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Abstract: Within urban areas, green spaces play a critically important role in the quality of 

life. They have remarkable impact on the local microclimate and the regional climate of the 

city. Quantifying the ‗greenness‘ of urban areas allows comparing urban areas at several 

levels, as well as monitoring the evolution of green spaces in urban areas, thus serving as a 

tool for urban and developmental planning. Different categories of vegetation have 

different impacts on recreation potential and microclimate, as well as on the individual 

perception of green spaces. However, when quantifying the ‗greenness‘ of urban areas the 

reliability of the underlying information is important in order to qualify analysis results. 

The reliability of geo-information derived from remote sensing data is usually assessed by 

ground truth validation or by comparison with other reference data. When applying 

methods of object based image analysis (OBIA) and fuzzy classification, the degrees of 

fuzzy membership per object in general describe to what degree an object fits 

(prototypical) class descriptions. Thus, analyzing the fuzzy membership degrees can 

contribute to the estimation of reliability and stability of classification results, even when 

no reference data are available. This paper presents an object based method using fuzzy 

class assignments to outline and classify three different classes of vegetation from GeoEye 

imagery. The classification result, its reliability and stability are evaluated using the 

reference-free parameters Best Classification Result and Classification Stability as 

introduced by Benz et al. in 2004 and implemented in the software package eCognition 
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(www.ecognition.com). To demonstrate the application potentials of results a scenario for 

quantifying urban ‗greenness‘ is presented. 

Keywords: Object Based Image Analysis; GeoEye; urban green; fuzzy classification; 

classification reliability 

 

1. The Role of Green Spaces in Bishkek 

Although embedded in an area with semi-arid climate, the capital of Kyrgyzstan is widely 

recognized and labeled as a ‗green city‘. Bishkek‘s mostly tree-lined streets, parks and other urban 

green areas are maintained through hot summers by a network of open irrigation channels. This lush 

vegetation essentially is the only ‗green‘ factor of the city and contributes substantially to the quality 

of life of Bishkek‘s residents. As ascertained by [1] and [2], vegetation affects urban climate by 

moderating temperature, increasing humidity, influencing wind speed and reducing noise. Further 

desirables are reduction of solar radiation, view screening and visual amenity. Since green spaces are 

not distributed evenly throughout the city, the spatial distribution and density of urban green spaces is 

of interest for city planners as well as for real estate developers and of course for individuals looking 

for attractive residential and business locations. The methodology outlined in this paper therefore can 

provide decision support and planning assistance for these target groups, as well as create input data 

for urban climate modeling as outlined in [3]. 

2. Methods and Objectives  

In general, GIS acts as a key tool for the integration and leverage of geo-referenced information for 

planning, decision making and assessment. In this context the objectives of this study are: (a) to 

generate a transferable and flexibly applicable methodology for mapping urban green spaces based on 

remote sensing data; (b) to define indices for rating recreational potential and other factors on a 

regionalized basis; (c) to develop a framework for enabling the monitoring of green spaces 

quantitatively and qualitatively on the basis of the Green Index as outlined in [4]; and (d) to offer 

methods to assess the reliability of spatial analysis results based upon the underlying image analysis 

results. Since vegetation is a relatively dynamic land cover class, methods of detecting its physical and 

spatial conditions over a larger (urban) area and over longer periods (synoptically) are proposed 

through the analysis of remote sensing data. With respect to the complex and fine-grained structures of 

urban areas, remote sensing data with appropriate spatial and radiometric capabilities have to be used. 

For a more differentiated determination of the Green Index, a rough categorization of vegetation  

(e.g., grassy vs. wooded) is an asset. In the example presented here, different vegetation types detected 

from remote sensing data act as weighted input for determining the ‗greenness‘ of a region. Since the 

reliability and stability of the image classification directly affects the reliability of the calculated Green 

Index, this is calculated and visualized respectively. 



Remote Sens. 2011, 3                            

 

1090 

3. Detecting Urban Green Spaces from GeoEye-1 Data 

Throughout this investigation, we have used a subset of a GeoEye-1 image fulfilling the Geo
TM

 

product standards of GeoEye (http://www.geoeye.com/CorpSite/products/), covering the southern part 

of Bishkek. The image was acquired on 16 August 2009 with zero percent cloud coverage. During this 

capture time in the region grassy vegetation is usually completely dry, while trees, bushes and areas 

under irrigation can be observed as green. Consequently, the near infrared (NIR) signal of dry grassy 

vegetation is reduced and similar to that of non-vegetation land cover classes. In addition, a quick 

inspection shows several locations with extreme blooming effects resulting from intense reflections at 

plane (roof) surfaces. 

3.1. Pre-Processing  

In order to fully benefit from the data‘s spatial and spectral capabilities we were pan-sharpening the 

subset by applying the principal components method as suggested in [5] (Figure 1). Additionally, for 

further analysis the NDVI (Normalized Difference Vegetation Index, [6]) has been calculated on the  

pan-sharpened subset per pixel and used as an additional channel (Figure 2). 

Figure 1. Subset of area under investigation from GeoEye-1 data. Original data  

pan-sharpened (see text for details) with a vegetation-denoting color visualization  

(red = red, green = (green + NIR)/2 and blue = blue). 
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Figure 2. Calculated NDVI for subset area based on GeoEye-1 data. 

 

3.2. Object Based Image Analysis 

For detecting and further differentiating vegetation we followed the approach of object based image 

analysis (OBIA) [7]. OBIA as a method for image analysis has evolved in the last decade, especially 

for analyzing remote sensing data with high spatial resolution. In comparison to per-pixel-based 

methods of image analysis, OBIA uses image objects instead of pixels as the building blocks for image 

classification. These image objects are generated by arbitrary, knowledge-free image segmentation, 

whereas the segmentation process is usually steered by one or more homogeneity criteria concerning 

color and shape which have to be parameterized [8-10]. Recognized major advantages of OBIA are the 

reduction of noise and the extension of the potential feature space [11-14]. That is, instead of  

per-pixel-feature-values aligned in a layer-stack-like manner, objects can be analyzed and classified 

based upon their statistical spectral features, their texture and their shape. Linking the generated 

objects, topological relations between objects can be used for image analysis in a manner typical for 

GIS. This way it is even possible to describe and use spatial context information, such as neighborhood 

relations and distances. Some researchers [15,16] name the potential to use concepts of scale [17] and 

mereology through a hierarchical network of image objects as a further advantage of OBIA. Because 

of these GIS-like characteristics used in image analysis, OBIA is often considered as the bridging 

element between remote sensing and GIS [18,19]. In order to assign the generated image objects to 

classes of their corresponding real-world objects, in principle any sensible classification method can be 

used. Without going into details about classification methods, widely used classification methods in 

OBIA are: (a) rule-based methods which classify objects according to expert knowledge formulated in 

rules [20-22]; and (b) sample-based methods which assign objects to classes according to their 

similarity to samples, that is, their distance from samples in feature space [23,24]. Both principles can 
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be applied using so-called hard or soft classifiers, that is, assigning objects to distinct classes (hard 

classifiers, such as threshold-based assignment) or allow objects to be a gradual member of more than 

one class (soft classifiers, such as fuzzy classifiers or neural networks [22,25]). The last case only 

makes sense in conjunction with respective expressions for the gradual class assignment per object. In 

the present case, we were using the software package eCognition 8 Developer 

(http://www.ecognition.com) for OBIA. We first applied a multi resolution segmentation [10] which is 

a global region growing method mainly controlled by the so-called ‗scale parameter‘ determining the 

maximum allowed heterogeneity of the segments to be created. The scale parameter is constituted by 

the weighted heterogeneity of color and shape, whereas the heterogeneity of shape is constituted by 

weighting compactness vs. smoothness. Compactness is defined by the ratio of a segment‘s perimeter 

PObj to its area AObj; smoothness is defined by the ratio of the object‘s perimeter to the perimeter of its 

minimum bounding box parallel to the image grid PMBB. Both together form the shape homogeneity 

hform by weighting them to the sum of 1: 

 
Obj

Obj

MBB

Obj

form
A

P
w

P

P
wh  1       (1) 

with 𝑤 ∈ 𝑅+ and 0 ≤ w ≤ 1. The heterogeneity of color hcolor is defined by the weighted sum of the 

segment‘s standard deviations per channel: 





n

c

cccolor wh
1

       (2) 

with 𝑤𝑐  ∈ 𝑅+ and 0 ≤ w ≤ 1 the weight of channel number c and σc the standard deviation of the 

segment‘s pixels in channel c. Neighboring segments or pixels are merged if their weighted combined 

color and shape heterogeneity h: 

  formcolor hwhwh  1      (3) 

with 𝑤 ∈ 𝑅+ and 0 ≤ w ≤ 1 is a minimum and below the scale parameter (see [10] and [20] for details). 

We applied the multi resolution segmentation on the four pan-sharpened channels with a scale 

parameter of 100 and a weighting of 0.9 for color and 0.1 for shape. Compactness and smoothness were 

weighted by 0.5 each and each channel was weighted equally (Figure 3). 

In order to mask blooming effects, we classified all segments with an average brightness of more 

than 1,500 respectively. For the next classification steps, we applied a fuzzy hierarchical classification 

scheme [26]. Hierarchical means: classes are sorted into sub- and super-classes by their common 

(super-class) and individual (sub-class) properties. This way, sub-classes inherit the properties of their 

super-classes. That is, all sub-classes share the class-description of their super-class (Figure 4.). 

Simultaneously, classes can also be sorted following a semantic hierarchy scheme. That is, classes with 

similar meaning can be pooled and labeled by a common semantic super-class, although their physical 

properties might be very different. These common semantic labels can be used for the description and 

analysis of topological relationships. 
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Figure 3. Segmentation result from multi resolution segmentation (see text for details) 

zoomed into the red marked zone in the north-east. 

 

Figure 4. Inheritance hierarchy of vegetation classes (left) and exemplary (‗meadow-like 

vegetation‘) class description by fuzzy-membership functions and respective fuzzy 

operators (right). The semantic hierarchy looks similar to the inheritance hierarchy. 

           

Each class of this scheme can be described as a fuzzy set within feature space (see [20] and [27]). 

That is, instead of crisp class assignment, each object obtains a degree of membership µ with 𝜇 ∈ 𝑅+ 

and 0 ≤ μ ≤ 1 to one or more classes. This way, µ expresses for each object its degree of fulfilling the 

classification conditions for each individual class in a range between 0 and 1. When using more than 

one feature to describe the class membership of an object, µ is the result of the fuzzy combinations of 

the membership degrees concerning these features. That is, the object‘s individual degree of 

membership is the result of a fuzzy combination of membership functions connected via the operators 

fuzzy-AND (returning the minimum µ for all properties) and fuzzy-OR (returning the maximum µ for 

all properties). Fuzzy membership functions can be of different shape depending on how to express µ 

concerning the property used (see Figure 5). 
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Figure 5. Rule set consisting of classes A and B described by fuzzy membership functions 

concerning features a, b, c, d, e, f which are connected via fuzzy-and and fuzzy-or 

operators. 

 

The upper border of a membership function along the feature value axis is usually named β and the 

lower border is usually named α. That is, for a fuzzy-greater-than function—as like the membership 

functions concerning feature a and b in Figure 5—µ = 1.0 at a = β and b = β and µ = 0.0 at a = α and 

b = α. Vice versa for a fuzzy-lower-than function (e.g., feature c, e and f in Figure 5). A fuzzy-range 

function combines a fuzzy-lower-than and fuzzy-greater-than function in a single membership function 

(feature d in Figure 5). Hence, µ is at maximum in the range of the upper bound of the greater-than part 

and the lower bound of the lower-than part of the range function. Combinations with a single maximum 

at α + ((β − α)/2) are possible, too. Although individual shapes of membership functions are possible in 

principle, the shapes outlined here are most common, since they are easy to understand and therefore 

make the interpretation of fuzzy classification results more comprehensive. For example, the class 

descriptions depicted in Figure 5 can be interpreted as follows:  

 object i is the more a member of class A, the closer its value of feature a and b is to β and the 

closer its value for feature c is to α. 

 the final degree of membership to class A is the minimum membership value of the membership 

functions for feature a, b and c:  

 c

i

b

i

a

i

A

i µµµµ ,,min       (4) 

 the lower the value of feature f or e for object i is and the closer its value of feature d lies in the 

range between α and β, the more object i belongs to class B: 

  f

i

e

i

d

i

B

i µµµµ ,max,min      (5) 

Note: an individual object i can be a member of more than one class but with different degrees of 

membership, describing the ambiguity of a fuzzy classification result. In practice, when de-fuzzyfying 

the fuzzy classification result, object i is crisply assigned to the class with the maximum degree of 

membership above a to-be-defined threshold. For Nn classes, the membership degree in the ‗best‘ 

class is defined as Best Classification Result 𝜇𝑖
𝑏  for object i (see [20]): 
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 n

ii

b

i µµµ ,...,max 1       (6) 

Within the class hierarchy, in the case presented, the class ‗vegetation‘ acts as the super-class for 

‗wooded vegetation‘, ‗meadow-like vegetation‘ and ‗mixed vegetation‘ (Figure 4). Consequently, these  

sub-classes inherit the NDVI-description of ‗vegetation‘. For each of the sub-classes the fuzzy 

description concerning the mean NDVI is connected with its individual descriptions by a fuzzy-AND 

operator (Figure 4). In our particular case, the classes were described as depicted in Table 1 producing 

the classification result as displayed in (Figure 6). 

Table 1. Fuzzy class descriptions of vegetation classes. 

Class Property Membership Function 
Parameters of Membership Function 

α β 

vegetation Mean NDVI 
 

0.45 0.60 

wooded vegetation 

Ratio NIR 
 

0.40 0.50 

Standard Dev. 

NIR 
 

35.00 50.00 

meadow-like vegetation 

Ratio NIR 
 

0.40 0.70 

Standard Dev. 

NIR 
 

45.00 65.00 

mixed vegetation 

Ratio NIR 
 

0.45 0.75 

Standard Dev. 

NIR 
 

30.00 50.00 

 

Figure 6. Classification results superimposed on pan-sharpened image data, differentiating 

three vegetation classes. 
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Their spectral properties were described by the color fraction (ratio) of the NIR channel only. 

According to [27] the ratio of a channel within an object is defined as follows: Let 𝑏𝑖
𝑐  be the mean value 

(DN) of an object with p pixels in channel c: 





p

j

c

j

c

i DN
p

b
1

1
      (7) 

The overall brightness 𝑏𝑖  of an object is defined as the weighted mean over all channels of an object: 





n

j

j

iji bw
n

b
1

1
      (8) 

with 𝑤𝑗  ∈ 𝑅+ and 0 ≤ wj ≤ 1 the weight of channel j. The ratio 𝑟𝑖
𝑐  of channel c in object i is defined as: 

i

c

ic

i
b

b
r         (9) 

whereas 𝑟𝑖
𝑐 = 0 if 𝑏𝑖 = 0 or 𝑤𝑐 = 0 respectively. The standard deviation per object in the NIR channel 

describes the spectral homogeneity of an object concerning this particular feature. The lower the 

standard deviation, the more spectrally homogeneous an object is considered and vice versa. Thus, the 

standard deviation is rather a texture describing feature than a spectral characteristic. 

A side effect of using a hierarchical classification approach is the handling of objects fulfilling the 

criteria of super-classes but none of the respective sub-classes. If there is no explicit alternative  

sub-class defined (which is expressed as the inverse of all other sub-classes), objects fulfilling the 

criteria of a super-class but none of a sub-class remain unclassified. However, such an alternative  

sub-class has the disadvantage of semantically being a rather diffuse class (usually named as ―others‖ or 

―rest‖). Hence, we did not create such an alternative vegetation sub-class, which led to some 

unclassified vegetation objects (Tables 2 and 3). 

Table 2. Global Statistics for Best Classification Result (𝜇𝑖
𝑏). 

Class No. of Objects Mean Standard Deviation Min. Max. 

vegetation 18,748 0.87 0.26 0.10 1.00 

After classifying vegetation child classes 

Class No. of Objects Mean Standard Deviation Min. Max. 

wooded vegetation 9,232 0.65 0.30 0.10 1.00 

meadow-like vegetation 644 0.84 0.22 0.10 1.00 

mixed vegetation 8,003 0.86 0.21 0.11 0.99 

Table 3. Global Statistics for Classification Stability (CSi). 

Class No. of Objects Mean Standard Deviation Min. Max. 

vegetation 18,748 0.87 0.26 0.10 1.00 

After classifying vegetation child classes 

Class No. of Objects Mean Standard Deviation Min. Max. 

wooded vegetation 9,232 0.64 0.32 0.00 1.00 

meadow-like vegetation 644 0.47 0.35 0.00 1.00 

mixed vegetation 8,003 0.72 0.30 0.00 1.00 
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As the class descriptions show, the sub-classes are hard to separate, due to some degree of overlap in 

feature space. Thus, a clear and distinct assignment of vegetation objects to one of the three child 

classes for some objects is hardly feasible. These objects then are member of more than one class, but to 

different degrees of membership. This ambiguity is expressed by the Classification Stability (see [20] 

and [26]) per object (CSi), taking into account the fuzzy membership of an object to multiple classes: 

s

i

b

ii µµCS         (10) 

with 𝜇𝑖
𝑏  as the Best Classification Result for object i to the class it was assigned and 𝜇𝑖

𝑠 the degree of 

fuzzy membership in the class object i fulfills the classification criteria at second-best level, with  

𝜇𝑖
𝑏  ≥ 𝜇𝑖

𝑠 and 𝜇𝑖
𝑏 , 𝜇𝑖

𝑠 ∈ [0,1]. That means, object i is a member of the second-best class, too, but to the 

lower membership degree of 𝜇𝑖
𝑠. The higher 𝜇𝑖

𝑏 , the better object i satisfies the classification criteria of 

the class it was assigned to. The higher CSi, the less ambiguous an object i is classified and the less it 

belongs to the second-best class respectively. Since 𝜇𝑖
𝑏and CSi express how distinctly an object belongs 

to the class it was assigned to, both values express the reliability of the crisp class assignment after  

de-fuzzyfication (Figure 7). 

Figure 7. Interrelationship between CSi (red indicates low, green indicates high value for 

CSi), 𝜇𝑖
𝑏  and 𝜇𝑖

𝑠. 

 

Analyzing statistical moments, such as mean and standard deviation of CSi and 𝜇𝑖
𝑏  of the whole 

scene can be helpful in terms of assessing global reliability and adequacy of class descriptions (Tables 2 

and 3; see [26,27]). 

Table 2 indicates that objects of the super-class ‗vegetation‘ fulfill the classification criteria on 

average by 0.87. 869 ‗vegetation‘ objects (18748 − (9232 + 644 + 8003) = 869) could not further be 

assigned to any of its sub-classes since they do not fulfill any of the respective classification conditions. 

Objects of the class ‗mixed vegetation‘ were classified most distinctly, but there is no object of this 

class being a full member of it (maximum 𝜇𝑖
𝑏  = 0.99). ‗Meadow-like vegetation‘ obviously is least 

separable from other classes (mean CSi = 0.47). A map-like display of CSi and 𝜇𝑖
𝑏  per object shows the 

spatial distribution of the values and can reveal spatial concentrations of (un)ambiguity (Figure 8). 
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Figure 8. Reliability of classification results per object expressed by Best Classification 

Result (𝜇𝑖
𝑏 ) per object (top) and Classification Stability (CSi) per object bottom. Both 

superimposed to GeoEye-1 pan-sharpened image. 

 

4. Spatial Analysis and Mapping 

While image analysis produces a high resolution map of the land cover features of interest, to 

support longer-term monitoring as well as planning applications, a standardized geometry is desirable. 

Options are location-specific structures like micro districts or city blocks, or regular ‗neutral‘ tilings 

like a regular grid. The latter is well suited as a common framework for integration of data sets from 
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different sources and lends itself easily to a broad range of analysis techniques as well as visualization 

approaches. In the example present we have chosen a grid approach for further analysis of Bishkek‘s 

green spaces. Subsequent steps are based on a 100-m resolution (hectare) grid aligned with UTM. 

5. Developing an Urban Green Index 

In order to determine the ‗Green Index‘ per cell following [4], first the vegetation polygons need to 

be intersected with grid cells. In contrast to [4] for the determination of the ‗Green Index‘ per cell we 

have weighted the various types of vegetation differently. The ‗Green Index‘ per cell GIj then is 

calculated by summarizing the weighted area wcAc of the vegetation sub-classes C within cell j and 

dividing it by the area Aj of the cell: 

 
jCC

j

j Aw
A

GI
1

     (11) 

With 0 ≤ GIj ≤ 1 and 0 ≤ wc ≤ 1. A ‗Green Index‘ of GIj = 0 indicates no vegetation at all within cell j 

and GIj = 1 indicates a complete coverage of the vegetation sub-class(es) weighted by 1 within cell j. In 

the example present we decided to weight the different sub-classes of vegetation as outlined in Table 4. 

Table 4. Class weights for the calculation of the Green Index. 

Vegetation type Weight 

meadow-like vegetation 0.3 

mixed vegetation 0.8 

wooded vegetation 1.0 

Of course, these weights can be adjusted depending on the application framework. Results for the 

study area are presented in Figure 9. 

6. Impact of Classification Reliability on Analysis Results 

Having quantified information on the reliability of the input data, in principle allows assessing the 

reliability of subsequent spatial analysis. Spatial analysis results generated based on doubtful 

classification results can be highlighted or excluded from analysis. In order to evaluate the reliability of 

analysis results synoptically a cartographic presentation can be useful. Without going into detail about 

the visualization of uncertainty in maps [28] we decided to visualize the mean 𝜇𝑖
𝑏  per cell as displayed 

in Figure 10. Of course CSi can be visualized accordingly. Alternatively, in order to avoid doubtful 

analysis results, unreliable or unstable objects can be excluded in advance from calculation of the 

‗Green Index‘. For this purpose we decided to exclude objects (before intersecting with the grid cells) 

with a Classification Stability of CSi ≤ 0.90 and a Best Classification Result of 𝜇𝑖
𝑏  ≤ 0.75 for the 

calculation of GIj. Only vegetation objects fulfilling these criteria (Figure 10) are considered for 

calculating the weighted ‗Green Index‘. The difference between the GIj with and without reliable 

vegetation objects is relatively low—in the present subset we have observed a mean difference of 0.026 

for the overall ‗Green Index‘. However, when excluding doubtful objects in advance, the reliability of 

the calculated GIj rises in many instances. 



Remote Sens. 2011, 3                            

 

1100 

Figure 9. Weighted Green Index superimposed to pan-sharpened GeoEye-1 image. 

 

Figure 10. Weighted Green Index superimposed on pan-sharpened GeoEye-1 image, plus 

mean Best Classification Result per cell as crosshairs. Size of crosshairs indicates the mean 

value of Best Classification Result per cell. Weighted Green Index and Best Classification 

Result are calculated based on vegetation objects with CSi > 0.90 and 𝜇𝑖
𝑏  > 0.75. No 

crosshair indicates a Best Classification Result of 𝜇𝑖
𝑏  > 0.9. 
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7. Results and Discussion 

This paper introduces a workflow for mapping a modified ‗Green Index‘ as introduced by [4]. The 

modification is based on different weightings for vegetation classes determining the ‗Green Index‘. The 

weights presented here were chosen arbitrarily. Methodologically the paper focuses on estimating the 

reliability of classification results derived from object based image analysis and fuzzy classification. We 

demonstrate how primary classification reliability can be determined by the parameters Best 

Classification Result (𝜇𝑖
𝑏) and Classification Stability (CSi) as introduced by [20], and implemented in 

the software package eCognition (see [26,27]). Both parameters are derived directly from fuzzy 

classification results. We further demonstrate how this information can be passed to the evaluation of 

reliability of subsequent spatial analysis (here: the calculation of a modified ‗Green Index‘). As outlined 

in Section 6, 𝜇𝑖
𝑏  and CSi can even be used to exclude obviously unreliably classified objects from 

further spatial analysis processes. 

Nevertheless, we are aware that the parameters Best Classification Result (𝜇𝑖
𝑏) and Classification 

Stability (CSi) are just comparing the classification results with their underlying class models. While 𝜇𝑖
𝑏  

shows how well a classified object fits a model, CSi expresses the ambiguity of the class assignment. 

However, none of the parameters expresses the consistency with reality, which still needs to be assessed 

by comparing classification results with on-site samples. 
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