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Abstract: The objective was to investigate the error sources of the airborne laser scanning 
based individual tree detection (ITD), and its effects on forest management planning 
calculations. The investigated error sources were detection of trees (etd), error in tree height 
prediction (eh) and error in tree diameter prediction (ed). The effects of errors were 
analyzed with Monte Carlo simulations. etd was modeled empirically based on a tree’s 
relative size. A total of five different tree detection scenarios were tested. Effect of eh was 
investigated using 5% and 0% and effect of ed using 20%, 15%, 10%, 5%, 0% error levels, 
respectively. The research material comprised 15 forest stands located in Southern Finland. 
Measurements of 5,300 trees and their timber assortments were utilized as a starting point 
for the Monte Carlo simulated ITD inventories. ITD carried out for the same study area 
provided a starting point (Scenario 1) for etd. In Scenario 1, 60.2% from stem number and 
75.9% from total volume (Vtotal) were detected. When the only error source was etd (tree 
detection varying from 75.9% to 100% of Vtotal), root mean square errors (RMSEs) in stand 
characteristics ranged between the scenarios from 32.4% to 0.6%, 29.0% to 0.5%, 7.8% to 
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0.2% and 5.4% to 0.1% in stand basal area (BA), Vtotal, mean height (Hg) and mean 
diameter (Dg), respectively. Saw wood volume RMSE varied from 25.1% to 0.2%, as pulp 
wood volume respective varied from 37.8% to 1.0% when errors stemmed only from etd. 
The effect of ed was most significant for Vtotal and BA and the decrease in RMSE was from 
12.0% to 0.6% (BA) and from 10.9% to 0.5% (Vtotal) in the most accurate tree detection 
scenario when ed varied from 20% to 0%. The effect of increased accuracy in tree height 
prediction was minor for all the stand characteristics. The results show that the most 
important error source in ITD is tree detection. At stand level, unbiased predictions for tree 
height and diameter are enough, given the present tree detection accuracy.  

Keywords: airborne laser scanning; forest inventory; simulation; accuracy 
 

1. Introduction 

Interest in highly accurate, mainly remote sensing based forest inventories has arisen following the 
development of airborne laser scanning (ALS) in the last decade. Forest stand-level statistics are 
derived from small-footprint ALS using two main approaches, namely the area-based approach 
(ABA, [1]) and individual tree detection (ITD, [2]). In the ABA, statistical features such as percentiles 
of the distribution of laser canopy heights are used as predictors in a model-based framework to 
estimate forest characteristics in a certain sampling area (e.g., raster grid cell or segment). In practice, 
aerial photographs are often used along with ALS data (e.g., [3]). With the ITD method, individual 
trees are segmented from the laser point cloud, and tree level attributes are either determined straight 
from the point cloud or estimated based on various other ALS features that are extracted for the tree 
segments. This study concentrates on ITD error sources in Nordic boreal forest conditions. The 
purpose was to shed light on what error source to emphasize in order to achieve more accurate end 
results at the stand level. This is especially relevant at the moment, as new ALS based forest inventory 
methodologies are currently being adopted in large-scale operative forest inventories. 

The key point in ITD is the detection of trees from laser point clouds. Hyyppä and Inkinen [2] and 
Brandtberg [4] were among the first to prove that individual trees can be detected from forest stands by 
high-density laser data. With this method, maxima in the canopy height model (CHM) were used for 
finding trees, and segmentation for crown edge detection. Hyyppä and Inkinen [2] showed that in this 
way 40–50% of the trees in coniferous forests could be correctly segmented. Persson et al. [5] 
improved the crown delineation and were able to link 71% of the tree heights to the reference trees. 
Linked trees represented 91% of the total volume. Forest structure has a major influence on tree 
detection accuracy. Tree detection results from more heterogeneous forests are presented in 
Pitkänen et al. [6] where the detection accuracy was only 40% (70% for dominant trees). Yu et al. [7] 
presented an accuracy of 69% for tree detection in various forest conditions. These results are on a 
completely different scale from those in Peuhkurinen et al. [8] where ITD was carried out for two 
marked stands (density ~465 stems per hectare) and number of harvestable tree was underestimated by 
only <3%, a result, however, may include some commission errors (segmentation of a single tree into 
several segments). Tree detection errors were studied with several different ITD algorithms in 
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Kaartinen and Hyyppä [9]. Twelve research groups participated in testing their ITD algorithms with 
the same dataset. Kaartinen and Hyyppä [9] concluded that the most important factor in tree detection 
is the algorithm used, while the effect of pulse density (2–8 returns/m2 were tested) was observed to 
be marginal. 

In forest inventories in Scandinavia, species-specific information is needed for forest management 
planning growth projections and simulated bucking. Tree species composition also has a major effect 
on forest value, although the number of tree species in boreal forests is rather low. Holmgren and 
Persson [10] classified Scots pines and Norway spruces by their structural differences with >90% 
accuracy. However, an operational method for tree species classification is still missing. In recent 
years, promising tree species classification results have been reported when high point density data has 
been used combined with aerial images or ALS intensity. Liang et al. [11] classified with an accuracy 
of 89.8% deciduous-coniferous trees in leaf-off conditions taking advantage of differences in first-last 
pulse data. Holmgren et al. [12] combined high-density laser data with multi-spectral images. Canopy 
related metrics such as height distribution and canopy shape were calculated along with spectral 
features. A classification accuracy of 96% was achieved with 1,711 trees. Vauhkonen et al. [13] used 
solely high-intensity ALS data (~40 returns/m2) and introduced so-called “alpha shape” metrics 
describing canopy structure for the identification of tree species. Overall classification accuracy was 
95%. When a method similar to that was tested with a larger data set (1,249 vs. 92 trees) and more 
practical point density (6–8 returns/m2), an identification accuracy of 78% was achieved for three tree 
species [14]. From a practical point of view, the most promising results for Nordic forest conditions 
have been achieved by Korpela et al. [15] where 88–90% classification accuracy was achieved for 
Scots pine, Norway spruce, and birch using ALS intensity statistics. Puttonen et al. [16] used 
illuminated-shaded area separation from aerial photographs combined with ALS data in tree species 
classification, and achieved an overall accuracy of 70.8% with three species. Thus taking the latest 
results into consideration, a solution for practical tree species determination can be said to be within 
reach, at least in the Nordic countries where amount of commercially important tree species is rather low.  

At the individual tree level, the most important variable is diameter at breast height (dbh), from 
which stem form, volume and timber assortments are estimated. Traditionally in ITD only tree height 
and different crown diameters are determined and therefore used in predicting dbh (e.g., [17]). In a 
simulation study performed by Maltamo et al. [18], it was shown that although all other ITD error 
sources would be error-free, the prediction of dbh causes major uncertainty (root mean square error, 
RMSE 22.9%–25.3%) in plot-level mean volume. In many studies (e.g., [8,19,20]) more accurate 
results have been achieved for mean volume with all the error sources included, the problem of the 
poor allometric relationship between dbh and height is still often discussed. The denser laser data have 
provided the opportunity to calculate several laser height metrics for individual trees that can be used 
in prediction of tree attributes. These features are used also in tree species classification, as mentioned 
above. Maltamo et al. [21] predicted tree attributes and quality characteristics of Scots pines using 
k-most similar neighbor (k-MSN) estimation combined with plot- and tree-level height metrics 
calculated from ALS data. The RMSEs for dbh, height and volume were 5.2%, 2.0% and 11%, 
respectively, when 133 accurately matched trees were used in the validation. The respective accuracies 
were 13%, 3% and 31% in Vauhkonen et al. [14] and 21%, 10% and 46% in Yu et al. [7]. 
Vauhkonen et al. [14] used 1,249 and Yu et al. [7] 1476 trees for validation. Particularly in Yu et al. [7], 
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mismatching of reference and laser tree candidates may affect the results. Further, tree height 
determination from CHM is highly accurate, but includes underestimation. Underestimation was 
already demonstrated in the 1980s [22]. If the ground elevation and the uppermost proportion of a 
crown are not detected, then the tree height is automatically underestimated. Laser tree height is often 
calibrated against field trees to reduce bias which is caused by several scanning parameters and data 
processing steps such as the filtering used in producing CHM (see e.g., [23]). Still, as can be seen from 
the above-mentioned studies, tree height is the most accurately determined variable.  

In some cases, the ITD method has led to more accurate stand-level inventory results than ABA, 
especially if theoretical distributions are used to take into account trees obscured in the ALS data  
(e.g., [24]). However, several studies (e.g., [20,25]) have shown that ITD produces significantly biased 
inventory results for plots basal area and mean volume. With respect to individual stand 
characteristics, e.g., mean volume, this bias can be calibrated by accurate field measurements. The 
main advantages of ITD over ABA are lesser need for ground reference data and that at least a major 
part of the stem distribution can be derived directly from the interpretation results. Generally, stand 
dbh or height distributions are invaluable in forest planning related simulation and optimization, 
logging operation planning and wood supply logistics. The most substantial advantage of the ABA is, 
in turn, its ability to utilize inexpensive low-density ALS data. ABA inventory results are also easier to 
integrate into operative forest-planning computations. Currently, aerial photography is being utilized 
for both methods. Future ALS intensity information may at least partially cancel the need for 
aerial photography.  

The objective of the study was to investigate the error sources of the ALS ITD method, and their 
effects on forest management planning calculations. The investigated error sources were detection of 
trees (etd), error in tree height prediction (eh), and error in tree dbh prediction (ed). 

2. Material and Methods 

2.1. Study Site 

The research material comprised 15 forest stands located in an approximately 2,000 ha managed 
forested area in the vicinity of Evo, Finland (61.19°N, 25.11°E). The forest stands utilized in the study 
were clear-cut in winter 2008. The site quality varied from grovelike heaths to barren heaths. The 
dominant tree species in the stands were Norway spruce (Picea Abies [L.] Karst.) representing 73.5% 
of the total volume. The respective proportion of Scots pine (Pinus Sylvestris L.) and birch (Betula 
spp.) were 14.3% and 12.1%. The delineation of the examined stands was checked using Global 
Positioning System (GPS) measurements. Average stand size was 1.0 ha, ranging from 0.2 ha to 1.9 ha 
with a standard deviation of 0.6 ha. 

2.2. Logging Machine Measurements 

Tree-wise measurements from the stands were collected with a logging machine and utilized as 
reference data. The logging machines gathered so-called STM data according to the Standard for 
Forest Data and Communication [26]. An STM file includes data for each felled tree producing 
commercial timber (dbh limit ~10 cm) regarding the logging machine’s position at the time of felling, 
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stem diameters at 10 cm intervals from the felling height to the final bucking height, tree species, 
bucking parameters and bucked assortment volumes. The stands were logged using either Ponsse 
(Ponsse Oyj, Vieremä, Finland) or John Deere (Deere and Company, Moline, IL, USA) logging 
machines. The logging machine information obtained covered altogether 5,300 trees. An STM file was 
saved for each felled tree producing commercial timber. Stem distribution series and assortment 
outturn volumes were derived from STM data. Stand characteristics (basal area, mean diameter, mean 
height and total volume) for each clear-cutting stand were calculated using stem diameter and length 
information in the STM files. The dbh was determined as each stem’s 12th measured diameter (10-cm 
stump + 120 cm = 130 cm). Total tree height was estimated based on the commercial timber height 
shown in the STM file [27]. Basic information regarding the stands characteristics calculated from the 
STM data is presented in Table 1. 

Table 1. Statistics for stem number, basal area (BA), total volume (Vtotal), mean diameter 
(Dg) and mean height (Hg) of the stands (n = 15) according to the logging machine data. 

Stand characteristic Mean Minimum Maximum Standard deviation 
Stem number 332 46 692 244 

BA, m2 15.5 4.6 37.5 11.4 
Vtotal, m3 137 41 316.5 94.4 
Dg, cm 31.4 26 43.8 4.8 
Hg, m 18.3 10.3 23.6 3.4 

2.3. Simulation of Various Error Sources in ITD 

2.3.1. Tree Detection Error 

The probability of a tree being detected from ALS data is dependent on the tree’s relative size and 
stand characteristics (e.g., [28,29]). Dominant trees have a higher probability of being detected than the 
suppressed trees in the understory. As a starting point, empirical data used in Yu et al. [7] was used to 
formulate tree detection scenarios causing etd. Yu et al. [7] performed ITD and matched 1,476 laser 
tree candidates with tree-wise field measurements. The ALS data used in that study was acquired with 
an Optech ALTM3100C-EA system; the flying altitude was 800 m at a speed of 75 m/s, a half-angle of 
16 degrees, a pulse rate of 100 kHz and a footprint diameter of 0.7 m. The average pulse density was 
2.6 returns per m2. The accuracies (RMSE) estimated in Yu et al. [7] for tree height, dbh and volume 
were 10.0%, 21.4% and 45.8%, respectively.  

The probability of tree detection was predicted using logistic regression (LR). A tree’s relative size, 
dbh/Dg (dbhrel), was used as the explanatory variable. A set of five tree detection scenarios was 
formulated by manipulating LR coefficients of the prediction model that were fitted to empirical tree 
detection data (Figure 1). These five tree detection scenarios were used to describe the effect of etd in 
ITD-based forest inventory. In Figure 1, all the tree detection probabilities depending on dbhrel of the 
scenarios are presented. Scenario 1 describes the state of the ITD accuracy in Evo area in practice. In 
Scenario 2 tree detection enhances for all the dbh classes, as also in Scenario 3. In Scenario 4 tree 
detection enhances overall and particularly in small dbh classes. Finally, in Scenario 5 almost all the 
trees are detected.  
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Figure 1. The probability of tree detection with five different tree detection scenarios 
depending on tree’s relative size (dbhrel).  

 

2.3.2. Tree Height and Diameter Prediction Errors  

The most accurate tree-level variable in ITD is tree height (e.g., [7,21]). For that reason, only two 
levels (0% and 5%) of eh were used. An error level of 5% is comparable to the level of tree height 
prediction accuracy achieved with present ITD methods (e.g., [21]). Dbh must be predicted when ITD 
is employed. In many cases, allometric models are used; these usually utilize tree height-dbh relation 
and additionally crown size (e.g., [8,17]). Nearest-neighbor estimation methods have recently become 
more common in prediction of dbh (e.g., [7,14,21]). Dbh prediction accuracy of at least approximately 
20% (RMSE) in ITD has been achieved (e.g., [7,14,21]). In this study, ed level of 20% was chosen as a 
starting point and error levels of 20%, 15%, 10%, 5% and 0% were used.  

2.3.3 Monte Carlo Simulations 

The effects of the errors in the ITD were analyzed with Monte Carlo (MC) simulations (e.g., [30-34]). 
With the MC method the calculation procedure is run dozens or hundreds of times, the results of which 
are used to determine the final predicted value error statistics. We simulated the ITD inventory 100 
times with 50 error combinations for each stand measured with logging machine. The total number of 
simulated ITD inventories for each stand was 100 × 5 (etd scenarios) × 2 (eh levels) × 5 (ed levels), and 
for the 15 stands in the dataset the total number of iterations was 60,000.  

The random error ε of each error component was presumed to be normally distributed ε ~ N(μ, σ2) 
and the errors were assumed to be independent for the sake of simplicity. Dbh and tree height 
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estimates were assumed to be unbiased based on previous studies [7,14,21]. At the beginning of each 
iteration we generated an initial error for the error component in question, or a combination of error 
components. These errors were generated by adding a Gaussian error term with mean μ and standard 
deviation σ to the particular error component. The errors caused by non-detected trees in ITD scenarios 
were simulated by leaving part of the trees in the input data out of the simulation. For each tree, a 
random number with uniform distribution between 0 and 1 was generated and compared with the 
detection probability in the scenario in question and the dbhrel of the tree. If the random number value 
was smaller than the probability of tree detection with the given dbhrel, the tree was removed from the 
input data (probability of tree detection varied between the scenarios, see Figure 1). 

After each MC run tree detection accuracy, basal area (BA), total volume (Vtotal), mean height (Hg), 
mean diameter (Dg) and timber assortment outturns were calculated and compared to field reference. 
These differences were interpreted as inventory errors and were analyzed statistically by calculating 
means (tree detection) and RMSEs (stand characteristics) at the stand level. For the above-mentioned 
stats, stand level (n = 15) means are presented in the results.  

3. Results 

The effects of etd, eh and ed were studied to clarify the importance of error components in the 
present state of ITD. A set of five tree detection scenarios, two error levels in height and five error 
levels in tree dbh prediction were tested. The effects were examined by calculating the stand 
characteristics used in practical forest management and volumes for saw (Vlog) and pulp (Vpulp) wood.  

3.1. Effect of Tree Detection 

The effects of etd were analyzed with a set of five different tree detection scenarios (Table 2). 
Scenario 1 was empirically developed and represents the state of the present ITD. In Scenario 1, 60.2% 
from the stem number and 75.9% from Vtotal were detected; in Scenario 5 the respective percentages 
were 99.8% and 100.0%. When the only error source was tree detection the RMSEs in stand 
characteristics ranged between the scenarios from 32.4% to 0.6%, 29.0% to 0.5%, 7.8% to 0.2% and 
5.4% to 0.1% in BA, Vtotal, Hg and Dg, respectively.  

Table 2. Effect of tree detection.  

Detection accuracy, % RMSE, % 
Scenario Stem number Vtotal BA Vtotal Hg Dg Vlog Vpulp 

1 60.2 75.9 32.4 29.0 7.8 5.4 25.1 37.8 
2 65.1 77.4 29.4 27.0 6.1 4.5 24.4 33.3 
3 84.9 94.5 12.0 10.0 3.9 2.5 7.5 14.2 
4 95.2 98.6 4.9 4.1 1.7 1.1 3.1 6.1 
5 99.8 100 0.6 0.5 0.2 0.1 0.2 1.0 

3.2. Effects of Diameter Prediction and Combined Effects of Diameter Prediction and Tree Detection 

The effect of ed was most significant for Vtotal and BA (Figure 2). The decrease in RMSE was from 
12.0% to 0.6% in BA and from 10.9% to 0.5% in Vtotal in Scenario 5. In Scenarios 1 and 2 there were 



Remote Sens. 2011, 3                    
 

 

1621

no notable effects (variation within 1%). In Scenario 3, RMSE in Vtotal decreased 2.2% and RMSE in 
BA 3.3% as in Scenario 4; the respective percentages were 7.2% and 7.3%. For Hg calculation the ed 
had only minor effects in all the scenarios. The effect on Dg calculation was similar in all the scenarios, 
and the RMSE accuracy decreased approximately 8% when the ed decreased from 20% to 0%. 

Figure 2. Combined effects of dbh prediction and tree detection on stand characteristics. 

 

Tree dbh prediction mostly affected Vlog predictions in tree detection Scenarios 3, 4 or 5 (Figure 3). 
In tree detection Scenarios 3, 4 and 5 the predicted Vlog RMSE percentage decreased from 
approximately 15% to 7.5%, 3.1% and 0.1%, respectively. In Scenarios 1 and 2, the RMSE varied 
from 24.4% to 26.6% with no notable effect from ed. 

When predicting Vpulp outturns there were a slight increase in RMSE when the ed decreased in tree 
detection Scenarios 1 and 2. This stems from bias in tree detection. In Scenario 3, RMSE decreased 
from 17.2% to 14.2% when the ed decreased from 20% to 0%. The most effective decrease was 
detected in tree detection Scenarios 4 and 5, where the effect of ed decreased Vpulp RMSE from 15.4% 
to 6.2% and from 15.5% to 1.0%, respectively. 
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Figure 3. Combined effects of dbh prediction and tree detection on the stand log wood 
(left) and pulp wood (right) outturns. 

 

3.3. Effect of Tree Height Measurements 

The effect of eh was analyzed using error levels of 5% and 0%. Only two intervals were used 
because the height prediction is already the most accurate in ITD and an accuracy of 5% (RMSE) is 
achieved. The increased accuracy when eh level was lowered from 5% to 0% was minor for all stand 
characteristics. Accuracy was improved by 0.4%, 1.2%, 0.8% and 0.1% in BA, Vtotal, Hg and Dg, 
respectively. The combined effects were also similar, as presented in Figures 2 and 3.  

4. Discussion and Conclusions 

We investigated the effects of three error sources (etd, eh and ed) when using ALS ITD inventory in 
forest management planning calculations. The results show that the most important error source is tree 
detection. For example, if 65% of trees are detected, the error in Vtotal is ~27%. Tree diameter 
prediction error is relevant in the estimation of BA and Vtotal after at least 85% of the trees are detected 
and when a Vtotal RMSE level of 15% is achieved. Then the effect varies from 5% to 10% in BA and 
Vtotal calculations. The errors do not affect with the same intensity to the stand’s mean characteristics. 
For Dg estimation, the effect of diameter prediction error ranging from 20% to 0% is ~8% in all tree 
detection scenarios. The prediction of tree height without errors gave only slight enhancement 
compared to the accuracy achieved with an error level of 5%, which has already been achieved in 
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many studies (e.g., [14,21]). The accuracy of Hg mainly depended on tree detection accuracy, with 
RMSE ranging from 8% to 0%. 

This study was based on simulations, and all the error sources were controlled. However, the 
starting points of the error levels were empirically determined. Mäkinen et al. [35] studied the effects 
of inventory error distributions and the distribution shape, whether Gaussian or something else, did not 
affect the results significantly. Here we also assumed the error distributions to be Gaussian. It should 
be noted that tree species were assumed to be known. The effect of tree species identification on the 
stand characteristics without species-specific information would be rather minimal, at least if its 
accuracy would be simulated with accuracy similar to Korpela et al. [15]. If more accurate stand 
characteristics are desired with ITD as optimally as possible, the effects of various error components 
should be known. 

Allometric models describing the relationships between tree crown size, height and dbh are highly 
sensitive to errors in their input data. The automatic measurement results of tree crown size in 
particular tend to be error-prone. Thus estimation of dbh on the basis of tree height and crown size 
result’s in a rather notable degree of uncertainty. Nearest-neighbor methods applicable to single-tree 
interpretation are, therefore, currently under development (e.g., [7,14,21]). In light of the results of 
these effects, it can be noted that if other error sources such as tree detection and tree height prediction 
(as well as tree species classification) remain at the same level, errors in dbh prediction have only a 
minor effect on stand characteristics RMSEs. Still, if accurate tree level or stock information is needed, 
accurate prediction of dbh is required, and this is the issue of why it would be worthwhile to apply ITD 
instead of the ABA. This issue has culminated in the stem distribution formation method applied in 
forest-planning computations. Single-tree-level information leads to more accurate results in tasks 
where stem distributions based on single-tree measurements are required, e.g., in the estimation of 
timber assortments.  

In many studies (e.g., [8,19,20]), the ABA produces results matching the accuracy of ITD. In stand 
characteristics inventory the advantage of using ITD is the reduced amount of field work. This study 
showed that the prediction of tree level characteristics can include errors (deviation) up to 20% with 
the resulting stand-level characteristics still being relatively accurate. The amount of bias is more 
important. The only source of bias in this study was from the tree detection scenarios. In the case of 
ITD, this is the most problematic error source.  

To increase wood value and productivity in industry, information on wood raw material quantity 
and quality, combined with logistic concepts that integrate transport systems and management models 
throughout the wood raw material supply chain, is needed. ITD could pave the way for ‘precision 
forestry’, in which forest resource monitoring would be carried out at the single-tree level. Many 
possible additional benefits such as operational planning for optimal timing of operations, better 
scheduling and logistics, accurate information on stem dimensions, as well as quality and optimal 
cutting of stems could be achieved if ITD would work accurately and reliably. The present state of ITD 
cannot meet these requirements (see results of tree detection in Scenario 1, ed 20% and eh 5%). Most of 
the advantages of ITD are from the true stem distribution series, and without perfect tree detection it is 
impossible to achieve these goals. On the other hand, in some cases, as in pre-harvest measurements of 
market stands with relatively low stem number, ITD could provide more accurate results than ABA. 
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Pulse density will hardly be a problem in the future, because of the rapid development of laser 
technology. ITD should benefit more from denser laser data than ABA.  

One interesting possibility for implementing ITD methodology in practical forest inventory is 
presented by Breidenbach et al. [36]. In this so-called “semi-ITD” method tree detection and the 
problem of biased ITD estimates are solved practically. Segmentation errors are taken into account by 
calculating volume for segments, not for individual trees. Because of the above-mentioned procedure, 
the bias of estimated volume is reduced. Further, several important qualities of ITD are unfortunately 
missing in this method. Firstly, true stem distribution is not found, although it may still be estimated 
with good accuracy, and secondly, the amount of field work is not reduced compared to ABA.  

In further studies, the effect of ALS pulse density on tree detection should be tested in an 
operational inventory. In addition, the effects of tree species detection should be investigated using the 
latest results [14,15]. The results of this study could be utilized when analyzing ITD error sources to 
emphasize achieving more accurate outputs in forest management planning calculations. 
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