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Abstract: Wildland fires are a yearly recurring phenomenon in many terrestrial 
ecosystems. Accurate fire severity estimates are of paramount importance for modeling 
fire-induced trace gas emissions and rehabilitating post-fire landscapes. We used high 
spatial and high spectral resolution MODIS/ASTER (MASTER) airborne simulator data 
acquired over four 2007 southern California burns to evaluate the effectiveness of 19 
different spectral indices, including the widely used Normalized Burn Ratio (NBR), for 
assessing fire severity in southern California chaparral. Ordinal logistic regression was 
used to assess the goodness-of-fit between the spectral index values and ordinal field data 
of severity. The NBR and three indices in which the NBR is enhanced with surface 
temperature or emissivity data revealed the best performance. Our findings support the 
operational use of the NBR in chaparral ecosystems by Burned Area Emergency 
Rehabilitation (BAER) projects, and demonstrate the potential of combining optical and 
thermal data for assessing fire severity. Additional testing in more burns, other ecoregions 
and different vegetation types is required to fully understand how (thermally enhanced) 
spectral indices relate to fire severity. 

Keywords: fire severity; burn severity; Normalized Burn Ratio; emissivity; surface 
temperature; southern California; chaparral; MASTER 
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1. Introduction 

Fire regimes are characterized by their spatial pattern, frequency, intensity, seasonality, size 
distribution and severity [1]. In recent years, measurements of severity have gained importance. 
Severity is a valuable substitute for fire intensity when data on fire intensity are unavailable. Fire 
intensity describes the physical combustion process in terms of energy release from organic matter [2]. 
As a result, fire intensity is generally expressed in energy fluxes. Severity, in contrast, is more general 
in gauging the fire impact. This impact can be described as: (i) the amount of damage [3-5]; (ii) the 
physical, chemical and biological changes [6-10]; or (iii) the degree of alteration [11,12] that fire 
causes to an ecosystem. In this context, the terms fire severity and burn severity are often used 
interchangeably [2], however, Lentile et al. [13] and Veraverbeke et al. [14], suggest a clear distinction 
between both terms by considering the fire disturbance continuum [15], which addresses three 
different temporal fire effects phases: before, during and after the fire. In this framework fire 
severity quantifies the short-term fire effects in the immediate post-fire environment while burn 
severity quantifies both the short- and long-term impact as it includes response processes. A precise 
assessment of fire/burn severity is essential to: (i) obtain more reliable estimates of burning efficiency, 
which is a crucial parameter for evaluating greenhouse gas emissions [16]; and to (ii) contribute to a 
better understanding of fire regimes, regenerative strategies of species, successional pathways and 
hydro-geomorphological effects. These important objectives strengthen the need for a better 
understanding of fire/burn severity as an integral component in ecosystem functioning. 

From a mono- and bi-temporal point of view conceptually simple band ratioing as well as more 
sophisticated approaches, such as spectral unmixing and radiative transfer models (RTMs), have been 
used to estimate wildfire severity, traditionally with moderate resolution Landsat imagery. RTMs 
consider the whole spectral profile and are physically based [17-20]. The main advantage of these 
simulation models is that their performance is site-independent which greatly enhances their 
applicability and inter-comparability over a wide range of ecosystems [18,20]. Spectral mixture 
analysis (SMA) applied to post-fire images have resulted in fractional ground cover measures closely 
related to burning efficiency, usually implementing at least the green vegetation and charred soil 
endmembers [21-23]. SMA proved to be efficient in detecting the charcoal signal even in lightly 
burned areas that kept a strong vegetation signal. Unmixing is therefore advantageous because of its 
ability to distinguish between burns and other sparsely vegetated areas [24]. The most popular 
approach, however, can be found in ratioing band reflectance data. In this context, the Normalized Burn 
Ratio (NBR) has become accepted as the standard spectral index to assess the severity of fire [25-29]. 
The NBR relates to vegetation moisture content by combining near infrared (NIR) with short wave 
infrared (SWIR) reflectance. Pre-and post-fire ratio images are often bi-temporally differenced, resulting 
in the differenced layers, which permit a clear distinction between burned and unburned region [27]. The 
bi-temporal index approach, however, can be constrained by limitations in image availability [28], which 
reduces the chances for acquiring the ideal anniversary date image couple [29,30]. For this reason, 
extracting critical post-fire information from a single scene can be of particular interest. 

Previous research has demonstrated that the performance of the NBR approach varies among 
ecoregions and vegetation types [26,27,31-33]. Consequently, there is need to independently validate 
the approach for specific regions and vegetation types [13,26,34,35] to determine if the technique is 
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capable of inferring fire/burn severity from satellite imagery [31]. The Landsat NBR is used as a post-fire 
management tool in the USA and Canada, e.g., as operationally used by the Burned Area Emergency 
Rehabilitation (BAER) teams in the conterminous USA [12]. Numerous studies have demonstrated the 
usefulness of the index in the North American boreal and temperate regions [11,31,36-38], however, 
far fewer studies have assessed its effectiveness in California chaparral shrublands [9,20,39], an 
ecosystem which is highly sensitive to burning [39-41]. The few studies in the California chaparral 
shrublands demonstrated that the NBR is reasonably well related to fire severity, however, none of 
them conducted an inter-indices comparison. In Mediterranean shrublands in Europe similar findings 
were obtained by De Santis and Chuvieco [18], Veraverbeke et al. [32,33], Escuin et al. [42] and 
Tanase et al. [43]. Limited comparisons with other spectral indices were undertaken by De Santis and 
Chuvieco [18], Veraverbeke et al. [32,33] and Escuin et al. [42] concluding that the NBR 
outperformed the Normalized Difference Vegetation Index (NDVI) for assessing fire severity in 
Mediterranean shrublands. In addition, several authors indicated that the post-fire temperature increase as 
observed in the thermal infrared (TIR) domain [44,45] is complementary to the NBR for discriminating 
burned areas [46-48]. Holden et al. [46] demonstrated that enhancing the NBR with Landsat’s thermal 
band resulted in a better separability between burned and unburned land for two wildland fires in New 
Mexico, USA, whereas Veraverbeke et al. [48] revealed the potential of combining optical and thermal 
imagery for discriminating burned areas. In the study of Veraverbeke et al. [48] the prospect of 
enhancing the NBR with thermally derived surface emissivity was shown for separating burned areas 
in southern California. This study aims to evaluate the performance of existing vegetation indices and 
thermally enhanced indices for assessing fire severity in chaparral ecosystems. The study uses 
MODIS/ASTER (MASTER) airborne simulator data acquired over four southern California fire scars. 
MASTER was developed to support scientific studies by the Advanced Spaceborne Thermal Emission 
Radiometer (ASTER) and MODerate resolution Imaging Spectrodradiometer (MODIS) projects [49]. 
These high spatial and high spectral resolution data provide a unique opportunity for an in-depth 
evaluation of the sensitivities of several indices to fire severity in chaparral ecosystems. 

2. Methodology 

2.1. Study Area 

Wildfires are a yearly recurring phenomena in southern California [20,41,50]. In the 2007 fire 
season 23 separately named fires burned over 200,000 ha. These fires mainly occurred in mountainous 
terrain and were driven by the strong Santa Ana winds, which are known to create extreme fire 
conditions in the region [51]. Four of the 2007 southern California wildfires were selected for this 
study. These fires are called the Canyon fire, the Harris fire, the Poomacha fire and the Witch fire 
(Figure 1). The fires occurred in October 2007 during a Santa Ana event. The main vegetation type 
consumed during these fires was chaparral. Chaparral is a complex and distinctive shrub formation that 
dominates the hills and lower mountain slopes of California. In southern California chaparral occupies 
approximately 70% of the land below the pine forests [50]. Composed of evergreen, woody shrubs, it 
often forms extensive and almost impenetrable stands. It is strongly adapted to protracted yearly 
drought and it is prone to recurrent fires, but vigorous in its recovery [20]. 
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Figure 1. Location of the study sites in southern California. 

 

2.2. Field Data 

Assessments of fire severity were obtained using the field protocol described in the Fire Monitoring 
Handbook (FMH, [52]). 25 field plots were established in November 2007, within one month after the 
fires. The plots were selected taking into account the constraints on mainly accessibility and time, 
encompassing the range of variability in fire severity in the study areas. To minimize potential 
misregistration the plots were GPS-recorded in relatively homogeneous areas in terms of post-fire 
effects. The FMH protocol is based on a visual rating assessment. Both fire effects on substrate and 
vegetation were separately judged. A description of the five fire severity classes for both substrate and 
vegetation is given in Table 1. Ratings range between five (high fire severity) and one (unburned). 
Figure 2 shows the distribution of the field plots over the different severity classes. 

Figure 2. Distribution of the field plots over the fire severity (FS) classes. 
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Table 1. Description of the fire severity classes for both substrate and vegetation (after [41]). 

Fire severity 
Class 

Substrate Vegetation 

Unburned (1) Not burned Not burned 

Very low (2) 
Litter partially blackened; duff nearly unchanged; wood/leaf 
structures unchanged 

Foliage scorched and attached to 
supporting twigs 

Low (3) 

Litter charred to partially consumed, some leaf structure 
undamaged; surface is predominantly black; some gray ash may 
be present immediately postburn; charring may extend slightly 
into soil surface where litter is sparse, otherwise soil is not 
altered 

Foliage and smaller twigs partially to 
completely consumed; branches 
mostly intact; less than 60% of the 
shrub canopy is commonly consumed 

Moderate (4) 

Leaf litter consumed, leaving coarse, light colored ash; duff 
deeply charred, but underlying mineral soil is not visibly 
altered; woody debris is mostly consumed; logs are deeply 
charred, burned-out stump holes are common 

Foliage, twigs, ands small stems 
consumed; some branches (>0.6–1 cm 
in diameter) still present; 40–80% of 
the shrub canopy is commonly 
consumed 

High (5) 

Leaf litter completely consumed, leaving a fluffy fine white ash; 
all organic material is consumed in mineral soil to a depth of  
1–2.5 cm, this is underlain by a zone of black organic material; 
colloidal structure of the surface mineral soil may be altered 

All plant parts consumed leaving only 
stubs greater than 1 cm in diameter 

2.3. MASTER Imagery and Preprocessing 

The MASTER airborne simulator acquired high spectral and high spatial resolution imagery over 
the burned area in November 2007. The spatial resolution of MASTER data ranges from 5 m to 50 m 
depending on flying height. The pixel size of the data in this study varied between 6 and 8.5 m 
depending on the site. The instrument acquires radiance spectra between 0.4 μm and 13 μm in 50 
spectral channels with 11 visible NIR (VNIR) channels, 14 SWIR channels and 25 mid infrared (MIR) 
and TIR channels. 

The MASTER data were provided as level 1b geolocated calibrated radiance. Atmospheric and 
Topographic Correction for Airborne Imagery (ATCOR4) software was used to correct for the 
influence of the atmosphere, solar illumination and sensor viewing geometry [53]. ATCOR4 uses a large 
database containing the results of radiative transfer calculations based on MODTRAN4 code [53]. The 
standard ATCOR4 desert aerosol model was chosen. The visible through SWIR bands (1–25) were 
processed to surface reflectance, the MIR bands (26–40) were not atmospherically corrected and the 
thermal bands (41–50) were atmospherically corrected to surface radiance. The surface radiance of the 
thermal bands was then separated into surface temperature (Ts) and surface emissivity (߳) using the 
emissivity normalization method [54]. ߳ is defined as the ratio of the actual emitted radiance to the 
radiance emitted from a blackbody at the same thermodynamic temperature [55,56]. Finally, the 
images were georeferenced using input geometry. 

2.4. Spectral Indices 

This study evaluates the performance of 19 spectral indices as listed in Table 2. This table includes: 
(i) the widely used NDVI [57], Global Environment Monitoring Index (GEMI, [58]) Enhanced 
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Vegetation Index (EVI, [59]), Soil Adjusted Vegetation Index (SAVI, [60]) and Modified Soil 
Adjusted Vegetation Index (MSAVI, [61]); (ii) indices specifically designed for burned land 
applications such as the Burned Area Index (BAI, [62]), GEMI3 [63], NBR [27], Char Soil Index 
(CSI, [64]) and Mid InfraRed Burn Index (MIRBI, [65]); and (iii) thermally enhanced spectral indices. 
The NDVI [57] is the most widely used index in ecological remote sensing because of its strong 
relation with above-ground biomass [66]. Several modifications of the NDVI have been proposed to 
minimize the influence of disturbing signals (mainly background and atmospheric effects). The GEMI 
aims to reduce atmosphere effects by proposing a non-linear index [58], whereas Huete et al. [59] 
achieved the same goal by taking advantage of the blue channel’s sensitivity to atmosphere influences. 
In an attempt to reduce the influence of the background signal, Huete et al. [60] presented the SAVI 
which incorporates a soil-adjustment factor L in its formula (Table 2). SAVI is only an exact solution 
for bare soil if the soil line (the linear relationship between red and NIR reflectance of bare soils) slope 
and intercept equal respectively one and zero [61]. To overcome this limitation, Qi et al. [61] 
introduced the MSAVI by replacing SAVI’s adjustment factor L by a self-adaptable correction factor 
that changes with changing vegetation density. By doing so, MSAVI theoretically further reduces 
background noise and enhances vegetation sensitivity. Kaufman and Remer [67] replaced the red band, 
which is traditionally used in VIs because of its high chlorophyll absorption property, by the mid 
infrared (MIR) spectral region relying on the fact that the latter spectral domain is related to vegetation 
moisture content, however, compared to the red band, the MIR region remains largely unaffected by 
aerosols. Only one index specifically designed for post-fire effects applications focuses on the red-NIR 
feature space, i.e., the BAI [62]. The BAI aims to emphasize the charcoal signal in post-fire imagery 
by computing the bi-spectral distance from a pixel to a reference spectral point in the red-NIR space to 
which recently burned areas tend to converge [62]. Other burned land specific indices favor the SWIR 
and MIR regions because post-fire changes in these regions have shown to be more profound than 
those in the red region [32,42,46,47]. The NBR [27] is the resulting equivalent of the NDVI, whereas 
the GEMI3 [63] mimics the GEMI. In addition, the CSI is defined as the simple ratio between the NIR 
and SWIR reflectance [61], whereas the MIRBI only applies SWIR wavelengths [65]. Exploratory 
work of Holden et al. [46] and Smith et al. [47] and Veraverbeke et al. [48] demonstrated that 
enhancing existing indices with thermal imagery improved the separability of burned areas, in 
particular when these data was used as a complement to the NBR. These thermally enhanced indices 
are also listed in Table 2. The MASTER wavebands used in the indices of Table 2 were selected 
according to findings of Veraverbeke et al. [42] who analyzed the sensitivity to burned land of each 
spectral region ((blue (0.45–0.5 μm), red (0.6–0.7 μm), NIR (0.7–1.3 μm), shorter SWIR (sSWIR,  
1.3–1.9 μm), longer SWIR (lSWIR, 1.9–2.5 μm), MIR (3–5.5 μm) and thermal infrared (TIR, 8–13 μm)). 
The corresponding wavebands were 0.45–0.5 μm (blue), 0.65–0.68 μm (red), 0.86–0.88 μm (NIR), 
1.59–1.62 μm (sSWIR), 2.31–2.36 μm (lSWIR), 3.54–3.64 μm (MIR) and 8.51–8.76 μm (TIR) [45]. 
Figure 3 presents the box plots of the spectral index values from the field plots for the NDVI, NBR, 
NSEv1 and NSTv1. 
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Table 2. Spectral indices evaluated in this study (NIR: Near Infrared, sSWIR: shorter short 
wave infrared, lSWIR: longer short wave infrared, MIR: mid infrared, TIR: thermal 
infrared, ߳: emissivity and Ts: surface temperature, see Section 2.4 for specifications on 
wavelength intervals). 

Index 
Abbreviation and 

Reference 
Formula 

Normalized Difference Vegetation 

Index 
NDVI [57] ܰܫܸܦ ൌ ܴܫܰ െ ܴܫܰ݀݁ݎ ൅  ݀݁ݎ

Global Environment Monitoring 

Index 
GEMI [58] 

ܫܯܧܩ ൌ ሺ1ߛ െ ሻߛ0.25 െ ݀݁ݎ െ 0.1251 െ ݀݁ݎ  

with ߛ ൌ ଶ൫ேூோమି௥௘ௗమ൯ା ଵ.ହேூோା଴.ହ௥௘ௗேூோା௥௘ௗା଴.ହ  

Enhanced Vegetation Index EVI [59] ܫܸܧ ൌ 2.5 ܴܫܰ െ ܴܫܰ݀݁ݎ െ ݀݁ݎ6 െ ܤ7.5 ൅ 1 

Vegetation Index 3 VI3 [67] ܸ3ܫ ൌ ܴܫܰ െ ܴܫܴܰܫܯ ൅  ܴܫܯ

Soil Adjusted Vegetation Index SAVI [60] 
ܫܸܣܵ ൌ ሺ1 ൅ ሻܮ ܴܫܰ െ ܴܫܰ݀݁ݎ ൅ ݀݁ݎ ൅  ܮ

with L = 0.5 

Modified Soil Adjusted Vegetation 

Index 
MSAVI [61] 

ൌܫܸܣܵܯ ܴܫ2ܰ ൅ 1 െ ඥሺ2ܴܰܫ ൅ 1ሻଶ െ 8ሺܴܰܫ െ ሻ2݀݁ݎ  

Burned Area Index BAI [62] ܫܣܤ ൌ 1ሺ0.1 ൅ ሻଶ݀݁ݎ ൅ ሺ0.06 ൅  ሻଶܴܫܰ

Global Environment Monitoring 

Index 3 
GEMI3 [63] 

3ܫܯܧܩ ൌ ሺ1ߛ െ ሻߛ0.25 െ ܴܫܯ െ 0.1251 െ ܴܫܯ  

with ߛ ൌ ଶ൫ேூோమିெூோమ൯ା ଵ.ହேூோା଴.ହெூோேூோାெூோା଴.ହ  

Normalized Burn Ratio NBR [27] ܴܰܤ ൌ ܴܫܰ െ ܴܫܴܰܫܹ݈ܵ ൅  ܴܫܹ݈ܵ

Char Soil Index CSI [64] ܫܵܥ ൌ  ܴܫܹܴܵܫܰ

Mid InfraRed Burn Index MIRBI [65] ܫܤܴܫܯ ൌ ܴܫ10݈ܹܵ െ ܴܫܹܵݏ9.8 ൅ 2 

Normalized Difference Vegetation 

Index Thermal 
NDVIT [47] ܰܶܫܸܦ ൌ ܴܫܰ െ ݀݁ݎ ൈ ܴܫܴܰܫܶ ൅ ݀݁ݎ ൈ  ܴܫܶ

Soil Adjusted Vegetation Index 

Thermal 
SAVIT [47] 

ܶܫܸܣܵ ൌ ሺ1 ൅ ሻܮ ܴܫܰ െ ݀݁ݎ ൈ ܴܫܴܰܫܶ ൅ ݀݁ݎ ൈ ܴܫܶ ൅  ܮ

with L = 0.5 

Normalized Burn Ratio Thermal NBRT [46] ܴܰܶܤ ൌ ܴܫܰ െ ܴܫܹ݈ܵ ൈ ܴܫܴܰܫܶ ൅ ܴܫܹ݈ܵ ൈ  ܴܫܶ

Vegetation Index 6 Thermal VI6T [46] ܸ6ܶܫ ൌ ܴܫܰ െ ܴܫܴܰܫܶ ൅  ܴܫܶ

NIR-SWIR-Emissivity Version 1 NSEv1 [48] ܰܵ1ݒܧ ൌ ܴܫܰ െ ܴܫܴܰܫܹ݈ܵ ൅ ܴܫܹ݈ܵ ൈ ߳ 

NIR-SWIR-Emissivity Version 2 NSEv2 [48] ܰܵ2ݒܧ ൌ ܴܫܰ െ ሺ݈ܹܴܵܫ ൅ ߳ሻܴܰܫ ൅ ܴܫܹ݈ܵ ൅ ߳  

NIR-SWIR-Temperature Version 1 NSTv1 [48] ܰܵܶ1ݒ ൌ ܴܫܰ െ ܴܫܴܰܫܹ݈ܵ ൅ ܴܫܹ݈ܵ ൈ ௦ܶ 

NIR-SWIR-Temperature Version 2 NSTv2 [48] ܰܵܶ2ݒ ൌ ܴܫܰ െ ሺ݈ܹܴܵܫ ൅ ௦ܶሻܴܰܫ ൅ ܴܫܹ݈ܵ ൅ ௦ܶ  
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Figure 3. Box plots of the spectral index values from the field plots for the Normalized 
Difference Vegetation Index (NDVI, (A)), Normalized Burn Ratio (NBR, (B)),  
NIR-SWIR-Emissivity Version 1 (NSEv1, (C)) and NIR-SWIR-Temperature Version 1 
(NSTv1, (D)). 

 

2.5. Logistic Regression Analysis 

Considering the ordinal nature of the field data, ordinal logistic regression analysis was performed [68]. 
Logistic regression has demonstrated to be a powerful method to assess the performance of spectral 
indices with nominal or ordinal response data [69-71]. The ordinal regression in this study used the fire 
severity field classes as dependent variable and the spectral index values as independent variables. The 
ordinal logistic regression model for a single independent variable is [68]: ݈݊ ቂ గ೔ሺ௫ሻଵିగ೔ሺ௫ሻቃ ൌ ௜ߙ ൅  (1)     ݔ௜ߚ

where ߨ௜ሺݔሻ represents the probability of occurrence of the ordinal class i given the independent 
variable x. Separate intercept ߙ௜ and slope ߚ௜ coefficients are calculated for each ordinal class i. A 
logistic model uses the maximum likelihood approach to estimate regression coefficients. The 
goodness-of-fit of the ordinal logistic regression model can be estimated by the deviance D, which is 
defined as [68]: ܦ ൌ െ2 ∑ ∑ ൤ݕ௜,௝ ൈ ݈݊ ൬గෝ೔,ೕ௬೔,ೕ൰ ൅ ൫1 െ ௜,௝൯ݕ ൈ ݈݊ ൬ଵିగෝ೔,ೕଵି௬೔,ೕ൰൨௡௝௠௜    (2) 

where ݕ௜,௝ denotes a dichotomous outcome variable for class i and ߨො௜,௝ is the maximum likelihood 
estimate of ߨ௜ሺݔ௝ሻ, m is the number of ordinal classes and n is the sample size. Deviance can be 
thought of in a similar way as the residual sum of squares in ordinary linear regression models. A 
lower D values thus represent a better goodness-of-fit. In this study D was used to compare the 
performance of the different spectral indices as predictor variables for the fire severity field classes. 
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3. Results and Discussion 

The best goodness-of-fit of the ordinal logistic regression model was obtained for the NSTv1 index 
which had a D of 64.24. Similar performance was observed with the NBR (D = 64.34), NSEv1  
(D = 64.50) and NSEv2 (D = 64.55). Moderate goodness-of-fit values (D between 65 and 72) were 
achieved by the CSI (D = 66.77), NBRT (67.81), SAVI (70.26), VI3 (70.68) and NDVI (71.15). 
Weaker logistic regression models were achieved by the NDVIT, NSTv2, SAVIT, GEMI, GEMI3, 
VI6T, BAI, EVI, MIRBI and MSAVI (D > 72). Table 3 lists the spectral indices according to the 
goodness-of-fit measure D. Figure 4 shows the NDVI, NBR, NSEv1 and NSTv1 spectral index maps 
of the Canyon fire. 

Table 3. Spectral indices listed according to the deviance obtained from the ordinal logistic 
regression. 

Spectral Index Deviance (D) 

NSTv1 64.24 

NBR 64.34 

NSEv1 64.50 

NSEv2 64.55 

CSI 66.77 

NBRT 67.81 

SAVI 70.26 

VI3 70.68 

NDVI 71.15 

NDVIT 72.27 

NSTv2 73.59 

SAVIT 73.91 

GEMI 73.94 

GEMI3 74.36 

VI6T 74.53 

BAI 74.76 

EVI 74.83 

MIRBI 76.19 

MSAVI 76.19 
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Figure 4. Spectral index maps for the Normalized Difference Vegetation Index (NDVI, (A)), 
Normalized Burn Ratio (NBR, (B)), NIR-SWIR-Emissivity Version 1 (NSEv1, (C)) and 
NIR-SWIR-Temperature Version 1 (NSTv1, (D)) of the Canyon fire (October 2007). 

 
This study represents the first documented work to evaluate the effectiveness of different spectral 

indices for assessing fire severity in chaparral shrublands of southern California. Although the study is 
of limited scale several conclusions can be drawn. Our results support the current use of NBR by the 
BAER teams who use the NBR as a conceptually simple data layer to rapidly infer critical post-fire 
information in a cost-effective manner. Knowledge of how well the index relates to fire severity in 
shrubland ecosystems is essential if the NBR is to be used as a land management tool in California 
chaparral ecosystems. Results confirm the reasonably good performance of the NBR in chaparral [20,39] 
and Mediterranean shrublands [18,32,33,42,43]. In studies in other ecosystems than shrublands 
assessing the correlation between several spectral indices and field data, Epting et al. [26] ranked the 
NBR as the first index in single date and bi-temporal approaches. Similar findings were obtained by 
Hoy et al. [72] reporting that dNBR outperforms the differenced NDVI (dNDVI). In our study, 
however, D is still relatively high, even for the indices with the best performance. Previous studies 
have demonstrated that the suboptimal performance can be explained by the fact that fire-induced 
reflectance changes are only seldom perpendicular to the index isolines [29,32]. This suggests that 
improved index design or alternative methods have the potential to improve remotely sensed fire 
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severity assessments. Previous studies also found that the correlation between the NBR or the 
differenced NBR (dNBR), has a tendency to be higher for forested ecosystems than for more sparsely 
vegetated vegetation types such as shrubs [26,33,73]. Epting et al. [26] found a strong correlation for 
forested classes. More sparsely vegetated classes (e.g., shrubs, herbs), however, underperformed. 
Veraverbeke et al. [33] also found that the correlations in forest land were clearly stronger than those 
in sparser vegetation types. Another explanation for the only moderate-high correlation found in this 
chaparral study could be the November timing of the image acquisition. In this period of the year 
chaparral shrubs generally have low moisture content which might affect the performance of the 
indices which include a SWIR or MIR band. Results showed, however, that indices with a SWIR or 
MIR spectral band still yielded better results than indices lacking a SWIR or MIR band. This 
corroborates earlier research findings. Pereira [74] reported that AVHRR (Advanced Very High 
Resolution Radiometer) spectral indices based on the NIR and MIR channels had a higher 
discriminatory potential for burned surface mapping than indices based on the NIR and R channels. 
Trigg and Flasse [65] demonstrated the importance of the MIR region for burned shrub-savannah 
discrimination with MODIS data.  

In contrast to their beneficial performance for discriminating burned areas [46,47], the thermally 
enhanced versions of the NDVI, SAVI and NBR did not improve the fire severity assessment. The 
NIR-SWIR- ߳  (NSE) indices and the NIR-SWIR-Ts version 1 (NSTv1), however, obtained correlations 
with field data of severity similar to the NBR. These indices were developed by Veraverbeke et al. [48] 
and demonstrated to improve burned area estimations in southern California. The relatively poor 
performance of the NSTv2 can be explained by its index design. Due to the differences in absolute 
values between Ts and reflectance data, the NSTv2 index is dominated by the Ts data. We are not 
aware of any other studies that have explored the potential of remotely sensed ߳ information in fire 
severity applications and there are only a smaller number of studies have assessed the utility of 
temperature data. This study shows that thermal data could be complementary to existing NIR-SWIR 
indices for assessing fire severity, in particular the NBR, however, more rigorous testing in a large 
variety of ecosystems is needed. Such studies are particularly important as NASA continues to develop 
new sensors with multiple spectral bands in the thermal infrared such as the planned Hyperspectral 
Infrared (HyspIRI) HyspIRI sensor (http://hyspiri.jpl.nasa.gov/). Due to the characteristic temporal 
dynamics of the post-fire environment, the utility of adding Ts in the fire severity assessment will heavily 
depend on the post-fire acquisition timing [14,59,75]. Veraverbeke et al. [75] showed that, although the 
post-fire Ts is long lasting, the magnitude of change rapidly alters as time elapses after the fire. This is 
because seasonal variation in meteorological conditions highly influences Ts development. Therefore, 
the prospect of remotely sensed Ts as fire severity indicator appears to be limited to the first post-fire 
month. Taking into account Landsat’s 16-day revisiting time and the necessity of acquiring a cloud-free 
image [28], the potential of the Ts layer is even more constrained, however, sensor such as HyspIRI 
which have a 5-day revisit will address this problem. In contrast, emissivity is an inherent property of 
the surface and relates to cover type and soil moisture [76]. As such gradual post-fire recovery changes 
and seasonal variations in emissivity are likely to be longer lasting than temperature changes and 
complement the NIR and SWIR reflectance layers for fire severity retrievals. We believe that the full 
potential of remotely sensed emissivity ߳ as fire severity indicator has only begun to be explored by 
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this study and additional studies with larger datasets and in other ecoregions and vegetation types are 
encouraged. 

As stated by Hook et al. [49] the main aim of MASTER is to support scientific studies of current 
and future satellite sensors (in particular ASTER and MODIS). The need for scheduling flight lines 
and the relatively high cost restrict MASTER’s suitability for regional scale fire severity mapping. The 
sensor’s superior spectral and spatial resolution, however, permits an improved understanding of 
ecological remote sensing. In the context of assessing fire severity, this study: (i) supports the use of 
the NBR as indicator for fire severity in southern California chaparral as in operational use by the 
BAER teams; (ii) confirmed the utility of a MIR spectral band; and (iii) demonstrated the potential of 
thermal component as a complement to the NBR. To retrieve ߳ from TIR imagery, at least three 
separate TIR bands are required [58,77]. Currently, ASTER is the only moderate resolution sensor in 
orbit that offers the opportunity of ߳ retrieval. Unfortunately, since May 2008, ASTER no longer 
acquires reliable SWIR data due to the degradation of the detector’s cooler system which causes 
saturation problems. The planned HyspIRI sensor, however, will combine the optical and thermal 
spectral domains. This will potentially open new perspectives for the remote sensing of post-fire 
effects. Our findings can also be of interest for other future satellite missions, such as the Landat Data 
Continuity Mission (LDCM). 

4. Conclusions 

This letter addressed the need for validating existing fire severity indices in specific ecosystems; in 
this case southern California chaparral shrublands. The study made use of the beneficial spatial and 
spectral resolution of the MODIS/ASTER airborne simulator. 19 different indices, including the 
traditionally used Normalized Burn Ratio (NBR), were compared using field data of severity. Results: 
(i) support the operational use of the NBR by the Burned Area Emergency Rehabilitation project in 
chaparral shrublands; and (ii) reveal the potential of thermally enhanced spectral indices in fire severity 
applications. Additional experiments in southern California and other ecosystems are needed to fully 
assess the potential of enhancing the NBR with temperature and emissivity data to assess fire severity. 
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