (9)). Relative bias gives the percentage of mean residual error (Equation (9)).  

ܧܵܯܴ = ඨ∑ ( ௜ݕ − ො௜)ଶ௡௜ୀଵݕ n ; %ܧܵܯܴ = 100 × RMSEݕത  (8)

ݏܽ݅ܤ = ∑ ௜ݕ) − ො௜)௡௜ୀଵݕ ݊ ; %ݏܽ݅ܤ = 100 × biasݕത  (9)

where yi is the predicted value for sample plot i; ݕො௜ is the observed value for sample plot i; ݕത is the 

average value of measured sample plots, and n is the total number of plots. The statistical significance 

of the bias was estimated by the t-test (Equation (10)).  ݐ = ܦܵݏܽ݅ܤ √݊ൗ  (10)

where SD is the standard deviation of the residuals	(ݕ௜ −  ො௜). The bias was considered to be significantݕ

if the absolute value of the t was greater than t corresponding with a probability of 0.05 [47]. The 
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coefficients of determination (R2 and adjusted R2) describe the model fit. A higher adjusted R2 

indicates a better model. The equation of adjusted R2 is following (Equation (11)); ܴଶ݆ܽ݀݀݁ݐݏݑ = 1 − (1 − ܴଶ) (݊ − 1)݊ − ݇ − 1 
(11)

where, n is the sample size and k is total number of regressors in the linear model (not counting the 

constant term). 

4. Results 

4.1. Model Building and Accuracy at Phase I (ALS data) 

The precisions of the ALS models are detailed in Table 5. Table A1 shows the model parameters 

and their statistical significance. Scatter plots are presented in Figure 5 to illustrate the residual plots 

for AGB. Although, we had a total of 46 ALS predictors initially in the set, the final AGB and volume 

models include only one ALS predictor. We also tested the transformation of the ALS predictors 

instead of the original value but it did not improve our model accuracy. The ratio of last and single 

echoes with height lower than 13.5 m and the total number of last and single echoes constituted the 

best model for AGB and volume.  

Table 5. Accuracy of the ALS prediction against field estimation. 

Parameter 
Number of 

Training Plots (n) 

Mean of 

Estimates 

Standard Deviation 

of Estimates 
RMSE 

RMSE 

% 
Bias 

Bias 

% 
R2 Adj. 

AGB *, ton/ha 
50 

112.9 34.8 18.7 16.6 0.0 0.0 76.6 

Volume, m3/ha 209.2 66.2 34.5 16.5 0.0 0.0 77.7 

AGB *, ton/ha 
25 

111.5 31.9 22.0 19.7 0.0 0.0 65.3 

Volume, m3/ha 204.1 56.2 41.7 20.4 0.0 0.0 61.9 

AGB *, ton/ha 
10 

106.6 32.9 13.0 12.2 0.0 0.0 83.2 

Volume, m3/ha 198.8 67.7 25.1 12.6 0.0 0.0 85.0 

AGB *: above ground biomass. R2 Adj: R2 adjusted. 

Figure 5. The residuals plots of ALS predicted AGB at phase I. 
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Figure 5. Cont. 

Table 5 shows the accuracy of the ALS prediction against field estimation using three combinations 

of training plots (50, 25 and 10 training plots). We reduced the number of training plots from 50 to 25 

and 10 training plots (phase I) to assess the prediction accuracy after reducing the number of training 

plots. After sorting the training plots based on the tree height and AGB distribution, we selected every 

second plot to obtain 25 training plots, and every fifth plot to obtain 10 training plots out of 50 plots. 

The results in Table 5 proved that the models based on all three combinations of training plots had 

promising prediction accuracy. The linear model that was calibrated to estimate AGB showed high 

correlation when validated against field estimation using LOOV. A lowest RMSE value of 13 tons/ha 

(12%) was observed for AGB, while volume had similar RMSE value of 25 m3/ha (12%) for the 

models based on 10 training plots. In contrary, the highest 20% RMSE of AGB was employed for the 

models based on 25 training plots. In addition, the R2 of the model was 0.83 based on 10 training plots. 

A slightly better R2 value (0.85) was observed for volume. However, the models based on 25 training 

plots had a lowest R2 value for both AGB (0.65) and volume (0.61). The statistical outliers were not 

frequent in the each residual plot (Figure 5). Although our final AGB and volume models each contain 

one ALS predictor, tests were also conducted by adding more ALS height and density predictors to the 

models. However, this did not improve the model accuracy significantly. For instance, we added the 

80% ALS height percentile in the AGB model in addition to the used ALS predictor. However, the R2 

value dropped from 0.83 to 0.50. Similarly, we added the ratio of the number of last and single echoes 

below 5 m (low vegetation) and the total number of last and single echoes in the AGB model. 

Similarly, the R2 value dropped to 0.66. Besides, the Pearson correlation between the used density 

metric and tree AGB, volume, tree height, basal area were respectively 0.84, 0.85, 0.82, 0.75, which 

confirms that this density metric explained very well the structure of study area. In contrast, the 

correlations between the ALS height percentiles of 60%, 70%, 80%, 90% and AGB were 0.60, 0.61, 

0.62, and 0.64, respectively. In the case of volume, the correlations were higher for the ALS height 

percentiles and were respectively 0.68, 0.68, 0.69 and 0.70, which indicates that the ALS height 

percentiles correlate better with volume than AGB. The key of the used density metric must be the 

13.5 m height threshold; it is much higher than what is typically used. 13.5 m seems to be close to the 
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smallest mean height at the plots. We think that it is a combination of a small variation in the plot data 

and the unusually high threshold which somehow makes this variable special for this particular data 

set. It might also be possible to achieve these results in a managed commercial forest, where an 

increase in height would also result in an increase in density, so one density variable would be enough. 

4.2. Model Building and Accuracy at Phase II (RapidEye Data) 

The error statistics of the linear models are given in Table 6. Table A1 shows the details of the 

regression models for RapidEye data. Figure 6 shows the residual plots for AGB. The predictor 

selection techniques picked up six and five predictors, respectively, for AGB and volume from a set of 

36 independent RapidEye predictors. The best model for AGB constitute with the mean of four 

RapidEye spectral bands (green, red, red-edge, NIR), mean NDVI (based on red-edge and green) and 

the Haralick feature of inverse difference moment (HR5). Volume model consist of all AGB predictors 

except red band (mean). The mean NDVI and inverse difference moment accounted for much more of 

the variability in biomass and volume than the individual RapidEye bands. Notably, the RapidEye 

spectral bands were very helpful in increasing the variance explained. 

Table 6. Accuracy of RapidEye prediction against ALS estimation at phase II. 

Parameter 

Number of 

Training Plots 

(n) ǂ 

Number of 

Surrogate 

Plots 

Mean of 

Estimates 

Standard 

Deviation of 

Estimates 

RMSE 
RMSE 

% 
Bias 

Bias 

% 

R2 

Adj. 

AGB *, ton/ha 
50 

200 

102.7 26.2 21.0 20.4 0.0 0.0 59.5 

Volume, m3/ha 189.7 49.3 40.6 21.3 0.0 0.0 58.4 

AGB *, ton/ha 
25 

101.4 26.8 21.5 21.2 0.0 0.0 59.5 

Volume, m3/ha 186.3 46.8 38.5 20.6 0.0 0.0 58.4 

AGB *, ton/ha 
10 

100.8 24.5 19.6 19.5 0.0 0.0 59.5 

Volume, m3/ha 186.8 49.9 41.0 21.9 0.0 0.0 58.4 

AGB *: above ground biomass; ǂ The number of training plots from phase I used in the estimation of 200 

ALS surrogate plots for phase II. R2 Adj: R2 adjusted. 

We calibrated the RapidEye models against ALS-trained set of surrogate plots using LOOV. The 

mean and standard deviation of AGB for the ALS-trained set of surrogate plots were 103 tons/ha and 

34 tons/ha, respectively. We had a similar accuracy for all the combination of training plots number 

(10, 25, and 50). However, RapidEye prediction based on the 10 training plots against ALS estimation 

gave a lowest RMSE of 19 tons/ha (19%) for AGB. In addition, volume had a similar RMSE  

38–41 m3/ha (20%–21%) value from all the combination of training plots (Table 6). The RapidEye 

predicted value showed a high correlation against the ALS estimates. The model for AGB explained 

59% of the variability whereas the model for volume explained 58% (Table 6). The RapidEye model 

was not affected by the saturation effect (suppression of variance). Albeit, the AGB model did not 

show any heteroscedasticity in the model, the volume model had some affect but was not statistically 

significant. We used the logarithmic and quadratic transformation in an attempt to minimize this 

problem but they did not improve the model significantly.  
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Figure 6. The residuals plots of RapidEye for AGB at phase II. 

4.3. Accuracy at the Independent Validation Plots 

The accuracies at the validation plots are shown in Table 7. Figure 7 shows the residual plots 

comparing the RapidEye prediction against field estimation for AGB. The residual plots for AGB are 

reasonably good (Figure 7) despite a slight non-linearity in the case of volume. Table 7 shows that 

there was relatively similar accuracy for the validation plots using three combinations of training plots. 

However, the models based on the 10 training plots had slightly better accuracy for AGB, while 

volume prediction accuracy was highest in the models based on 50 training plots. A RMSE value of 

23–24 tons/ha (20%) was observed AGB, while volume had a RMSE value of 43–44 m3/ha  

(19%–20%). We found that these accuracies at the independent validation plots can be considered 

acceptable and are even better than in studies concerning conventional compartments-based field 

inventory in Finland [48,49]. All the biases were insignificant at the independent validation plots. It is 

worth noting that due to the small number of independent validation plots (n = 28), the imprecision in 

terms of the relative bias is no longer observed when predictions are plotted versus measured 

observations because the absolute scatter is approximately the same. In contrast, we also fitted the 

RapidEye model directly using 50 field plots, and used it to predict 28 validation plots. We found that 
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the accuracy was slightly lower compared to the prediction with the use of surrogate plots (phase II). 

The relative RMSE and the adjusted R2 were 21% and 44%, respectively, for AGB. 

Table 7. Accuracy of AGB and volume obtained from RapidEye at validation plots. 

Parameter 

Number of 

Training 

Plots (n) ǂ 

Number of 

Validation 

Plots (n) 

Mean of 

Estimates 

Standard 

Deviation of 

Estimates 

RMSE 
RMSE 

% 
Bias 

Bias 

% 

R2 

Adj. 

AGB *, ton/ha 
50 

28 

 

112.5 32.5 23.6 20.4 −3.1 −2.7 50.7 

Volume, m3/ha 207.5 59.4 43.2 19.7 −11.4 −5.2 54.0 

AGB *, ton/ha 
25 

111.5 33.3 24.1 20.8 −4.1 −3.5 50.7 

Volume, m3/ha 203.2 56.4 44.3 20.2 −15.7 −7.1 54.0 

AGB *, ton/ha 
10 

110.0 30.4 23.3 20.2 −5.6 −4.8 50.7 

Volume, m3/ha 204.9 60.1 44.3 20.1 −14.1 −6.4 54.0 

AGB *: above ground biomass; ǂ The number of training plots used in the estimation of 200 ALS surrogate 

plots at phase II. R2 Adj: R2 adjusted. 

Figure 7. The residual plots of RapidEye for AGB at validation plots. 
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5. Discussion and Conclusion 

This paper presented and tested forest AGB and volume estimation using ALS and RapidEye sensor 

data in a mixed-species boreal forest of eastern Finland. We found that the outcomes of the study were 

encouraging and we felt that they need further validation in other forest types along with development 

of the methodology. The overall strength of the ALS–RapidEye fusion revealed here is a promising 

accuracy to characterize biomass accounting in the coniferous forest ecosystems. The analysis of linear 

regression showed that the ALS data had good prediction accuracy at phase I. It was promising that the 

ALS models explained 83% (R2 value of 83%) of the variability for AGB. Furthermore, the RapidEye 

models provided a relatively good accuracy at phase II for AGB and as well as for volume. RapidEye data 

had a relative RMSE of 20% at independent validation plots. Such accuracy indicates that the combination 

of ALS and RapidEye would be a promising fusion for the estimation of boreal forest attributes. 

Nevertheless, more testing and validation should be done in different forest landscapes at large-scale.  

5.1. Statistical Modelling 

We used the simple linear regression to predict biomass and volume which is one of the most 

commonly used methods in remote sensing-based regression modeling (e.g., [17,50–52]).  

Næsset et al. [53] made a conclusion that employing a multivariate (multi-variable) method would not 

have had any significant impact on the biomass and volume estimation among the tested OLS 

regression analysis, seemingly unrelated regression (SUR), and partial least-squares (PLS) regression 

from two different inventories using ALS data. 

Though we used regression subset selection techniques (leaps package) using an efficient  

branch-and-bound algorithm in R statistics, Packalén et al. [54] mentioned that different predictor 

variables were identified during different runs of the automated variable selection method. For 

instance, Latifi et al. [46], Packalén et al. [55] reported that genetic algorithm (GA) and simulated 

annealing (SA) were also superior variable selection methods. These algorithms should nevertheless be 

tested as alternatives to see whether a different explanatory variable selection method would improve the 

result or at least make the search for an eventual solution more effective. Nevertheless, the ALS predictor 

(density metric) that we employed in the biomass and volume models was closely matched to the 

predictors selected in other studies (e.g., Rana [56]). The RapidEye spectral and textural features used in 

this study are also closely matched with other studies (e.g., Packalén et al. [26] and Latifi et al. [46]). 

5.2. Method Pros and Cons 

Our presented forest biomass inventory method naturally places some advantages and constraints 

on the applicability of the method. Albeit, it involves a sample ALS data at phase I and requires only a 

few sample plots for model calibration (fitting). In addition, the surrogate plots (phase II) could be 

placed systematically in the whole area based on vegetation types, geographic location, climatic 

condition and tree species compositions. Therefore, our calibrated models at phase II represent the 

whole study area and have less chance of missing the vegetation types and tree species’ compositions. 

The surrogate plots should be placed so that they reflect the full range of variation in biomass over the 

study area. In addition, the surrogate plots should cover also the rare forest types. Systematic selection 
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or selection based on predicted AGB would be a natural choice. The locations of the surrogate plots 

could be selected through weighted random sampling or stratified sampling. Traditional forest 

inventory depends on a large set of ground-truth data for model calibration. However, this study 

showed a promising outcome where a sample ALS data was employed as a ground-truth data for 

model calibration with the satellite image for mapping the whole area of interest.  

Another issue is that the satellite image acquisition dates may be different, introducing seasonal 

effects. Therefore, it would require the DN (digital number) values to be comparable between datasets 

which in turn would require the use of absolute reflectance instead of relative DN values. It would be 

recommended to use the same season for image acquisition. The result from Figures 2 and 3 confirmed 

that we did not need image normalization here. However, image normalization would be required for 

all satellite images relative to each other. In addition, the field data should always be collected at the 

same time period/season. In our study, the RapidEye images were collected almost two years after the 

field and ALS data acquisitions. However, it is acceptable in our study because there was no harvesting 

and logging activities and no significant naturally occurring changes within that time period. 

Our study showed that ALS-based forest inventory have produced very accurate estimates (phase I). 

ALS data have high accuracy to predict forest biomass when regressing ALS height/density metrics 

with data from field measured plots [57]. Subsequently, ALS estimates for the surrogate plots were 

used as simulated ground-truth (phase II) for the interpretation of optical satellite images, which 

improved the results compared with using models that were directly based on the field plots. Covering 

the whole area of interest with ALS is relatively expensive, thus we used a two-phase estimation 

approach that requires ALS data only from a sample of the study area. This is known as the  

ALS-assisted multi-source programme that combines ALS information with field plots and satellite 

data to develop a forest biomass map [58]. 

Reducing the number of training plots is of great importance to minimize field inventory cost. Our 

findings show that a reduced number of sample plots provides similar accuracy compared to the full 

dataset. When we reduced the sample plot from 50 to 10, there was no significant reduction in the 

prediction accuracy of AGB and volume (Table 7). Junttila et al. [59] reported similar performances in 

the boreal managed forest area, Finland. They concluded that the effect of a reduction in sample-plot 

number had only a slight decrease in accuracy and a reduction of 2.9% RMSE for the reduced  

sample-plot number compared to the full dataset. Latifi and Koch [60] thoroughly studied the 

integration of off-site samples into small-scale forest inventory in central Europe, in which they 

reported the substantial effectiveness of low-to-medium sampling intensity on improving forest 

structure models by means of ALS and multispectral aerial images. Dalponte et al. [61] concluded that 

it is possible to reduce the number of field sample plots without losing model accuracy. A bottleneck 

of their approach was that ALS data is necessary as prior information before collection of field 

reference data. They reduced the number of sample plots based on genetic algorithms, whereas our 

selections were based on tree height and AGB distribution. 

5.3. Model Calibration and Validation 

The ALS models were calibrated against the field sample plots in phase I of the model building. 

The R2 value of our predicted forest AGB is close to the others studies ranged between 0.74 and 0.88 
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in the studies by Hall et al. [62], Bright et al. [63], Fu et al. [64], Gobakken et al. [65], Næsset and 

Gobakken [45], Hawbaker et al. [66] and Ferster et al. [67]. Subsequently, in the phase II, we 

calibrated the RapidEye models against the ALS-simulated estimation. When the resulting models at 

phase II were tested against an independent dataset, the error statistics of testing were similar to those 

of the model fitting (Tables 6 and 7). Our models are stable and more promising considering the error 

statistics. Næsset [68], Gómez et al. [69], Eckert [70], and Gautam [22] mentioned that optical imagery 

based estimation may lead to significant underestimation of biomass stock in areas with high  

(>200 ton/ha) AGB concentrations. In western Finland, Muukkonen and Heiskanen [71] had faced a 

similar problem in mixed special boreal forest employing optical sensor alone where biomass was 

underestimated above 200 ton/ha. Our models and vegetation index were not affected by the saturation 

problem (underestimation of variance) because the biomass stock at the study area is mostly less than 

200 ton/ha, although many authors have reported this problem for optical sensors. However, it would 

be interesting to explore the accuracy of our presented approach in other landscapes for wider 

acceptance based on the geographic variation and different forest types and environments. 

The RMSE at the independent validation plots was lower than in most previous studies of boreal 

coniferous and mixed forest. Our study had a relative RMSE of 19%–20% for volume, whereas 

previous studies using the optical sensor had a relative RMSE of 42%–82% for volume, for instance, 

studies by Tokola and Heikkilä [72] (82%), Tomppo et al. [73] (59%), Kilpeläinen and  

Tokola [74] (56%), Hyyppä et al. [75] (50%), Mäkelä and Pekkarinen [76] (47%), and Hyvönen [77] 

(42%). Similar to the volume, the relative RMSE (20%) for AGB was also noticeably lower in the 

present study than the corresponding statistics of Tomppo et al. [73] (36%), and Muukkonen and 

Heiskanen [71] (41%). It is worth noting that the above studies did not follow exactly the same 

approach of our study but are the closest available comparison. The biases were considerably higher 

for testing datasets compared to the model fitting, though the biases were not statistically significant. 

Due to the small number of testing plots we could not make a clear conclusion about biases here.  

5.4. Sensor Pros and Cons 

The relatively small errors in this study are probably due to the type of biomass being measured and 

the relatively good spatial and spectral resolution of the RapidEye data with high geometric accuracy. 

Hyyppä et al. [75] also mentioned that the estimation error of the forest characteristics were smaller for 

higher resolution data compared to the lower resolution data. Good spatial resolution of the  

RapidEye bands makes it is a good data source for studies of forest characteristics. Koch [78],  

Treitz et al. [79], and Kankare et al. [80] mentioned that the mapping of forests biomass, from local to 

global in terms of their status and development, is of increasing importance for REDD. 

5.5. Concluding Remarks 

We examined here the AGB and volume estimation employing ALS and RapidEye data in a  

two-phase sampling method. Linear regression was employed to predict forest characteristics in a 

managed boreal forest in eastern Finland. To conclude, the present study has confirmed that the 

accuracy of AGB and volume comparable to the forest inventory by compartments (or stand) in 

Finland. The approach presented here is a promising alternative for use in forest management in 



Remote Sens. 2014, 6 303 

 

Finland with enough accuracy for the purpose of forest resource inventory. In addition, calibrating the 

RapidEye data using the ALS-simulated surrogate plots and different models at phases I and II make 

this approach promising and stable for biomass and carbon accounting in the boreal forest. It could 

also offer valuable methodology for inventories need in the REDD program. As the tested area is 

rather small, further validation is needed in a larger study area for better justification of the presented 

approach. Finally, we feel that future studies should be carried out using a combination of ALS and 

other optical sensors to confirm the validity of this approach in other forests landscape. This approach 

could be tested by tracking changes in forest biomass at the regional and national levels.  
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Appendix 

Table A1. Explanatory variables in each model. 

Models Predictors Estimate S.E. t Value Pr(>|t|) 

ALS AGB (50 training plots) 
Intercept 455.1 27.0 16.8 *** 

Dhlp4 −397.0 31.2 −12.7 *** 

ALS volume (50 training plots ) 
Intercept 859.4 49.7 17.2 *** 

Dhlp4 −754.4 57.5 −13.1 *** 

ALS AGB (25 training plots) 
Intercept 462.5 51.8 8.9 *** 

Dhlp4 −406.8 59.8 −6.8 *** 

ALS volume (25 training plots) 
Intercept 822.2 97.9 8.4 *** 

Dhlp4 −716.3 113.0 −6.3 *** 

ALS AGB (10 training plots) 
Intercept 430.9 48.1 8.9 *** 

Dhlp4 −371.9 54.9 −6.7 *** 

ALS volume (10 training plots) 
Intercept 864.7 92.5 9.3 *** 

Dhlp4 −763.6 105.6 −7.2 *** 

RapidEye AGB (50 training plots and 200 

surrogate plots) 

Intercept 3,356.7 345.3 9.7 *** 

B2 −0.52 0.07 −7.0 *** 

B3 −0.06 0.03 −2.1 * 

B4 0.74 0.09 8.5 *** 

B5 −0.07 0.01 −6.4 *** 

NDVI2 −33.6 3.8 −8.7 *** 

HR5 −181.6 34.4 −5.2 *** 
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Table A1. Cont. 

AGB: above ground biomass; Dhlp4: the ratio of last and single echoes with height lower than 13.5 m and the 

total number of last and single echoes; B2: green, mean; B3: red, mean; B4: red-edge, mean; B5: NIR, mean; 

NDVI2: red-edge and green band based NDVI, mean; HR5: inverse difference moment. 
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Models Predictors Estimate S.E. t Value Pr(>|t|) 

RapidEye volume (50 training plot and 200 

surrogate plot) 

Intercept 5,952.4 633.3 9.4 *** 

B2 −1.0 0.14 −7.3 *** 

B4 1.2 0.15 8.4 *** 

B5 −0.10 0.02 −6.6 *** 

NDVI2 −56.8 6.5 −8.6 *** 

HR5 −345.1 66.0 −5.2 *** 

RapidEye AGB (25 training plots and 200 

surrogate plots) 

Intercept 3,435.1 353.7 9.7 *** 

B2 −0.53 0.07 −7.0 *** 

B3 −0.07 0.03 −2.1 * 

B4 0.75 0.08 8.5 *** 

B5 −0.07 0.01 −6.4 *** 

NDVI2 −34.4 3.9 −8.7 *** 

HR5 −186.0 35.2 −5.2 *** 

RapidEye volume (25 training plots and 200 

surrogate plots) 

Intercept 5,658.5 601.3 9.4 *** 

B2 −0.97 0.13 −7.3 *** 

B4 1.2 0.14 8.4 *** 

B5 −0.10 0.02 −6.6 *** 

NDVI2 −53.9 6.2 −8.6 *** 

HR5 −327.7 62.6 −5.2 *** 

RapidEye AGB (10 training plots and 200 

surrogate plots) 

Intercept 3,148.3 323.3 9.7 *** 

B2 −0.48 0.07 −7.0 *** 

B3 −0.06 0.03 −2.1 * 

B4 0.69 0.08 8.5 *** 

B5 −0.07 0.01 −6.4 *** 

NDVI2 −31.5 3.5 −8.7 *** 

HR5 −170.1 32.2 −5.2 *** 

RapidEye volume (10 training plots and 200 

surrogate plots) 

Intercept 6,020.3 641.0 9.3 *** 

B2 −1.0 0.14 −7.3 *** 

B4 1.2 0.15 8.4 *** 

B5 −0.11 0.02 −6.6 *** 

NDVI2 −57.5 6.6 −8.6 *** 

HR5 −349.3 66.8 −5.2 *** 


