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Abstract: Nowadays, advanced real-time visualization for location-based applications, 

such as vehicle navigation or mobile phone navigation, requires large scale 3D 

reconstruction of street scenes. This paper presents methods for generating photorealistic 

3D city models from raw mobile laser scanning data, which only contain georeferenced 

XYZ coordinates of points, to enable the use of photorealistic models in a mobile phone for 

personal navigation. The main focus is on the automated processing algorithms for noise 

point filtering, ground and building point classification, detection of planar surfaces, and 

on the key points (e.g., corners) of building derivation. The test site is located in the 

Tapiola area, Espoo, Finland. It is an area of commercial buildings, including shopping 

centers, banks, government agencies, bookstores, and high-rise residential buildings, with 

the tallest building being 45 m in height. Buildings were extracted by comparing the 

overlaps of X and Y coordinates of the point clouds between the cutoff-boxes at different 

and transforming the top-view of the point clouds of each overlap into a binary image and 

applying standard image processing technology to remove the non-building points, and 

finally transforming this image back into point clouds. The purpose for using points from 

cutoff-boxes instead of all points for building detection is to reduce the influence of tree 

points close to the building facades on building extraction. This method can also be 

extended to transform point clouds in different views into binary images for various other 

object extractions. In order to ensure the building geometry completeness, manual check 

and correction are needed after the key points of building derivation by automated 

algorithms. As our goal is to obtain photorealistic 3D models for walk-through views, 

terrestrial images were captured and used for texturing building facades. Currently, fully 
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automatic generation of high quality 3D models is still challenging due to occlusions in 

both the laser and image data and due to significant illumination changes between the 

images. Especially when the scene contains both trees and vehicles, fully automated 

methods cannot achieve satisfactory visual appearance. In our approach, we employed the 

existing software for texture preparation and mapping. 

Keywords: 3D city models; mobile laser scanning; automatic building extraction; 

photorealistic models; building reconstruction 

 

1. Introduction  

The past few years have seen remarkable development in mobile laser scanning (MLS) to 

accommodate the need for large area and high-resolution 3D data acquisition. MLS serves one of the 

probably fastest growing market segments, which is 3D city modeling [1]. Advanced real-time 

visualization for location-based systems such as vehicle navigation [2] and mobile phone navigation [3] 

require large scale 3D reconstructions of street scenes. ―Future developments in navigation and other 

location-enabled solutions will rely heavily on 3D mapping capabilities,‖ said Cliff Fox, executive vice 

president, NAVTEQ Maps, in November 2010 [4]. Google, Microsoft, Tele Atlas and NAVTEQ are 

currently expanding their products from 2D to 3D, even though currently most of their 3D models are 

only available for fly-through views. This has created a demand for ground-based models as the next 

logical step to offer 3D visualizations of cities [5]. The advantages of MLS data for high resolution 3D 

city models are obvious: MLS provides fast, efficient, and cost-effective data collection [6]. 3D models 

obtained from MLS offer high resolution visualization from walk-through views. However, the models 

with detailed building facades cannot be achieved from airborne laser scanning (ALS) and/or aerial images.  

Typical data for 3D modeling come from airborne data, such as ALS and aerial images, and from 

terrestrial sources, such as terrestrial laser scanning (TLS), MLS, terrestrial images, and image 

sequences. Additionally building footprints/ground plans can assist when 3D models are created. In the 

following, a short review of both data types is presented. 

In the past, photogrammetry has played a major role in the derivation of geographic data. However, 

despite significant research effort invested in developing automatic methods of data processing, the 

current level of automation is still low [7]. Following the development of electro-optical sensor 

technology together with the development of direct geo-referencing methods, since the mid-1990s, 

airborne laser scanning integrated with GPS and IMU has been available [8] for direct 3D data 

acquisition. The phenomenal development covering almost two decades has resulted in the current 

situation where the LIDAR system has become an important source of high resolution and accurate  

3D geographic data [1]. As regards building reconstruction from airborne-based data, including ALS 

and images, reviews of reconstruction methods are included in publications such as those by  

Baltsavias [9], Brenner [7], Kaartinen and Hyyppä [10], and Haala and Kada [11]. Baltsavias [9] has 

mainly focused on knowledge-based methods for building extraction from aerial images. Brenner [7] 

has investigated reconstruction approaches based on different automated levels, in which the data were 

provided by airborne systems, whereas Kaartinen and Hyyppä [10] collected building extraction 
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methods from eleven research agencies with four testing areas. Input data contain airborne-based data 

and ground plans (for selected buildings). Building extraction methods were analyzed and evaluated 

from the aspects of the time consumed, the level of automation, the level of detail, the geometric 

accuracy, the total relative building area and shape dissimilarity. Haala and Kada [11] reviewed 

building reconstruction approaches according to building structures: building roofs and building 

facades, in which the input data covered both airborne-based and ground-based data.  

Data from TLS and close-range images are used only for small area modeling due to the slowness 

of acquisition and manual registration. Their main application focus is on the digital documentation of 

archaeological objects and architectural structures modeling [12]. A review of terrestrial image-based 

3D modeling has been presented by Remondino [12]. According to Remondino [12], the methods for 

3D information recovery from 2D images include the following: mathematical model transformation 

(e.g., photogrammetry), shape-based methods such as shape from shading, silhouette, 2D edge 

gradients, textures, specularity, and contour. However, automated image-based modeling methods for 

mobile system require highly-structured images with good texture, high frame rates, and uniform 

camera motion. Becker and Haala [13] proposed an approach for automated feature extraction for 

facade reconstruction by integrating TLS and terrestrial images in which the intensity values from TLS 

are used for the generating the reflectivity images, and then the corresponding relationships between 

reflectivity images and the green channel of terrestrial images are registered. The edges were extracted 

by means of the Sobel operation from terrestrial images. However, this method depends heavily on the 

intensity values from the scanner. Registration can fail if the intensity value is low. As is known, the 

wavelength of the scanner has some effect on how the intensity values correspond with RGB images. 

If IR wavelengths are used laser data is closer to IR images. Therefore, this method is not flexible. 

For large-area modeling, MLS and image sequences are more efficient means of data collection. 

The camera-based mobile system is such that cameras with different views are mounted on a vehicle, 

integrated with GPS, and IMU data were used for high-resolution data collection. Based on these 

systems, automated building reconstruction methods have been proposed using image video sequences; 

e.g., Cornelis et al. [2], Pollefeys et al. [5], Tian et al. [14]. Pollefeys et al. [5] have presented an 

approach enabling detailed real-time 3D reconstruction from video streams. The video streams are 

collected by a multi-camera system (8 cameras) in conjunction with INS/GPS measurement. Model 

reconstruction from this system involves high computational costs due to large data redundancy (each 

surface element is typically seen via dozens of views). In addition, difficulties arise with large 

variability of illumination and varying distance and orientation of the observed scene. The resulting 

models are not geo-registered as GPS/INS was not fused with the results of vision-based pose 

estimation. In contrast, the data collected by MLS are location-based and more reliable and accurate, 

e.g., data collected with an accuracy of few centimeters. 

Zhao et al. [15] have proposed a fully-automated method for reconstructing a textured CAD model 

of an urban environment using a vehicle-based system equipped with one single-row laser scanner and 

six line cameras plus a GPS/INS/Odometer-based navigation system. The laser points were classified 

into buildings, ground and trees by segmenting each range scan line into line segments and then 

grouping the points hierarchically. The vertical building surfaces were extracted by using Z-images, 

which were generated by projecting a point cloud onto a horizontal (X-Y) plane, where the value of 

each pixel in the Z-image is the number of the point cloud falling onto the pixel. However, for one 
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building, the Z-image is not continuous in intensity due to the windows in the walls. Therefore, this 

method is not so useful when dealing buildings with large reflective areas, e.g., balconies with glass or 

windows. Additionally, problems related to object occlusion have been reported. 

Früh et al. [16] introduced automated algorithms for generating textured facade meshes of cities 

using a truck equipped with one camera and two 2D laser scanners. The purpose of this method was to 

resolve object occlusions. A 2.5D depth image was employed to classify objects into foreground layers 

(occluded objects, e.g., trees) and background layers (e.g., building facades). This 2.5D depth image 

was obtained by regularizing 3D scan points into grids with each pixel representing the depth of the 

scan point. The grid position only specifies the topological order of the depth pixels, and not the exact 

3D point coordinates. Large holes in the background layer, caused by occlusion due to the foreground 

layer objects, were filled in by interpolation. However, most of the operations that were performed on 

the depth image can be done just as well directly on the 3D point grid, but not as conveniently.  

Our objectives are to reconstruct high-quality (mainly for visual quality) and high-accuracy 

(including model completeness and position accuracy) 3D models from mobile laser scanning data and 

terrestrial images. The past publications showed that even with fully-automated methods, it is still a 

challenging undertaking to achieve satisfactory visual appearance for the resulting models. Therefore, 

we propose a combination approach consisting of automated algorithms for geometry reconstruction, 

with additional manual checking and correction, and assisting software for texture preparation and 

mapping. Compact model size was required to enable the use of photorealistic models in a mobile 

phone for personal navigation. 

This paper is organized as follows: Section 2 introduces our mobile laser scanning system and data 

acquisition for the Tapiola area. Building geometry reconstruction is addressed in Section 3. Section 4 

illustrates texture preparation and mapping. The results and discussions are presented in Section 5, and 

Section 6 presents the conclusions.  

2. Applied Data  

The FGI ROAMER system is a mobile laser scanning system which can be mounted on various 

vehicles (see Figure 1). The hardware sub-systems of the ROAMER include the following: (1) a 

FARO laser scanner; (2) a GPS-INS navigation equipment; (3) a camera system; (4) synchronization 

electronics; and (5) a mechanical support structure. The current ROAMER MLS platform is 

constructed of hardened aluminum plates and profile tubes. The base plate is approximately 63 cm in 

length and width. The height of the scanner origin/mirror is approximately 97.5 cm above the base 

plate in the normal position when the scanner is in its upright position and between 36 cm and 57 cm 

when some of the tilted (fixed) positions are used. The possible negative tilt angles, or depression 

angles (DA), when the scanner‘s z-axis points below the platform horizon are −60°, −45°, −30°, and 

−15°, whereas the positive tilt angles allow measurements at the angles of 0°, 15° and 30° above the 

platform horizon. The total weight of the intended instrumentation and the platform is approximately 

40 kg [17]. 

The mirror rotation frequency, or profile measuring frequency of the FARO LS, is typically set  

to 24 Hz, 49 Hz or 61 Hz in mobile applications, and the vertical angular resolution can be set to 

0.009–0.288 degrees (0.15–5.0 mrad, or 40,000–1,250 points per profile in the full FOV). The 
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corresponding point spacing for adjacent points when using the typical scanning range of 15 m in road 

mapping is thus 2.2–75 mm along the scanning profile. For platform speeds of 50–60 km/h, the profile 

spacing is about 30 cm when using the profile measuring frequency of 49 Hz. With a frequency of 49 Hz, 

the profile interval is less than 20 cm when the speed of the mapping unit is kept below 40 km/h, and 

the point resolution along the profile is still 2.5–5 cm, which is sufficient for the practical ranges of 

20–40 m, respectively, in the urban environment. 

Figure 1. The FGI ROAMER system (photo from Kukko, A., 2009). Left: Side views of 

the platform design and instrumentation; Right: Image of the ROAMER (Here the scanner 

is tilted to the backward direction at a depression angle of 45°). 

 

The ROAMER configuration as used in Tapiola can be seen from Table 1. The data included 

altogether about 160,000 profiles, each profile having 2,150 points with 3D coordinates and return 

intensity, and 8,200 images. These profiles were divided into 162 files, each of them composed of around 

1,000 profiles. Data collection lasted about one hour, and covered an area 180 m by 280 m. The laser 

data were transformed into map coordinate system (ETRS-TM35FIN with GRS80 ellipsoidal height). 

Table 1. The ROAMER‘s acquisition parameters. 

Date 12 May 2010 

Laser scanner Faro Photon™ 120 

Navigation system NovAtel SPAN™ 

Laser point measuring frequency 244 kHz 

IMU frequency 100 kHz 

GPS frequency 1 Hz 

Data synchronization Synchronizer by FGI, scanner as master 

Cameras Two AVT Pike 

Profile measuring frequency 49 Hz 

Figure 2 shows the trajectory of data collection on top of an aerial image. It can be seen that the 

collected data contain all of the building facades in our test area. The data were collected during May, 
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which is a time of the year when there is an abundance of leaves on the trees. Some of them are very 

close to the buildings (see images in Figure 2). Therefore, when developing algorithms, it is critical to 

consider how to separate buildings and trees. The algorithms for building geometry reconstruction are 

presented in the following section. Due to narrow streets and high buildings, images from the 

ROAMER system did not meet the requirement for high-quality textures. Therefore, the images were 

taken separately using a Canon EOS 400D digital camera. 

Figure 2. The ROAMER trajectory and images from the Tapiola area (photo on the Left 

from Kaartinen, H., 2010). 

 

3. Geometry Reconstruction 

The current situation is such that most of the existing commercial software for 3D model 

construction using laser scanner data primarily concentrates on using ALS data. Some software 

companies (e.g., Terrasolid) have developed tools for 3D modeling from both ALS and MLS data. The 

ALS data are for modeling building roofs and the MLS data are for modeling building facades. 

However, the huge dataset obtained when using the MLS option is challenging in large-area 3D model 

generation. Our goal in geometry reconstruction was to utilize some key points in building model 

construction. Figure 3 shows the procedure in geometry reconstruction. The detailed algorithms for 

noise point filtering, ground point classification, building point extraction, detection of planar surfaces, 

and derivation of the buildings‘ key points are presented in each section.  

Figure 3. The procedure applied in geometry reconstruction. 
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3.1. Noise Point Filtering 

The acquired data were composed of 162 files, totaling around 340 million points with XYZ 

coordinates. Noise point filtering was carried out individually on these 162 files. Each file contained 

noise points, object points, and ground points. There is no consistent definition for noise points in the 

literatures. In some papers, it is also called outlier points. In this paper, a noise point refers to a point 

with markedly deviation from the other points. Noise points are typical feature in point clouds 

produced with phase-based laser scanners. We used the data of 2D projections (xy, xz, yz) respectively 

to filter out these noise points. The data in each 2D projection were distributed into 10-by-1 bins. We 

used a three-dimensional histogram of bivariate data to calculate the number of elements falling into 

each bin of the grid, and we calculated the positions of each bin center. The threshold (T) for the 

number of the points in each bin can be defined by the user according to the different density of the 

point cloud and the size of a dataset. The detailed procedure can be seen from Figure 4. Figure 5 shows 

the filtering result from an example with a threshold (T) of 800 points.  

Figure 4. The procedure in noise point filtering. 

 

Figure 5. An example of noise point filtering (YZ projection view). Left: Original data 

Right: Data after noise point removal. The figures are plotted in the same scale with the 

colors according to the height value of the points. 
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3.2. Object Classification 

The file sizes were greatly reduced following noise point removal. Consequently, the files were 

merged into groups of ten files, resulting in 16 groups. The last one was a group of 12 files. Each 

group contains around 6~10 million points. These files contained ground points, building points, tree 

points and other object points, which we wanted to separate.  

3.2.1. Ground Point Classification 

The data classification was performed file by file (16 files in total). The detailed procedure for one 

file is illustrated in the Algorithm 1. In order to facilitate the description, Table 2 depicts abbreviations 

used. This algorithm is performed in fully automation and is available for relatively flat area. 

Table 2. A list of abbreviations. 

Abbreviation Description 

Zf_data The most frequently occurring height value for data in one file; 

Zf_grid The most frequently occurring height value for data in each grid; 

Z_min The minimum height value for the data in one file; 

Zmin_grid The minimum height value for the data in the grid; 

Zd The difference between Zf_data and Zmin_grid 

Algorithm 1 Ground point classification 

1:   Calculate Zf_data: mode (height value of data)  

2:   Compare the difference between Zf_data and Z_min  

3:   if the difference <= 1m then 

         points with the height value <= Zf_data +0.25m accepted as ground points 

4:   else  

          grid  points in XY plane into 10*10 bins 

 

5:       for each bin 

              calculate Zf_grid and absolute value of Zd: abs(Zd) 

6:          if abs(Zd) <= 3m then 

                 compare the difference between  Zf_grid and Zmin_grid 

8:              if the difference <= 0.25m then 

                    points with the height value <= Zf_grid + 0.25 m as ground points 

9:              else   

 

                    points with the height value <= Zmin_grid + 0.25 m as ground points 

10:            end if  

11:         end if 

12:     end for 

13:     merge all ground points from each bin 

14:  end if 

 

This algorithm was developed by considering the most frequent occurring height value in the data. 

For the MLS data in the relatively flat area, ground points usually hold the most frequent occurring 

height value, especially in urban area without a large area of low vegetation. In this algorithm, the 

difference between Zf_data and Z_min was set to 1m. If the difference is less than 1m, it is considered 

as the terrain close to flat. We used 0.25 m as a tolerance taking into account the influence of measure 
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accuracy of few decimeters in ROAMER system and also the unflatness of the terrain. In addition, a 

3m threshold for Zd was used mainly considering that it is possible that data in some bins contain only 

the points from the reflection area due to the incomplete removal of the noise points. Figure 5 can also 

be an example in this case. However, for any algorithms, it is difficult to achieve perfect results. As 

can be seen, the noise point removal depended on the threshold value in each bin; what we can do is to 

take these factors into account and eliminate the effect. Figure 6 shows the result from the classification. 

Figure 6. Ground point classification (from top view). Left: Ground points (yellow) and 

object points (green); Right: Ground points (yellow points). 

 

3.2.2. Building Point Classification 

After ground point extraction, the remaining data contain buildings, trees and other objects. In 3D 

city model creation, building point classification is a key step in building model reconstruction. Unlike 

ALS data scanned from the several hundreds or even thousands of meters above the top of the objects, 

MLS data are collected close to the ground passing along a street. Detailed 3D information of the 

vertical planes of buildings can be obtained. The algorithms were developed based on the assumption 

that the building facades are vertical with respect to the ground. The method utilizes two different 

algorithms for building point classification according to the maximum height of the buildings in the 

dataset. For high buildings (buildings in the dataset with the maximum height greater than 20 m), 

Figure 7 shows the principle of this algorithm. We first utilize two cutoff boxes (cutoff box 1 and 

cutoff box 2) to find the overlap between them. They are the buildings of B1, B2, and B5. Here, I have 

to mention that after the overlap parts are detected, the whole buildings are extracted. Then these 

building points were removed from the data. The lower buildings were then extracted from the 

remaining data by setting two other cutoff boxes (cutoff box 3 and cutoff box 4). Then the overlaps 

between them can be found, which are B3, B4, B6, and B7. The benefit from this algorithm is that 

trees can then be effectively isolated from buildings, as in the most of cases tree points are not 

continuous in height. It means that from the top view, the shapes of trees from different cutoff boxes 

are different. Nevertheless, to deal with low buildings (buildings in the dataset with maximum height 

less than 20 m), we applied three cutoff boxes for building extraction. By deriving the overlaps 

between them, these points were merged and the duplicate points were deleted for rough building 

extraction. This part handled with the sparse points in the lower parts of the building to be collected 

from the scanner, e.g., due to parking places on the first floor of the building or columns in the lower 
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part of the building. These occurred in the test data. Figure 8 shows the flow diagram of the algorithm. 

The detailed steps will be addressed in the following parts. In order to facilitate the description of the 

algorithm, Table 3 gives some short names instead of long description. 

Figure 7. The basic principle of the algorithm of building point classification. 

 

Figure 8. The procedure in building point classification. 
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Table 3. A list of name substitution. 

Name Description 

Z_max Maximum height value in the data (one file); 

Z_min Minimum height value in the data (one file); 

Z_mid Equals to (Z_max+Z_min)/2-2m; 

Zg The average height of ground points; 

(1) Algorithm for data in which the maximum height of the buildings is greater than 20 m. 

(i) Roughly extract higher buildings by obtaining points from two cutoff boxes (cutoff_1 and 

cutoff_2) and comparing the X and Y coordinates of points between the boxes.  

Firstly, two cutoff boxes are set to extract the points: cutoff_1: Z_max − 6 m~Z_max − 9 m; 

cutoff_2: Z_mid − 1.5 m~Z_mid + 1.5 m. The threshold for cutoff_1 is set mainly considering that 

on the top of some buildings, there are some prominent parts, for example, elevator tower, roof 

windows, and water tanks, which are the parts of the buildings, but these points cannot be used as 

parts of the continuous buildings. In some cases, noise points from the top of the buildings could 

not be completely removed (Figure 5). Therefore we start to obtain points from the setting 

threshold: Z_max − 6 m. For this threshold, it works whatever there exist prominent parts or noise 

points on the buildings or not. Due to the cutoff_1 starts from Z_max – 6 m, therefore the Z_mid 

is set to (Z_max+Z_min)/2 − 2 m. Since buildings are always continuous, the overlaps of the two 

sets of cutoff data in XY coordinates can be derived by:  

TF1 = ismember (cutoff_2 (:, [x, y]), cutoff_1(:, [x, y]), ‗rows‘); 

Idx1 = find (TF1 == 1); 

Part_highBuilding = cutoff_2 (Idx1, [x, y, z]); 

TF2 = ismember (objectPoints (x,y), Part_highBuilding (x,y), ‗rows‘); 

Idx2 = find (TF2 == 1); 

highBuilding = objectPoints (Idx2,[x, y, z]); 

Thus, the higher buildings were extracted roughly. As a result, the whole building is extracted, not 

only a part of the building. However, in these data, there were still some other points besides 

building points, e.g., tree points. It will be further processed on the step (iii). 

(ii) Similarly, roughly extract lower buildings by obtaining points from two cutoff boxes (cutoff_3 

and cutoff_4) and comparing the X and Y coordinates of points between two boxes. 

After the higher buildings had been roughly extracted on the step (i), these points were removed 

from the data. Then we set two more cutoff boxes for detecting lower building. Cutoff_3:  

Z_min + 3 m~Z_min + 5 m; cutoff_4: Z_min + 1.5 m~Z_min + 2.5 m. As we know, the smaller 

the height of cutoff box, the less the number of the points in the box. The separation of building 

points from trees is easier. However, we have to consider that if there are windows in the cutoff 

area, it would lead to incomplete building extraction. For example, in one cutoff box, there are 

points on the wall and another cutoff box has less points or is even empty due to window 

reflection. After comparing the overlap between them, the result would lead to the missing of this 

building facade. Therefore, in order to avoid this context, the height of the cutoff boxes should be 
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set properly. By applying the similar method as the step (i), overlaps of XY coordinates in the 

cutoff_3 and cutoff_4 datasets were obtained. Consequently, lower buildings were roughly 

extracted. But there were still other points included besides these building points. Therefore, 

further process will be performed on the step (iii). 

(iii) By transforming these roughly detected building points into binary images, image parameters 

could be set to remove the non-building points. 

The purpose of this step was to remove non-building points by means of image processing 

technology. Firstly, the pixel size for binary image was predefined. Then we defined the size of 

the binary image from the XY coordinates of the extracted rough building points. A binary image 

could be formed by setting objects as 1 and empty as 0 from the roughly-detected building points 

from step (i) and (ii). In order to eliminate small and irregular areas (non-building areas) from the 

image, it is possible to set the thresholds for region properties, e.g., area size and eccentricity. For 

example, when the eccentricity value of an area is close to 1, it implies that the shape of the area is 

close to a line. When the eccentricity value is close to 0, the shape of the area is close to a circle. 

Usually, the shape is close to a line when a building facade is seen from the top, but a tree is close 

a circle (see Figure 9). For a square-like building, the eccentricity value can be set to a small value 

e.g., 0.3~0.5. However, it is possible that some tree points cannot be effectively separated. Thus, 

we can also utilize other parameters e.g., area size and other shape parameters (explain later on) to 

restrict it. Usually the MLS data are collected along the streets. Large dataset, in order to avoid 

sudden heavy computation or the situation of being out of memory, is processed usually by 

separating into several groups according to the number of profiles. Therefore, one group may 

contain only a part of a building e.g., one facade or two facades. Thus, the parameter ‗eccentricity‘ 

can be effectively applied to these cases. As regards the shape of an area, besides the eccentricity, 

we can also use the region properties of major axis length and minor axis length to remove some 

irregular areas. An example of the pseudo codes:  

LabeledImage = bwlabel (binaryImage, 8); 

Stats = regionprops (LabeledImage, ‗Area‘, ‗Eccentricity‘, ‗MajorAxisLength‘, ‗MinorAxisLength‘); 

Find objects with Stats.Area > 4m
2
 and Stats.Eccentricity = 0.8 and Stats.MajorAxisLength < 15 m 

and Stats.MinorAxisLength > 4 m. 

As we have mentioned in the above, there were a lot of trees very close to the building facades. It 

is challenging work to separate and classify buildings from trees by only applying region 

properties. Therefore, we created a morphological line structuring element. A morphological 

structure element can be constructed by a specific shape such as a line or a disk. For a line 

structure element, the length of the line and the angle of the line as measured in a counterclockwise 

direction from the horizontal axis should be predefined. In our case, the angle of the line structure 

element was set approximately to the building edge direction e.g., 10°. The line structure element 

can be set as: se = strel (‗line‘, the length of line, the direction of line). This enabled the adhesion 

parts between building edges and trees to be effectively separated. 

(iv) The processed binary image was transformed back into point cloud. 

(v) Applying steps (iii) and (iv) to the results derived from step (i) and step (ii), and merging the 

points, the buildings were finally extracted. 
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Figure 9. An example of the procedure of transformation of 3D point clouds into 2D 

binary images, non-building points filtering on images, then into 3D point clouds. 

 

(2) Algorithm for data in which the maximum height of the buildings is less than 20 m. 

(a) Set three cutoff boxes: cutoff_1: Z_min + 6 m~Z_min + 8 m; cutoff_2: Z_min + 3 m~Z_min + 5 m; 

cutoff_3: Z_min + 1.5 m~Z_min + 2.5 m. 

(b) Derive the overlap points between cutoff_1 and cutoff_2 and remove the overlap points from  

the data:  

P_overlap1= {P(x, y) ∈ cutoff_1 & P(x, y) ∈ cutoff_2 | P ∈ all points};  

P_1(x, y, z) = {P (x, y) ==P_overlap1(x, y) | P ∈ all points}; 

Data_rest (x, y, z) = {~ (P_1 ∈ all points)}. 

(c) Derive the overlap points between cutoff_2 and cutoff_3 from ‗Data_rest‘:  

P_overlap2= {P(x, y) ∈ cutoff_2 & P(x, y) ∈ cutoff_3 | P ∈ data_rest};  

P_2(x, y, z) = {P (x, y) == P_overlap2(x, y) | P ∈ Data_rest}; 

(d) Apply step (iii) and step (iv) in the previous algorithm to P_1 and P_2 and merge the resulting 

building points. 

We applied different algorithms for different datasets according to the maximum height value in the 

dataset. Except several parameters needed to be predefined, the algorithms are fully automatic. These 

predefined parameters include pixel size for binary image, image region properties: area size, 

eccentricity value, major axis length and minor axis length, and also morphological structure element. 

It is not a good option to use consistent parameters for all datasets. However, for region properties, 

except eccentricity value, other parameters can be applied for all datasets after setting. Morphological 

structure element is applied mainly for separating between building facade and trees. When the scene 

does not contain trees, this parameter is useless. For example, the length of structure element of 

line-shape is set to 1. Pixel size and eccentricity value are sensitive to the results. According to 

different dataset, these parameters should be set properly. Figure 10 shows an example how different 

pixel sizes affect the results. When pixel size is set to 0.5 m, small objects are independent. By the 

thresholds of area size and shape, these small objects are removed. In contrast, for image with pixel 

size of 1.5 m, objects are connected each other. After filtering, these objects are still preserved. 
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However, large pixel size can cause more noise included. Therefore, when the scene shows 

discontinuous building points, good result can be obtained by applying large pixel size. 

Figure 10. An example in the analysis of the sensitivity of the parameter (pixel size of 

binary image). Left: image with noise points; Middle: image after noise removal;  

Right: results in 3D points; Upper: images with pixel size of 0.5 m; Lower: images with 

pixel size of 1.5 m. 

 

 

Sixteen files were processed using the algorithms and building points were successfully extracted. 

In order to seamlessly continue the process, the building points were merged into four files. Each file 

contains around 9 million points. Figure 11 shows example results of classification of building points. 

Figure 11. The results from building point classification (The colors show different heights). 

     

3.3. Key Point Extraction and Surface Meshes 

One of our goals was to generate building models that require low amount of memory and can thus 

be applied for applications such as mobile devices with limited memory, and rapid rendering for 
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visualization. The buildings extracted by applying the above steps still have a huge amount of points. 

Therefore, key point extraction was essential. We took two steps for key point extraction: to identify 

each building facade and to extract the key points. 

3.3.1. Identifying Each Building Facade 

In our test data, almost all buildings are rectangular with planar (non-curved) facades. Therefore, 

we can use the coplanar condition to identify a building facade. The algorithm is realized as follows: 

(1) Two neighbor points (P1, P2) were selected randomly to form a vector (V1). 

(2) A third point (P3) was added to form the vector V2 with P1. If V2 was not parallel to V1, then it 

was considered to be the basic plane.  

(3) If V2 and V1 were collinear, then this point (P3) was taken as a coplanar point. If not, then the 

next step was taken. 

(4) P4 is any point in the dataset. P4 and P2 formed vector V3. Does it satisfy the coplanar condition 

V3(V1 × V2) = 0? If yes, it is a coplanar point. 

(5) When a plane was identified, the points of this plane were removed from the dataset.  

(6) Steps (1) to (5) were repeated until all points were allocated to a certain plane (Figure 12). 

Figure 12. Detection of coplanar point detection (different colors represent different planes). 

 

3.3.2. Key Point Extraction 

The implementation of the above algorithm enabled each building plane to be identified. It is easy 

to obtain the corners of the plane from identified building plane as each plane was almost rectangle. 

The corners could be deduced from the minimum and maximum values of the X or Y coordinates and 

the Z values. However, sometimes the corner points based on laser data are not exactly where the 

corners of the buildings are. Therefore, small adjustments were necessary to ensure the rectangular 

building facades. For example, as regards the upper corners of one building facade, they usually had 

the same height values. And the upper corner and its corresponding lower corner had the same X, Y 

coordinates. In addition, manual checking and correction were important in order to achieve high 

quality (e.g., completeness and correctness) of building geometry. For example, in some building 
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facades, due to object reflection (e.g., glass) or object occlusions (e.g., trees or other objects), it was 

possible for the points in building facades to be sparse and discontinuous. Manual checking and 

correction are performed by visually comparing the identified building planes and corners with 

terrestrial images and also making correction by resetting parameters in the algorithm for better results. 

The advantage in our data is that the buildings are scanned from all sides. This means that complete 

models can be created with manual assistance. The disadvantage is that we have no ALS data for roof 

information. This means that more manual operation is needed.  

Following key point extraction, the meshes were constructed for the surfaces. When dealing with 

complex buildings, they were divided into cubes according to different heights. The meshing surfaces 

were imported to 3ds Max for further operations, e.g., surface merging and small geometry adjustment 

for good visualization. Figure 13 shows the raw models produced using 3ds Max.  

Figure 13. Raw models of Tapiola area produced using 3ds Max. 

 

4. Texture Preparation and 3D Mapping 

A detailed procedure of geometry reconstruction from MLS data has been addressed in the above 

steps. Geometric models of buildings exclude societal information, e.g., landmarks, related to the real 

scene. Models with textures not only offer rich content to guide people‘s life, e.g., personal navigation, 

but they also provide good visualization.  

Due to narrow streets and high buildings, images from the ROAMER system did not meet the 

requirement for high-quality textures. Therefore, the images were taken separately using a Canon EOS 

400D digital camera. These images were used to provide the textures of the building facades. For 

complete 3D models, the textures of the building roofs were also needed. We made use of aerial 

images from Bing Maps (http://www.bing.com/maps/) to obtain the textures of the building roofs. 

Each roof plane was made to correspond to one texture. Image processing software (Corel Photo Paint) 

was utilized in texture preparation, e.g., the image perspective correction, noise point removal, and 

image mosaicing. The 3ds Max software was used in texture mapping. 

4.1. Texture Preparation 

Textures were prepared from the images for individual building facades. Images taken in the field 

cannot be directly used for textures due to the following reasons: 

(1) Images were taken at a certain oblique angle to the building facades requiring perspective 

correction. 
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When objects obstruct the line of sight in front of a building or if buildings are high, the images 

have to be taken at an oblique angle. In addition, even if images were taken at approximately right 

angles to the building facade, they still need some perspective correction. 

(2) With large building facades, several images are needed for a single texture, and consequently 

image mosaicing was needed. 

Due to the limited field of view of the camera when covering a large building facade, one image 

only covered part of the building facade. Thus, several images needed to be combined to create an 

image mosaic of the facade. The texture shown in Figure 14 is a mosaic of seven images from left 

to right; with high buildings, images needed to be combined from the upper part and the lower part.  

(3) Due to some objects causing occlusions, e.g., trees close to buildings, there is noise, e.g., tree 

shadows, in the images of the building facades. This noise needs to be removed from the image. 

In this test area, as mentioned above, there are a lot of trees. Some of them are very close to the 

building facades (see the middle image of Figure 2). In this context, tree shadows on the building 

facades needed to be removed from the images for the sake of the high quality texture. Figure 14 

is an example showing the original images taken at a certain oblique angle due to some objects 

obstructing the direct line of sight to the building. The Figure 14 also shows the texture from 

multi-image mosaic. In addition, in the lower part of the first image of Figure 14, some noise was 

removed for the final texture (see the lower image of Figure 14).  

Figure 14. Images and texture. Upper: Two images; Lower: Texture. 

 

4.2. Texture Mapping 

Once the raw models and textures have been prepared, the textures need to be projected onto the 

building facades. This work was processed by means of the 3ds Max software. As is mentioned in the 

above, for the Tapiola models, each building facade or building roof was matched to each texture. This 

made the mapping process relatively easy. The UVW mapping method was employed in 3ds Max. 

UVW is a mapping process for transferring a 2D image onto 3D object surfaces. It applies 

mathematical functions to assign each point on the texture to each point on the object surface.  

Figure 15 shows the models after texture mapping.  
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Figure 15. Models with textures provided via 3ds Max. 

  

5. Results and Discussions 

Using the automated methods presented here for geometry reconstruction and assisted by software 

for texture mapping, we reconstructed photorealistic 3D models of the Tapiola area (Figure 16). The 

results met our goals: the models were small in size due to only four corners representing one building 

facade; the accuracy of the models was adequate for personal navigation, and we achieved good visual 

appearance. Our models were tested on a mobile phone embodying a navigation application. Rapid 

rendering and continuous navigation were realized owing to the small size of the models. Despite GPS 

signal constraints in the urban area, the accuracy of the models met the outdoor navigation 

requirements (required within 1 m model accuracy). However, our approach for complete model 

reconstruction required both automated algorithms and manual operations. Therefore, the efficiency 

was relatively low. There are two factors which have a great impact on the efficiency of 3D model 

construction. One is the result obtained from the automated process, which affects the work load in 

manual correction. The other is the process of texture preparation.  

(1) Automated process: We developed automated algorithms for noise point filtering, ground 

classification, building point classification, detection of planar surfaces, and building key point 

extraction. The result produced by building point classification had the greatest impact on the 

follow-up processes. Due to reflection from objects, the data from the laser scanner is subject to 

discontinuities. When some small area data were filtered out as noise points, it occasionally causes 

incompleteness of the building. In our method, we utilized binary images to clean the noise. The 

area and shape of an area were constrained to certain threshold values. Therefore, it was important 

to decide appropriate thresholds for non-building point filtering. The work load in manual 

checking and correction for model completeness depends on not only the quality of original data 

but also the results from the automated process. 

(2) The process of texture preparation. This step was processed manually. As the images were taken 

separately from the MLS system, there was no orientation information for automatic process. In 

addition, object occlusions on images, especially tree occlusions, resulted in the unpleasant 

appearance of building facades. This caused a lot of work in texture preparation.  
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Figure 16. 3D models of Tapiola. 

 

Fully automated 3D model generation was our common goal. However, the proposed fully-automated 

methods, e.g., from Zhao et al. [15] and Früh et al. [16], could not delivery satisfactory results, 

especially as regards visual appearance. The main reason was that there was no efficient way to  

resolve object occlusions. Besides this, there were other reasons affecting the results. For example,  

Früh et al. [16] proposed a fast and efficient way for 3D models, but the resulting models were 

characterized by their large data size due to surface meshes constructed from point clouds. The method 

presented by Zhao et al. [15] produced a model of limited accuracy due to a mismatch between the 

scanner and the cameras. Despite the satisfactory results achieved as we applied our approach, the 

level of automation was still low. This can be improved as follows:  

(1) By integrating with the ALS data. 

The degree of building completeness can be considerably improved during the process of 

geometry reconstruction by integrating the MLS data with the ALS data. This will mean a reduced 

work load in manual correction. However, new problems would rise from data integrating due to 

different data sources. ALS and MLS provide data with different resolutions, and probably from 

different years. And different geometry matching would lead to accuracy lost. 

(2) By utilizing images from cameras mounted on the platform of our ROAMER system. 

As regards building textures, we used cameras with wide fields of view and proper viewing angles 

from our ROAMER system, and synchronized time from GPS, IMU. The scanner and cameras 

can be used for identifying the corresponding relationships between point clouds and images so 

that automated texture mapping could be achieved by applying orientation information from 

images. Object occlusions on the images could be improved by employing images taken from 

different viewing angles or by detecting the location of windows on building facades from point 

clouds and applying consistent textures for the building walls.  

6. Conclusions  

3D models were successfully reconstructed from Mobile Laser Scanning data (MLS) and terrestrial 

images using automated algorithms for geometric reconstruction, interactive checking and correction 

for model completeness, and software assisting in texture preparation and mapping. Point data were 
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acquired by using the ROAMER system developed at the Finnish Geodetic Institute (FGI). Models 

were reconstructed mainly in two steps: (1) geometry reconstruction, including fully-automated 

classification of building points, corner detection, and interactive checking for completeness of 

building geometry, and (2) photorealistic texture mapping. In Tapiola, our testing area, the scenes 

covered a number of trees and some were very close to the building facades, which was challenging 

when considering discriminating between buildings and trees. In this study we present detailed 

algorithms for noise point filtering, ground classification, building point classification, coplanar point 

detection and key points of model derivation. We used line structure elements to separate buildings 

and trees from binary images. The results showed realistic 3D scenes. Small model size, desired 

accuracy, and good visual appearance were achieved and the models were tested using a mobile phone 

for personal navigation. A satisfactory result was achieved.  

Future work in this subject area will focus on improving the level of automation by integrating MLS 

data with ALS data, and by utilizing images from ROAMER system by applying cameras with proper 

fields of view and by adjusting their viewing angles with respect to the building facades. 
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