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Abstract: In order to better understand and exploit the rich information content of new 
remotely sensed datasets, there is a need for comparative land cover classification studies. 
In this study, the automatic classification of a suburban area was investigated by using  
(1) digital aerial image data; (2) digital aerial image data and laser scanner data; (3) a  
high-resolution optical QuickBird satellite image; (4) high-resolution airborne synthetic 
aperture radar (SAR) data; and (5) SAR data and laser scanner data. A segment-based 
approach was applied. The classification rules for distinguishing buildings, trees, vegetated 
ground, and non-vegetated ground were created automatically by using permanent test 
field points in a training area and the classification tree method. The accuracy of the results 
was evaluated by using test field points in validation areas. The highest overall accuracies 
were obtained when laser scanner data were used to separate high and low objects: 97% in 
Test 2, and 82% in Test 5. The overall accuracies in the other tests were 74% (Test 1), 67% 
(Test 3), and 68% (Test 4). An important contributing factor for the lower accuracy in 
Tests 3 and 4 was the lower spatial resolution of the datasets. The classification tree 
method and test field points provided a feasible and automated means of comparing the 
classifications. The approach is well suited for rapid analyses of new datasets to predict 
their quality and potential for land cover classification.  

Keywords: land cover; segmentation; classification; benchmarking; aerial image; satellite 
image; laser scanning; SAR; classification tree; object-based 
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1. Introduction 

1.1. Comparison of New Remotely Sensed Datasets for Land Cover Classification 

During the past decade, many new types of remotely sensed data have become widely available. 
These include digital aerial images, laser scanner data, and high-resolution optical and synthetic 
aperture radar (SAR) satellite images. Aerial images, for example, form the standard dataset used  
for topographic mapping in Finland as well as in many other countries. Only a few years ago, these 
images were black-and-white aerial photos, but recently these were replaced by multispectral images 
produced by digital aerial cameras. The availability of laser scanner data is also increasing constantly. 
In Finland, for example, laser scanning of the entire country started in 2008. Practical mapping work is 
still mainly based on visual interpretation and manual digitising, but there is growing interest in 
automated and semi-automated methods, especially to facilitate the updating of map databases. The 
new datasets with their rich information content clearly improve the possibilities for developing useful 
automated methods.  

In addition to aerial data, high-resolution satellite images are a promising data source. They can be 
obtained more frequently than aerial images, and SAR images also have the all-weather capability. 
Several new very high resolution polarimetric SAR satellites or satellite systems have been launched in 
recent years, such as TerraSAR-X, RADARSAT-2 or COSMO-SkyMed. The availability and 
resolution of SAR data have thus significantly improved. In addition, the information content of SAR 
data differs from optical data, e.g., SAR is capable of penetrating the target and of measuring surface 
roughness and moisture. It can be expected that these diverse new datasets could provide useful 
information for automatic land cover classifications. The classifications could be exploited in the 
updating of map databases and in various land cover monitoring applications. 

Numerous studies concerning automated land cover/land use classifications of specific datasets in 
urban areas, or at least in partly built-up areas, can be found in the literature (see, for example, [1-5] 
for aerial image data, [6-9] for laser scanner data, [10-15] for high-resolution optical satellite images, 
and [16-20] for high-resolution SAR images). Some details of selected studies are presented in Table 1 
(we selected studies that used only remotely sensed data for classification, presented the overall 
accuracy of the classification, and had classes most similar to our study). Examples of studies using 
multisource input data [21-24] are presented in Table 2. 

Optical and SAR images have been compared and combined in several studies. Bellmann and 
Hellwich [25] compared visual interpretation results of map objects from aerial SAR and optical 
images. They found that large objects could be well detected from both data sources, but that optical 
images were better for the interpretation of small objects such as small buildings. However, the SAR 
results improved when the spatial resolution of the data increased (the resolution was 4 m, 3 m or 1.5 m). 
Many studies using automatic classification methods deal with satellite images with lower spatial 
resolutions (e.g., [26-30]), but high-resolution aerial or satellite data have also been used [24,31,32]. 
Generally, prior studies suggest that the combined use of both optical and SAR data is useful because 
of the complementary nature of these datasets. 



Remote Sens. 2011, 3                            
 

1779

Table 1. Examples of classification studies in urban areas (one data source). If several classification tests were reported in the same 
publication, and unless otherwise mentioned, the best result obtained using remotely sensed data and presented as an overall accuracy  
is shown. 

Reference Data used Classes Method Reference data for 
accuracy analysis 

Overall 
accuracy 

Aerial images: 
Thomas et al. 
2003 [1] 

Multispectral aerial imagery (ADAR 
5500) 

5: water, pavement, rooftop, bare 
ground, vegetation 

Segmentation (eCognition) and 
classification tree method (S Plus) 
 

356 sample locations 
labelled in the field or by 
photo interpretation  

70% 

Sanchez 
Hernandez et 
al. 2007 [4] 

Multispectral aerial imagery 
(Intergraph Z/I Imaging DMC) 

6: building, hard standing, grass, 
trees, bare soil, water 

Segmentation and user-defined 
classification rules (eCognition) 

700 test pixels 75.0% 

Laser scanner data: 
Im et al. 2008 
[7] 

Height and intensity data from laser 
scanning (Optech ALTM 2050; “bare 
Earth” dataset and local height surface 
created before classification) 

5: building, tree, grass, road/parking 
lot, other artificial object 

Segmentation (Definiens) and decision tree 
method (C5.0) 

200 reference points /study 
area from visual photo 
interpretation and on-site 
experts 

93.5%–95.0% 
(3 sites) 

Chehata et al. 
2009 [8] 

Multi-echo and full-waveform laser 
scanner data (RIEGL LMS-Q560) 

4: buildings, vegetation, natural 
ground, artificial ground 

Random forests 398831 test samples  94.35%  

Optical satellite images: 
Chan et al. 
2009 [13] 

Multispectral and panchromatic Ikonos 
data 

9: water, grass, trees, buildings with 
dark roof, buildings with red roof, 
buildings with bright roof, roads, 
other man-made objects, shadow 

Segmentation (eCognition), geometric 
activity features, classification using 
decision tree method (C5.0) or multi-layer 
perceptrons (MLP) (NeuralWorks Predict) 
 

Visual interpretation of the 
study area (classified 
polygons)  

75% (decision 
tree) and 
78.5% (MLP) 

Xu and Li 
2010 [15] 

Pan-sharpened, multispectral 
QuickBird image 

7: tree, grass, soil, shadow, road, 
building, other impervious surface 

Segmentation, computation of invariant 
moments, classification using support 
vector machines (SVM) 

328 sample polygons 
(47342 pixels) 

80.5% 

SAR images: 
Niu and Ban 
2010 [19] 

RADARSAT-2, 6 multitemporal 
polarimetric images (ascending and 
descending data) 

9: high-density built-up, low-density 
built-up, water, crop1, crop2, crop3, 
road, street, golf, forest, park 

Segmentation of Pauli image (eCognition),
rule-based classification, multitemporal 
data fusion 
 

Test areas and pixels based 
on QuickBird images and 
vector and map data  

82% 

Qi et al. 2010 
[20] 

RADARSAT-2, polarimetric image 
 

4: water, vegetation, built-up area, 
barren land 

Segmentation of Pauli image (eCognition), 
decision tree method (QUEST) 

287 field plots  
(15–54 pixels) 

89% 

DMC = Digital Mapping Camera, ALTM = Airborne Laser Terrain Mapper. 
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Table 2. Examples of classification studies in urban areas (multisource data). If several classification tests were reported in the same 
publication, and unless otherwise mentioned, the best result obtained using remotely sensed data and presented as an overall accuracy  
is shown. 

Reference Data used Classes Method 
Reference data for 
accuracy analysis 

Overall accuracy 

Aerial images and laser scanner data: 
Gamba and 
Houshmand 2002 
[21] 

Aerial image and height data from laser scanning 
(Optech) 

4: vegetation, buildings, 
roads, open areas 

Fuzzy C means 
classification 

42790 samples based on 
manual classification of 
the aerial image 

68.9% (aerial image), 
79.5% (aerial image 
and laser scanner data) 

Huang et al. 2008 
[22] 

True colour and multispectral aerial imagery 
(Optech ALTM 4K02 and Vexcel UlraCam D), 
height and intensity data from laser scanning 
(Optech ALTM 3070; a normalized DSM created 
before classification) 

4: buildings, trees, roads, 
grass 

A knowledge-based 
method with several 
stages 

Test data sampled from 
aerial imagery  

93.90% and 93.87% 
(two areas) 

Optical satellite images and laser scanner data: 
Chen et al. 2009 
[23] 

Pan-sharpened, multispectral QuickBird image and 
height data from laser scanning (First Class Infrared 
Laser sensor; a normalized DSM used) 

9: water, shadow, shrub, 
grassland, high building, 
crossroad, low building, 
road, vacant land 

Segmentation and 
classification rules 
(eCognition) 

481 validation samples 89.40% 

Optical and SAR images: 
Ban et al. 2010 [24] Multispectral QuickBird image and multitemporal 

RADARSAT SAR data (fine-beam C-HH, 
ascending and descending data) 

16: high-density built-up, 
low-density built-up, roads, 
forest, parks, golf courses, 
water, several types of 
agricultural land 

Segmentation, nearest 
neighbour classification 
and rules (eCognition), 
decision level fusion to 
combine QuickBird and 
RADARSAT results 

Test objects and pixels 
based on field data, ortho 
photos, Landsat ETM+ 
images, and vector and 
map data 

87.9% (QuickBird, 16 
classes), 86.6% 
(RADARSAT, 11 
classes), 89.5% 
(combined, 16 classes) 

ETM = Enhanced Thematic Mapper 
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Laser scanner data are typically combined with aerial image data to achieve improved land cover 
classifications [22,33-36]. In particular, the height information obtained from laser scanning  
is effective in the separation of high and low objects that may have similar reflectance characteristics. 
Aerial laser scanner data have also been combined with high-resolution optical satellite images  
(e.g., [23,37]). Land cover classification studies comparing or utilizing many different types of aerial 
and satellite data, however, are rare. Gamba and Houshmand [21] extracted land cover, digital terrain 
models (DTMs), and 3D building models by using aerial SAR, laser scanner and aerial image data. For 
land cover classification, only aerial image and/or laser scanner data were used. Thus, it seems that 
comparative studies analysing the feasibility of several different datasets for land cover mapping in the 
same area are still needed. This is important to enable better understanding and exploiting of the 
information content of the diverse new datasets. 

1.2. Segment-Based Classification 

Segment-based classification methods have been used since the 1970s [38] and during the past 
decade they have achieved growing popularity [39-41]. Segment-based (or more generally, object-based) 
methods are well suited for classification of data from the new, high-resolution remote sensing sensors 
because they allow the exploitation of diverse object characteristics instead of single pixel values in the 
classification process, e.g., mean values, texture, shape, and contextual relationships.  

Segment-based classification approaches are often rule-based or knowledge-based methods relying 
on classification rules developed by human experts. This approach can yield good results if the 
characteristics of the dataset are stable and if the classification problem can be well defined by the 
rules. The problem is, however, that the development of the rules is time consuming and new datasets or 
changes in the characteristics of the datasets require changes in the rules. For operational applications, it 
is, therefore, important to develop more automatic methods for the generation of classification rules. One 
classification method that has become popular due to its high automation level and flexibility is the 
classification tree (or decision tree) method presented by Breiman et al. [42]. It has been used 
increasingly in remote sensing studies in recent years. This method does not require assumptions 
regarding the distribution of the data and it can be used to create classification rules automatically from 
a large number of input attributes (see, for example, [1,43,44]). It is, therefore, also well suited for use 
in object-based classification with many different types of object attributes (features) being available. 
Classification trees have been used for urban/suburban land cover classification studies by, for 
example, Hodgson et al. [34], Thomas et al. [1], Im et al. [7], Chan et al. [13], and Qi et al. [20]. 
Chehata et al. [8] used the random forests method, and Mancini et al. [45] used the AdaBoost method 
with the basic classification tree method. 

1.3. Objectives of the Present Study 

Our study had two objectives. Firstly, the objective was to investigate and compare the land cover 
classification accuracy obtained in a suburban area by using (1) digital aerial images, optionally 
combined with laser scanner data; (2) high-resolution optical satellite images; and (3) high-resolution 
airborne SAR images. The classifications were carried out by using a permanent land cover 
classification test field and the classification tree method. The second objective of the study was to 
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demonstrate this approach and to test its feasibility for a comparative land cover classification study.  
In [46] it was suggested that the combination of permanent, up-to-date reference data and the 
classification tree method could be useful for rapid and automated analyses of new datasets. In the 
present study, we were interested in a few basic land cover classes that could be detected from the 
datasets using a simple and highly automated process. These classes included buildings, trees, 
vegetated ground, and non-vegetated ground (the study area did not include water). 

2. Study Area and Data 

2.1. Study Area 

The study area was located in Finland, in the suburban area of Espoonlahti, about 15 km from the 
centre of Helsinki. It was divided into five subareas including a training area of 0.7 km2 and four 
validation areas covering 2.7 km2 in total (see Figure 1). The training area was used for creating 
classification rules, and the separate validation areas were used for estimating the classification 
accuracy. Most of the study area is part of a high-rise residential area with some public and 
commercial buildings, but there is an industrial area in the north and a low-rise residential area in the 
southwest. In addition, there are smaller groups of low-rise buildings between the high-rise buildings. 
The area is partly covered by coniferous/mixed forest, and there are numerous trees all over the area. 
The main tree species are spruce, pine, and birch. The study area is part of a larger area that was used 
for building detection and change detection studies in [47]. 

The study area was delimited so that all of the datasets covered it and that no major changes in land 
cover occurred between the acquisition dates of the different datasets. Two subareas were excluded by 
using a manually defined mask because there were considerable changes in the land cover (the large 
black area and the small rectangular black area near the eastern border in Figure 1). In addition, three 
subareas were excluded from the training area by using a manually defined mask because there were 
gaps in the laser scanner data. These gaps were due to the low reflectance of the laser pulses from the 
roofs of some buildings. Smaller groups of empty pixels in the data derived from laser scanning were 
excluded automatically from all of the tests (these are also presented in black in Figure 1, but they are 
too small to be distinguished clearly). Depending on the dataset used, the processing of the area was 
carried out in one part (Tests 3 and 4, see Section 3.2) or five parts corresponding to the five subareas 
(Tests 1, 2, and 5). 

2.2. Remotely Sensed Datasets 

The datasets used in the present study included an aerial ortho image mosaic created from digital 
aerial images, digital surface models (DSMs) and associated data derived from laser scanning, a  
high-resolution optical QuickBird satellite image, and airborne E-SAR images. The characteristics of 
the E-SAR X-band images are similar to TerraSAR-X SpotLight satellite images. The fully 
polarimetric L-band data complement the X-band data and provide more information for classification. 
Unfortunately, very high resolution fully polarimetric L-band images are not available from the 
existing satellites. All of the datasets were processed for inclusion in the Finnish ETRS-TM35FIN 
coordinate system (ETRS is European Terrestrial Reference System, and TM is Transverse Mercator). 
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The details of the datasets are presented in Table 3. The aerial image and laser scanner data were also 
used in [47] and the E-SAR data in [46,48]. In the prior studies, the E-SAR data were in an older 
coordinate system and for the present study they were transformed to the ETRS-TM35FIN coordinate 
system. The QuickBird image was rectified to this coordinate system by using a digital elevation 
model (DEM) produced by the National Land Survey of Finland. 

Figure 1. Aerial ortho image mosaic of the study area and reference points (red dots). The 
training area was used for creating classification rules and the four validation areas 
(without labelling, separated by the white lines) were used for estimating the classification 
accuracy. The black areas were excluded.  
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Table 3. The datasets used in the classification tests. 

Sensor Acquisition date Derived datasets in raster format Pixel size References 
Intergraph 
DMC  

1 September 2005 • Aerial ortho image mosaic with red, green, 
blue, and near-infrared (NIR) channels 
(rectified by using a laser scanner derived 
DSM) 

0.3 m × 0.3 m [47] 

Optech ALTM 
3100 laser 
scanner 

12 July 2005 • Maximum DSM (maximum height for each 
pixel) 

• Minimum DSM (minimum height) 
• Maximum DSM – minimum DSM 
• Morphologically filtered slope image 

calculated from the minimum DSM 
• Height classification of laser points 

corresponding to the minimum DSM 
(ground, low, high (≥2.5 m from the 
ground), no laser points) 

0.3 m × 0.3 m 
(original point 
density about 
2–4 points/m2) 

[49] (TerraScan 
software used 
to create the 
DSMs and 
point 
classification); 
[47] (general 
description of 
the data) 
 

QuickBird 27 May 2003 • Multispectral image with blue, green, red, 
and NIR channels 

(Off-nadir view angle of the sensor: 6.2°) 

2 m × 2 m 
(resampled 
from the 
original 2.4 m) 

 

E-SAR 
(DLR, German 
Aerospace 
Center) 

2 May 2001 • L-band (λ = 23 cm) image with four 
channels: LHH, LHV, LVV,( LVH*) 

• X-band (λ = 3 cm) image with two channels 
XHH and XVV 

(Multilooked data: theoretical resolution about 
2 m in range and about 3 m (L) or about 2 m 
(X) in azimuth direction) 

(Depression angle of the sensor: 40°) 

1 m × 1 m  
(Test 4, see  
Section 3.2), 
resampled to 
0.3 m (Test 5) 

[48] 

DMC = Digital Mapping Camera, ALTM = Airborne Laser Terrain Mapper, λ = wavelength; * The LVH 
channel was not used in tests because it is practically the same as LHV. 

2.3. Permanent Test Field Reference Points 

In order to generate a permanent test field for land cover classification studies, reference points 
were collected over the Espoonlahti area by using a grid with 100 m × 100 m cells (see Figure 1). One 
point was set inside each grid cell so that it was located within a homogeneous region and the points 
were obtained from different classes. The points can be used as points, but they can also be converted 
into reference segments (especially training segments) after the segmentation of the image data. 
Segmentation defines the boundaries of the training segments, and it can be assumed that the entire 
segment belongs to the class defined by the point. This approach is flexible and allows the application 
of the same point set to define training segments for different types of image data. The characteristics 
of the training segments will vary depending on the data source, but the labelling is obtained from the 
single reference dataset.  

The points were originally collected from an aerial colour ortho photo acquired in 2001, and they 
were used in [48]. Later on, the points were transformed to the ETRS-TM35FIN coordinate system and 
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they were updated by using the ortho image mosaic and the laser scanner derived maximum DSM 
from 2005 (the same datasets that were used in the classification tests described here), a city base map 
from 2007, and a city plan from 2007. The positions of the points were improved so that they were 
better located within homogeneous areas, and changes in classification were made as needed. New 
points were collected in the training area by using a 50 m × 50 m grid to obtain enough training points.  

Altogether 297 reference points from the training area were used for training and 269 points from 
the validation areas for estimating the accuracy of the classifications. The training points were further 
used to create training segments. The validation points were used as points. The reference points had 
object types (e.g., building, road, forest) and surface types (e.g., asphalt, gravel, tree canopy) as 
attributes (the surface types were not fully available). For the purpose of this classification study, the 
object types and surface types were generalised into four classes: building, tree, vegetated ground, and 
non-vegetated ground. The class ground also includes low vegetation such as grass or bushes and low 
objects such as cars visible in high-resolution datasets. Within forest there were some ground points 
that were located in small openings between trees (visible in the laser scanner DSM, but not clearly in 
the aerial ortho image). These points were considered as vegetated ground points when using laser 
scanner data and as tree points in other classification tests. The classes of the points correspond to the 
situation in 2005. The E-SAR data were acquired in 2001 and the QuickBird image in 2003, but the 
same classes were considered applicable because there were no major changes in land cover in the 
selected study area between 2001 and 2005. For a comparative study, we considered it best to use the 
same point set in each classification test.  

3. Methods 

3.1. Segmentation and Classification Methods 

An object-based classification approach was used, which means that each dataset under analysis 
was segmented into homogeneous regions and various attributes for the segments were calculated.  
The multiresolution segmentation algorithm [50] of the eCognition software [51] was used. The 
segmentation results together with the segment attributes were exported from eCognition.  

The classification of the segments was carried out by using the classification tree method [42] and 
the classification tree tools available in the Matlab Statistics Toolbox [52]. The reference points from 
the training area were used to define the training segments. If a reference point was inside a segment, 
the segment became a training segment of the corresponding class. A classification tree was then 
constructed automatically by using the classes and attributes of the training segments. Gini’s diversity 
index [42] was used as the splitting criterion to define the splits in the tree:  

)()()( tjptiptimpurity
ji

∑=
≠

,  (1) 

where t is a node in the tree, and p(i⏐t) is the proportion of cases xn ∈ t belonging to class i (x is a 
vector of attributes for a training segment). When the tree is constructed, a search is made at each node 
of the tree for the split that reduces the node impurity the most. In our study, a node had to contain at 
least 10 training segments to be split (the default value). Pruning was used to avoid overfitting of 
training data. The best level of pruning was defined by computing the costs of the subtrees by using 
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training data and 10-fold cross-validation. The costs were based on misclassifications produced by the 
trees. The best level suggested by the method was the level that produced the smallest tree within one 
standard error of the minimum-cost subtree. The suggested level may vary slightly between different 
cross-validation runs. Therefore, the computation was applied 10 times, and the level suggested in 
most of the runs was selected for classification. Further details of the classification tree construction 
and pruning can be found in [42,53].  

3.2. Classification Tests 

Five classification tests were carried out by using the following datasets: 

1. Aerial ortho image mosaic 
2. Laser scanner derived datasets and aerial ortho image mosaic 
3. QuickBird image 
4. E-SAR image data 
5. Laser scanner derived datasets and E-SAR image data 

The tested dataset combinations were selected on the basis of practical aspects. Laser scanner data 
were considered as optional additional data because they are not as commonly available and as 
frequently acquired as aerial or satellite imagery. If laser scanner data are available, they are typically 
combined with aerial imagery. This combination also represents the most optimal case considering  
the spatial resolution of the data. The combination of laser scanner data and SAR imagery is 
uncommon in practice, but it is interesting as a research topic because SAR data differ significantly 
from optical imagery. 

Segmentation parameters were selected separately for each test on the basis of visual evaluation and 
previous experience, and they are presented in Table 4. In Classification Tests 2 and 5, two 
segmentation levels were produced: one based on the minimum DSM and the other based on the aerial 
image or E-SAR data. The second segmentation level was created below the first one, which meant 
that the DSM segments were further divided into smaller segments using the image data. The 
predefined height classification of the laser scanner data was used to divide the DSM segments into 
high objects and ground. If most of the laser points within a segment were high (≥2.5 m from ground 
level), the segment was classified as a high object, otherwise as ground. High objects and ground were 
then further classified in separate processes using the classification tree method: high objects into 
buildings and trees using the DSM segments and ground objects into vegetated and non-vegetated 
ground using the aerial image/E-SAR segments. The segment attributes calculated both from the 
image and laser scanner data were used in both steps. After classification of high objects, a 
postprocessing operation was also carried out to eliminate very small buildings (total area of the 
building < 20 m2). The classification of these objects was changed to tree, which is a more likely class 
for small, high objects.  
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Table 4. The segmentation parameters used in the different classification tests. For details 
of the parameters, see [54]. 

Classification 
test 

Data used  
(weight) 

Scale (determines 
segment size) * 

Composition of homogeneity 
criterion 

Test 1 
Aerial ortho image mosaic: red (1), 
green (1), blue (1), NIR (1) 

100 
Colour 0.9, shape 0.1  
(compactness 0.5, smoothness 0.5) 

Test 2, high 
objects 

Minimum DSM (1) 10 Colour 1, shape 0 

Test 2, ground 
objects 

Aerial ortho image mosaic: red (1), 
green (1), blue (1), NIR (1) 

100 
Colour 0.9, shape 0.1  
(compactness 0.5, smoothness 0.5) 

Test 3 
QuickBird image: red (1), green (1), 
blue (1), NIR (1) 

40 
Colour 0.9, shape 0.1  
(compactness 0.5, smoothness 0.5) 

Test 4 
E-SAR data: LHH (1), LHV (1), 
LVV (1), XHH (1), XVV (1) 

80 
Colour 0.5, shape 0.5  
(compactness 0.5, smoothness 0.5) 

Test 5, high 
objects 

Minimum DSM (1) 10 Colour 1, shape 0 

Test 5, ground 
objects 

E-SAR data: LHH (1), LHV (1), 
LVV (1), XHH (1), XVV (1) 

100 
Colour 0.9, shape 0.1  
(compactness 0.5, smoothness 0.5) 

* An appropriate parameter value is dependent on the characteristics of each data source; e.g., on the 
numerical values in the data and pixel size. The parameters used in different tests are not directly comparable. 

3.3. Input Features for the Classification Tree Method 

A large number of different segment attributes (features) were used as input data for the 
classification tree method in each classification test, and they are listed in Tables 5 and 6. They 
included mean values, standard deviations, brightness, channel ratios, and texture attributes calculated 
from different image channels and DSM data. Geometric attributes describing the extent and shape of 
the segments were also used. The Normalized Difference Vegetation Index (NDVI) was calculated for 
the optical images and various channel ratios for the E-SAR data. The idea was to provide a wide 
selection of potentially useful features for the classification tree method, which selected automatically 
the most useful ones for the classification trees. 

3.4. Accuracy Estimation 

The classification accuracy for all of the classification results was calculated by using the reference 
points of the validation areas, i.e., excluding the training area. The accuracy estimates included 
completeness (corresponds to producer’s accuracy or interpretation accuracy), correctness (corresponds 
to user’s accuracy or object accuracy) and mean accuracy of individual classes, and the overall accuracy 
of the classification [55,56]. The mean accuracy for class i was calculated by using the equation 
presented by Helldén [56]: 

Mean accuracy(i) = %1002
CB

A
+       (5) 

where A is the number of correctly classified reference points for class i, B is the total number of 
reference points in class i in the reference data, and C is the total number of reference points classified 
into class i. 



Remote Sens. 2011, 3                            
 

 

1788

Table 5. The attributes given as the input data for the construction of the classification 
trees in the different classification tests (the list continues in Table 6). For details of the 
attributes, see [54]. 

Attributes for segments 
Classification test
1 2 3 4 5 

Customized attributes      
NDVI (calculated from mean values in the NIR and red channels) × × ×   
LHH mean/LHV mean, LHH mean/LVV mean, LVV mean/LHV mean, XVV 
mean/LVV mean, XHH mean/LHH mean 

   × ×

Mean values      
Red, green, blue, NIR × × ×   
Maximum DSM, minimum DSM  ×   ×
Slope   ×   ×
LHH, LHV, LVV, XHH, XVV    × ×
Standard deviations      
Red, green, blue, NIR  × × ×   
Maximum DSM, minimum DSM   ×   ×
Maximum DSM, minimum DSM  ×   ×
LHH, LHV, LVV, XHH, XVV    × ×
Brightness (Mean value of the mean values in the different channels)      
Brightness based on red, green, blue, and NIR channels × × ×   
Brightness based on LHH, LHV, and LVV channels    × ×
Ratios (Mean value in one channel divided by the sum of the mean values in all 
channels) 

     

Red, green, blue, NIR × × ×   

Table 6. The attributes given as the input data for the construction of the classification 
trees in the different classification tests (the list continues from Table 5). For details of the 
attributes, see [54]. 

Attributes for segments 
Classification test
1 2 3 4 5 

Texture after Haralick: Grey Level Co-occurrence Matrix (GLCM) homogeneity, 
contrast, dissimilarity, entropy, angular 2nd moment, mean, standard deviation, and 
correlation; Grey Level Difference Vector (GLDV) angular 2nd moment and entropy 

     

Red, green, blue, NIR × × ×   
Maximum DSM, minimum DSM  ×   ×
LHH, LHV, LVV, XHH, XVV    × ×
Geometry, extent: area, border length, length, length/width, width × × × × ×
Geometry, shape: asymmetry, border index, compactness, density, elliptic fit, radius of 
largest enclosed ellipse, radius of smallest enclosing ellipse, rectangular fit, roundness, 
shape index 

× × × × ×

Geometry, shape based on polygons: Area (excluding inner polygons), area (including 
inner polygons), average length of edges, compactness, length of longest edge, number 
of edges, number of inner objects, perimeter, standard deviation of length of edges  

× × × × ×
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4. Results 

The classification trees created automatically in the different tests are presented in Table 7 in the 
form of classification rules. It can be seen that the structure of the classification trees was simple and 
that the number of attributes used for classification was small compared to the total number of 
attributes available. In some cases, the trees were very simple with only one attribute tested. In Test 2, 
the classification of high objects into buildings and trees and the classification of ground objects into 
vegetated and non-vegetated ground were only based on NDVI thresholding. In Test 5, high objects 
were classified based only on DSM slope.  

Table 7. The rules in the automatically created classification trees in the different 
classification tests. 

Classification test Rules in the classification tree 

Test 1 IF Ratio NIR < 0.548739 
IF Ratio NIR < 0.272026 → Building 
ELSE  

IF GLCM standard deviation blue < 40.6738  
IF Density < 1.13185 → Non-vegetated ground 
ELSE → Building 

ELSE → Non-vegetated ground 
ELSE  

IF GLCM standard deviation blue < 43.841 
IF GLCM contrast green < 2386.87 → Vegetated ground 
ELSE → Tree 

ELSE → Tree 
Test 2, high objects IF NDVI < 0.441429 → Building 

ELSE → Tree 
Test 2, ground objects IF NDVI < 0.526306 → Non-vegetated ground 

ELSE → Vegetated ground 
Test 3 IF NDVI < 0.358559 

IF Ratio NIR < 0.256213 → Building 
ELSE → Non-vegetated ground 

ELSE  
IF Brightness < 263.028 → Tree 
ELSE → Vegetated ground 

Test 4 IF Mean LHH < 493.259 
IF LVV mean/LHV mean < 2.37657 → Non-vegetated ground 
ELSE → Vegetated ground 

ELSE  
IF Standard deviation XHH < 227.942 → Tree 
ELSE → Building 

Test 5, high objects IF Slope < 23.659 → Building 
ELSE → Tree 

Test 5, ground objects IF Mean XHH < 294.742 → Non-vegetated ground 
ELSE  

IF Mean LHV < 131.277 → Vegetated ground 
ELSE 

IF GLCM Entropy min. DSM < 6.73737 → Non-vegetated ground 
ELSE → Vegetated ground 

The classification results, confusion matrices, and accuracy estimates for each test are shown in 
Figures 2–6 and Tables 8–12. 
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Figure 2. The results of Classification Test 1 (aerial ortho image data). 

 

Table 8. The confusion matrix and accuracy estimates for Classification Test 1. 

Classification 
Reference (validation points) 

Correctness
Building Tree Vegetated ground Non-vegetated ground Sum 

Building 44 0 0 38 82 53.7% 

Tree 0 52 6 1 59 88.1% 

Vegetated ground 2 3 20 1 26 76.9% 

Non-vegetated ground 12 1 5 84 102 82.4% 

Sum 58 56 31 124 269  

Completeness 75.9% 92.9% 64.5% 67.7%   

Mean accuracy 62.9% 90.4% 70.2% 74.3%   

Overall accuracy 74.3% 
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Figure 3. The results of Classification Test 2 (laser scanner and aerial ortho image data). 

 

Table 9. The confusion matrix and accuracy estimates for Classification Test 2. 

Classification 
Reference (validation points) 

Correctness
Building Tree Vegetated ground Non-vegetated ground Sum 

Building 54 0 0 0 54 100% 

Tree 2 41 0 0 43 95.3% 

Vegetated ground 0 2 42 1 45 93.3% 

Non-vegetated ground 2 0 2 123 127 96.9% 

Sum 58 43 44 124 269  

Completeness 93.1% 95.3% 95.5% 99.2%   

Mean accuracy 96.4% 95.3% 94.4% 98.0%   

Overall accuracy 96.7% 
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Figure 4. The results of Classification Test 3 (QuickBird image). 

 

Table 10. The confusion matrix and accuracy estimates for Classification Test 3. 

Classification 
Reference (validation points) 

Correctness
Building Tree Vegetated ground Non-vegetated ground Sum 

Building 41 0 0 44 85 48.2% 

Tree 1 55 9 9 74 74.3% 

Vegetated ground 0 0 16 2 18 88.9% 

Non-vegetated ground 16 1 6 69 92 75.0% 

Sum 58 56 31 124 269  

Completeness 70.7% 98.2% 51.6% 55.6%   

Mean accuracy 57.3% 84.6% 65.3% 63.9%   

Overall accuracy 67.3% 
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Figure 5. The results of Classification Test 4 (E-SAR data). 

 

Table 11. The confusion matrix and accuracy estimates for Classification Test 4. 

Classification 
Reference (validation points) 

Correctness
Building Tree Vegetated ground Non-vegetated ground Sum 

Building 24 1 0 5 30 80.0% 

Tree 8 41 1 12 62 66.1% 

Vegetated ground 2 0 22 10 34 64.7% 

Non-vegetated ground 24 14 8 97 143 67.8% 

Sum 58 56 31 124 269  

Completeness 41.4% 73.2% 71.0% 78.2%   

Mean accuracy 54.5% 69.5% 67.7% 72.7%   

Overall accuracy 68.4% 
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Figure 6. The results of Classification Test 5 (laser scanner and E-SAR data). 

 

Table 12. The confusion matrix and accuracy estimates for Classification Test 5. 

Classification 
Reference (validation points) 

Correctness
Building Tree Vegetated ground Non-vegetated ground Sum 

Building 54 0 0 0 54 100.0% 

Tree 2 41 0 0 43 95.3% 

Vegetated ground 1 0 34 32 67 50.7% 

Non-vegetated ground 1 2 10 92 105 87.6% 

Sum 58 43 44 124 269  

Completeness 93.1% 95.3% 77.3% 74.2%   

Mean accuracy 96.4% 95.3% 61.3% 80.3%   

Overall accuracy 82.1% 
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5. Discussion 

5.1. Results of the Classification Tests 

It is known from previous studies (e.g., [21,33]) that the quality of the classification results 
improves if height information from laser scanning is used in addition to aerial image data. This  
was also clearly evident in this study. The overall accuracies in Test 1 (aerial image data) and Test 2 
(aerial image and laser scanner data) were 74% and 97%, respectively. These accuracy levels are 
comparable to those observed in other classification studies using aerial imagery and laser scanner data 
(Tables 1 and 2), although it should be noted that direct comparisons of different studies are not 
possible because of different study areas, different reference datasets, and different class definitions.  

In Test 1, the first rule in the classification tree separated non-vegetated and vegetated objects using 
the NIR channel (ratio to the sum of all channels). Non-vegetated segments were then classified into 
buildings and non-vegetated ground using the NIR ratio again, texture, and shape of the segments 
(attribute ‘density’, which is high for square objects). Trees and vegetated ground segments were 
classified by using texture attributes. There was some confusion between buildings and non-vegetated 
ground. This is not surprising when considering the relatively similar appearance of many building 
roofs and asphalt roads or gravel surfaces. In Test 1, there was also some confusion between trees and 
vegetated ground, but the mean accuracy of trees was as high as 90%. Some vegetated ground points 
were classified as non-vegetated. Most of these were located in areas with brownish vegetation in the 
ortho image. The aerial images used in this study were taken in the beginning of September. It should 
also be noted that there were some brightness variations in the ortho image mosaic because radiometric 
corrections were not applied in the preprocessing stage. Radiometric corrections could improve the 
classification results of the aerial image data. 

When height information was used, confusion between buildings and non-vegetated ground could 
be effectively avoided. In Test 2, all of the accuracy estimates were clearly above 90% and very few 
errors occurred. Even vegetated and non-vegetated ground points were better distinguished from each 
other than in Test 1. Visually, some typical misclassifications could be found. For example, stretches 
of narrow roads have been misclassified as vegetated ground due to obscuring or shadowing trees. A 
few buildings with vegetation on their roofs were misclassified as trees. Overall, however, it seems 
that the simple NDVI rules worked well, once high and low objects had been separated by using the 
laser scanner data.  

The overall accuracies in Test 3 (QuickBird image) and Test 4 (E-SAR data) were roughly the 
same, 67% and 68%. When compared, trees were classified better in Test 3 and ground was classified 
better in Test 4. It is difficult to say whether this was due to the different characteristics of the datasets 
or to the different acquisition times. In the present study, the lower resolution of the QuickBird and  
E-SAR data in comparison to the aerial image data is a probable cause for the classification accuracy 
being lower than in Test 1 and Test 2. For example, there is clearly more detail in the results of Test 1 
(Figure 2) than in Test 3 (Figure 4). It should also be noted that the size of the segments was 
considerably larger in Test 3 and Test 4 when compared to Tests 1, 2, and 5; this was due to the 
coarser resolution of the input data. Furthermore, the amount of training segments was smaller in  
Test 3 (251) and Test 4 (260) because some segments contained several training points. Regarding the 
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other tests, only a few such segments occurred (the number of training segments was 294 in Test 1, 
296 in Test 2, and 295 in Test 5). The density of the training points was thus appropriate for the aerial 
image and laser scanner data, but rather high for the QuickBird and E-SAR data.  

In Test 3, the classification tree first separated vegetated and non-vegetated segments based on 
NDVI. Buildings and non-vegetated ground were further classified based on the NIR ratio, and trees 
and vegetated ground based on brightness. The tree class had the highest accuracy and the building 
class the lowest accuracy, which was similar to the result in Test 1. As in Test 1, there was also 
confusion between buildings and non-vegetated ground; for example, the highway was classified as 
buildings. The QuickBird image was acquired in the end of May, and photographs acquired on site 
show that deciduous trees and bushes were not in full leaf then. On the other hand, the aerial image 
was acquired in September and undoubtedly shows more vegetation after the growing season and a 
higher contrast between vegetated and non-vegetated areas (e.g., NDVI and NIR ratio), although some 
of the vegetation was already brownish as discussed above. The QuickBird off-nadir view angle of 
6.2° is not expected to affect the results, since the view angle is small, the QuickBird segments are 
large and the reference points were selected carefully in the middle of homogeneous areas. 

In Test 4, the classification tree first distinguished the ground areas from buildings and trees, and 
this was different from the optical image classifications. This was carried out based on the LHH 
channel mean. Then ground areas were classified into vegetated and non-vegetated based on 
LVV/LHV. Trees and buildings were classified based on the XHH channel standard deviation. The 
class having the highest mean accuracy was non-vegetated ground, and the lowest mean accuracy was 
obtained for buildings. The reason for the low accuracy is that buildings in SAR images have special 
characteristics. The depression angle of the E-SAR sensor was 40°. Due to the side-looking image 
geometry, the vertical building walls cause geometric distortions (layover, foreshortening, shadow) in 
SAR images and strong double-bounce reflections on one side of the buildings [57]. In addition, the 
slope of the roof and the orientation of the building in relation to the imaging direction are significant. 
Therefore, buildings are visually detected in SAR images by bright (layover) areas and shadow areas 
next to the actual building. This is not always optimal for automated detection of buildings based on 
training points placed on roof tops. Shadows exist also in optical images, and as in SAR images, 
they can complicate the interpretation of areas next to buildings. Many buildings were classified as  
non-vegetated ground. This was probably caused by flat roofs that have similar SAR backscattering 
properties as flat non-vegetated ground areas. The test set also included small buildings, narrow roads, 
and other small non-vegetated areas, which could be covered by vegetation in the oblique SAR 
viewing direction. The E-SAR images were acquired in the beginning of May, and it is likely that there 
were no leaves on the trees and the vegetated ground had not yet begun to acquire vegetation. 
Therefore, the contrast between vegetated and non-vegetated ground was lower than later in the 
summer. Some trees could have been classified as ground as SAR occasionally images through the 
canopy, and the exact source of scattering depends on the radar wavelength and target properties. Trees 
and vegetated ground, however, were well separated from each other.  

The accuracy of the E-SAR classification was lower than in [46], where the same image data were 
classified by using the classification tree method. This can be related to the reference points used for 
training and to the different classes of interest. In [46], the SAR imagery was used to define training 
points, which ensured that the points were correctly located (for example, a check was performed to 
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ensure that the building points were located on buildings both in the SAR and in the aerial image data). 
The classes were water, forest, built-up, and open, which included both vegetated and non-vegetated 
areas. The results of other studies using optical satellite images and SAR images (Table 1) were also, 
to some extent, better than our test results. The main differences with respect to other studies on optical 
satellite data were that additional features (geometric activity and invariant moments) were used in 
other studies in classification and pan-sharpening was performed on the input images. RADARSAT-2 
polarimetric data with resolution of 5–8 m and polarimetric target decomposition were used in the 
other SAR studies, and segmentation was performed on the Pauli image. Multitemporal SAR data and 
different viewing directions (ascending and descending) were used in [19]. However, it should also be 
noted that optimal classes can be selected in classification tests for a single data type. In addition, the 
reference samples are often selected from the data used and considering the characteristics of the data. 
With SAR images, problems involving buildings are often avoided by using the class built-up area 
instead of the class building.  

The use of laser scanner data together with the SAR data clearly improved the results. In Test 5, 
high objects were classified based on the DSM slope only, and the accuracies of the classes building 
and tree were similar to the results obtained in Test 2. This also contributes to the overall accuracy of 
Test 5 (82%), which was significantly higher than in Test 4. The mean accuracy of vegetated ground 
decreased and the mean accuracy of non-vegetated ground increased. It should be noted that the  
E-SAR segments used in the classification of ground objects were relatively small, since they were 
segmented within small DSM segments. Considering the resolution of the E-SAR data, this was not 
optimal within the smallest segments.  

The number of reference points in the different classes was not equal. Especially the number of 
non-vegetated ground points was large in the validation points, which emphasizes the effect of this 
class on overall accuracy. There were also differences in the number of training points. These effects, 
however, were basically similar in different tests.  

5.2. Further Evaluation of the Results 

In this study, accuracy estimation of the classification results was based on the 269 validation points 
located within homogeneous regions. For further evaluation of the results, more tests would be useful. 
For example, the use of map data would allow more extensive evaluation of classified objects.  

To evaluate the adequacy of the validation points for the comparison purposes of this study, 
preliminary experiments with raster map data were carried out. Building vectors and road centre line 
vectors were used to create raster maps for one of the validation areas (left column, middle row in 
Figure 1). The percentage of building pixels classified as building and the percentage of road pixels 
classified as non-vegetated ground were calculated for each classification test. For buildings, the 
percentages were typically a few percentage units lower than completeness calculated from the 
validation points. The mutual order of the classification results, however, remained the same, i.e., the 
highest percentages were obtained in Tests 2 and 5, and the lowest in Test 4. In the case of roads, the 
percentages cannot be directly compared to the accuracy estimates calculated using the validation 
points (class non-vegetated ground also includes other objects than roads). However, the percentage in 
Test 2 was again the highest. The second best value was obtained in Test 5, followed by Test 1, Test 4, 
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and Test 3. The results of these experiments were thus mainly in accordance with those obtained by 
using the validation points. The best classification results were clearly obtained in Tests 2 and 5. The 
exact numerical accuracy estimates, however, are likely to change if different reference data (e.g., map 
data) are used.  

5.3. Feasibility of the Classification Tree Method and Permanent Test Field Points for a 
Comparative Study  

The classification tree method and test field points provided a feasible means of comparing 
classification accuracy between different datasets. This method is highly automated and can easily 
provide a general idea on the relative quality and potential of different datasets. However, the accuracy 
level of the classifications was not very high, except in Tests 2 and 5 (buildings and trees). This is 
largely related to the input data and the available features, but other classification methods should also 
be tested in order to achieve optimal classification results. These could include further developments of 
the basic classification tree method, such as boosting or random forests (see [8,45,58,59]).  

An important question associated with a permanent land cover classification test field is the 
applicability of the same reference points for different types of images. Basically, the same points can 
provide an objective basis for comparisons, but there are issues that can affect the analyses and should 
be considered in each study. The collection of reference points from specific data makes the point set 
optimal for that type of data (in this study aerial image and laser scanner data). Geometric differences 
between the datasets, such as the side-looking geometry of SAR sensors, complicate the problem. The 
spatial resolution of the datasets must also be taken into account. For example, individual buildings 
and narrow roads are not detectable at lower resolutions, and different class definitions would be 
needed. Another important question when using a permanent test field is the required updating 
frequency of the land cover information. It is dependent on the area and should be high enough to keep 
the data reliable. Ideally, to compare different datasets and their classification capabilities, the datasets 
should have the same resolution and be simultaneously acquired. However, simultaneous datasets are 
difficult to acquire since the sensors are not always available and clouds can prevent optical imaging.  

We assume that in our study the above-mentioned issues were sufficiently under control to allow a 
comparison of the land cover classification capabilities of the datasets. All of the datasets had 
relatively high spatial resolution, and major changes in the land cover did not occur between the 
acquisitions dates of the data. The results for individual datasets, however, can be less optimal than in 
studies where training and validation data are specifically collected for each dataset (see the discussion 
related to SAR images in Section 5.1).  

Another specific characteristic of the permanent test field approach is that shadows in SAR and 
optical images cannot be treated as a separate class, which is likely to cause some misclassifications. 
Permanent reference points for shadows cannot be collected because the locations of the shadows vary 
from one dataset to another. In practice, shadows in the datasets will overlap some of the reference 
points. This gives some information on the characteristics of the shadow areas in different land cover 
classes for the training of the classifier.  
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5.4. Practical Considerations 

A high level of accuracy was achieved in Test 2 using laser scanner and aerial image data. It can be 
expected that this result could be a useful aid in practical map updating work. When compared visually 
with existing map data, it could yield information on the location of new and no longer existing 
buildings, forests, and roads. Roads were not separated from other non-vegetated ground objects in the 
classification, but they are easy to recognise visually from the results, except for the narrowest ones. In 
other tests, the accuracy and/or capability to detect small land cover features was lower than in Test 2. 
The E-SAR and QuickBird data would be better suited for coarser land cover monitoring applications. 

Future research topics should include optimal combination of different optical and SAR datasets and 
more detailed classifications. Special attention should also be paid to optimal image acquisition times 
and features. For example, further research is needed on the effect of the season and spatial resolution on 
the classification results of aerial image and laser scanner data. The aerial images used in the present 
study were taken in September. Images used operationally for mapping in Finland are taken in the spring 
before there are leaves on deciduous trees. This time is the best for accurate mapping of objects such as 
buildings and roads, but it is not ideal for the classification of vegetated and non-vegetated objects. The 
spatial resolution of aerial ortho images produced operationally is typically about 0.5 m, which is slightly 
lower than the resolution in this study. Laser scanner data are also acquired in the spring and they have a 
lower point density than in this study (minimum point density 0.5 points/m2).  

The NIR channel and NDVI were important features in the classification of optical images. In tests 
concerning SAR images, different image channels (polarization and wavelength) were also selected in 
the classification trees. The newer optical satellites have a very high resolution panchromatic channel 
(e.g., QuickBird data with 0.6 m resolution, GeoEye-1 and WorldView-2 data with 0.5 m resolution 
are commercially available) and lower resolution multispectral channels (e.g., QuickBird: 2.4 m, 
GeoEye-1 and WorldView-2: 2 m). Similarly, SAR satellites provide high-resolution single-polarization 
images, but multi-polarization images have lower resolution. Detailed classifications require very high 
resolution multichannel data, and these are not provided by satellites.  

Height information clearly showed its potential for improving classifications. In addition to laser 
scanning, height information is available from aerial images by using photogrammetric techniques and 
SAR satellites by using SAR interferometry or radargrammetry. Height information from these 
datasets could also be used in land cover classifications. SAR image based height information is 
certainly less detailed than laser scanner data, but it is available globally and could be used for coarser 
land cover classifications. The TanDEM-X mission will provide a precise global DEM in a few years 
and more detailed elevation data can be extracted from individual images locally [60]. X-band SAR 
data can be used to produce DSMs. DSMs produced from aerial images could be used in detailed land 
cover classifications if up-to-date laser scanner data are not available.  

In our study laser scanner data were used as additional data together with imagery. In previous 
studies, good land cover classification results have been obtained by using laser scanner data alone 
(e.g., [7,8]). Buildings, trees and ground (as one class) can even be classified by using information 
derived from height data alone (see, for example, [61], where the laser scanner dataset of the present 
study was used for building detection with and without aerial image data). In Test 5 of the present 
study, the classification of buildings, trees and ground was also based on height data (buildings and 
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trees were separated by using DSM slope; see Table 7). For separating vegetated and non-vegetated 
ground, intensity information, which was not used in our study, would also be essential [7].  

6. Conclusions 

In order to better understand and exploit the rich information content of different remotely sensed 
datasets, there is a need for comparative land cover classification studies. In the present study, a fairly 
precise land cover map could be derived automatically by combining aerial image and laser scanner 
data (overall accuracy 97%). It is likely that this result could provide useful information for operational 
mapping applications. The lower resolution datasets (QuickBird and E-SAR) produced coarser 
classifications (67% and 68%). Very high resolution aerial images on their own were slightly better 
(74%). When laser scanning data were used to collaborate with SAR data, the results improved (82%).  

The classification tree method and permanent test field points provided a feasible means of 
comparing the classification accuracy of different datasets. This method is highly automated and can 
easily provide a general idea on the relative quality and potential of different datasets. A general 
limitation of the approach is that the same reference points are not necessarily equally well suited for 
the analysis of different datasets with different spatial resolutions, geometric characteristics, and 
acquisition dates. Therefore, the results for individual datasets can be less optimal than in studies 
where training and validation data are specifically collected for each dataset. 

In the present study, we concentrated on the comparison between different datasets and on a few 
basic land cover classes. Future research topics should include optimal combination of the different 
optical and SAR datasets, optimal input features, and more detailed classifications. Height information, 
which clearly showed its potential for improving classifications, can also be derived from aerial images 
and SAR satellite images. This would probably lead to better classifications of these datasets when 
additional laser scanner data are not available. To improve the accuracy of classifications, more 
advanced classification methods could also be tested. 
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