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Numerous attempts have been made to constrain climate sensitivity with observations [1-10] (with [6] 

as LC09, [8] as SB11). While all of these attempts contain various caveats and sources of uncertainty, 

some efforts have been shown to contain major errors and are demonstrably incorrect. For example, 

multiple studies [11-13] separately addressed weaknesses in LC09 [6]. The work of Trenberth et al. [13], 

for instance, demonstrated a basic lack of robustness in the LC09 method that fundamentally 

undermined their results. Minor changes in that study’s subjective assumptions yielded major changes 

in its main conclusions. Moreover, Trenberth et al. [13] criticized the interpretation of El Niño-Southern 

Oscillation (ENSO) as an analogue for exploring the forced response of the climate system. In 

addition, as many cloud variations on monthly time scales result from internal atmospheric variability, 

such as the Madden-Julian Oscillation, cloud variability is not a deterministic response to surface 

temperatures. Nevertheless, many of the problems in LC09 [6] have been perpetuated, and Dessler [10] 

has pointed out similar issues with two more recent such attempts [7,8]. Here we briefly summarize 

more generally some of the pitfalls and issues involved in developing observational constraints on 

climate feedbacks. 

The record of Earth’s radiation budget from satellite measurements is short and discontinuous, and 

parts of it have problems [14,15] which complicate its use in climate sensitivity studies. The earlier 

Earth Radiation Budget Experiment (ERBE) era from about 1985 to 1989 used instrumentation and 

methods that have been improved in the Clouds and the Earth’s Radiant Energy System (CERES) era 

after 2000 [16]. Accordingly, only a decade of accurate values is presently available with adequate 

stability to address the forced component of climate change. The estimated energy imbalance at the 

top-of-atmosphere (TOA) is estimated presently to be of order 1 W m−2 [17]. 
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Further complicating the diagnosis of the climate system’s feedbacks is natural variability, which is 

considerable on decadal timescales, both in the atmosphere and ocean. It can easily lead to a hiatus in 

the rise of global mean surface temperature. This has been demonstrated in a number of recent studies 

involving both observations [18-20] and models [21-24]. Challenges in sampling the deeper reaches of 

the ocean are also particularly problematic in closing the energy budget. As such, deviations between 

trends in global mean surface temperature and TOA radiation on decadal timescales can be 

considerable, and associated uncertainty surrounds the observational record. The recent work suggests 

that 20 years or longer is needed to begin to resolve a significant global warming signal in the context 

of natural variations. Given these basic facts, the interpretation of causality between clouds and 

temperature is often a major challenge.  

Accordingly, in any analysis, it is essential to perform a careful assessment of (1) uncertainty in any 

data set or method and (2) causal interpretations in the fields observed; while (3) accounting for the 

natural variability inherent in any observed record. Several recent instances in which these basic tenets 

are violated have led to erroneous conclusions and widespread distortion of the science in the 

mainstream media. For instance, SB11 [8] fail to provide any meaningful error analysis in their 

recent paper and fail to explore even rudimentary questions regarding the robustness of their derived 

ENSO-regression in the context of natural variability. Addressing these questions in even a cursory 

manner would have avoided some of the study’s major mistakes. Moreover, the description of their 

method was incomplete, making it impossible to fully reproduce their analysis. Such reproducibility 

and openness should be a benchmark of any serious study.  

It is also critical to understand that significant differences exist among models, and major advances 

remain to be made by evaluating the fidelity of feedbacks in models: those in common and those that 

differ. In order to correctly resolve inter-model differences, it is important to distinguish between the 

contribution of natural variability to both the differences: (i) between observations and models, and 

(ii) among the models themselves.  

For example, here we have taken the CERES EBAF product [25] to explore the methods employed 

by SB11. Our basic observational result is somewhat less in magnitude than SB11 but otherwise 

similar apparently owing to the use of slightly different datasets. Nevertheless, the interpretation of this 

result by SB11 is highly questionable. SB11 maintain, apparently without any evidence, that it relates 

directly to climate sensitivity. Our results suggest instead that it is merely an indicator of a model’s 

ability to replicate the global-scale TOA response to ENSO. Since ENSO represents the main 

variations during a ten-year period, this is of course not surprising [10,13].  

Moreover, correlation does not mean causation. This is brought out by Dessler [10] who quantifies 

the magnitude and role of clouds and shows that cloud effects are small even if highly correlated. 

Instead, what is driving all of the changes are the associations with ENSO. 

SB11 [8] suggest that the observational results are not replicated in models. The coupled climate 

models cover a hundred year period for the 20th century. The latter were detrended by SB11 but for 

the 20th century that is not necessary as the component of variance associated with the trend pales in 

comparison to that of ENSO. It is also possible to check results by using model control runs with no 

changes in forcing. However, rather than treat the model result as a single 100 year run, we can divide 

it into ten decade long samples of the same length as the observational record. In this way we can 

explore the decadal variability in the model framework and place error bars on the results, at least 



Remote Sens. 2011, 3              

 

 

2053

insofar as they pertain to natural variability. Figure 1 shows the results for the observations as in [8], 

but with the EBAF dataset, in black. Then we show results from two different models, one which does 

not replicate ENSO well (top) and one which does (second panel). In each panel we give the average 

result (red curve) for all 10 decades, plus the range of results that reflects the variations from one 

decade to the next. The MPI-Echam5 model replicates the observations very well. When all 14 model 

results from CMIP3 are included, the bottom panel results, showing the red curve similar to SB11 

(their Figure 3) [8], but with a huge range (maximum to minimum), due both to the spread among 

models, and also the spread due to decadal variability. Hence many model results fall well within the 

range of uncertainties of the observations.  

There are obvious differences among models. As noted by Dessler [10], it is important to sample all 

model results and not just select a few that may have certain specific deficiencies, as was done by 

SB11 [8]. Moreover, in examining the relationship of the regression’s strength among models to 

climate sensitivity we find a weak positive correlation—that is the models that do a better job of 

replicating the observed relationship are the higher sensitivity models, though it should also be 

remarked that the correlation is of marginally statistical significance, the precise value of which 

depends on the degrees of freedom attributed to the model ensemble. Consequently, bounding the 

response of models by selection of those with large and small sensitivities is inappropriate for these 

model-observation comparisons. 

Because the exchange of heat between the ocean and atmosphere is a key part of the ENSO 

cycle [14], SB11’s simple model, which has no realistic ocean, no El Niño, and no hydrological cycle, 

and an inappropriate observational baseline, is unsuitable. Use of a reasonable heat capacity for the 

ocean is also crucial. Importantly, SB11 [8] treated non-radiative energy exchange between the ocean 

and atmosphere as a series of random numbers, which neglects the non-random variations of this 

energy flow associated with the ENSO cycle. During ENSO there is a major uptake of heat by the 

ocean during the La Niña phase and the heat is moved around and stored in the tropical western 

Pacific, setting the stage for the subsequent El Niño phase, during which the heat is redistributed 

across the tropical Pacific. The ocean cools as the atmosphere responds with weather patterns forced 

from high sea surface temperatures (SSTs) and this influences weather patterns world-wide. Ocean 

dynamics play a major role in this movement of heat, and atmosphere-ocean interaction is central to 

the ENSO cycle. None of those processes are included in the SB11 model and its relevance to nature is 

thus highly suspect. 

Consequently, our results suggest that a range of model skills in replicating the regressions of SB11 

exists, but rather than stratifying them by climate sensitivity as done without basis by SB11, one 

should stratify them by their ability to simulate ENSO. In Figure 1, the model that replicates the 

observations better has high sensitivity (3.4, which is the value in degrees Celsius for doubling carbon 

dioxide) while the other has low sensitivity (2.4). The net result is that some models agree within 

reasonable bounds with the observations, in contrast to the SB11 conclusions, but similar to Dessler 

(2011) [10] results. Moreover, the degree of model fidelity is not directly relevant to their climate 

sensitivity. 
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Figure 1. Slope of regression coefficients between monthly temperature anomalies and 

climate models using (upper) a model which does not accurately reproduce ENSO, 

(middle) a model which reproduces ENSO reasonably well, and (bottom) all CMIP3 

models. Black lines are from observations, red lines are results averaged by decade, and 

red dashed lines indicate the range of model results. 

 
There is a lot more that could be done on this topic. Firstly, one could explore the systematic 

uncertainty associated with the different observational data sets and smoothing. Secondly, there is a 

need to explore the uncertainties in the regressions, a point touched on by Dessler [10]. Thirdly, the 

relationship with ENSO and the model ability to replicate ENSO, as well as its climate sensitivity 

could be explored further. 
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