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Abstract: The benefits of terrestrial remote sensing in the environmental sciences are clear 
across a range of applications, and increasingly remote sensing analyses are being 
integrated into public health research. This integration has largely been in two areas: first, 
through the inclusion of continuous remote sensing products such as normalized difference 
vegetation index (NDVI) or moisture indices to answer large-area questions associated 
with the epidemiology of vector-borne diseases or other health exposures; and second, 
through image classification to map discrete landscape patches that provide habitat to 
disease-vectors or that promote poor health. In this second arena, new improvements in 
object-based image analysis (or “OBIA”) can provide advantages for public health 
research. Rather than classifying each pixel based on its spectral content alone, the OBIA 
approach first segments an image into objects, or segments, based on spatially connected 
pixels with similar spectral properties, and then these objects are classified based on their 
spectral, spatial and contextual attributes as well as by their interrelations across scales. The 
approach can lead to increases in classification accuracy, and it can also develop multi-scale 
topologies between objects that can be utilized to help understand human-disease-health 
systems. This paper provides a brief review of what has been done in the public health 
literature with continuous and discrete mapping, and then highlights the key concepts in 
OBIA that could be more of use to public health researchers interested in integrating 
remote sensing into their work. 
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1. Introduction  

The synoptic, multi-spectral and multi-temporal coverage provided by terrestrial remote sensing 
programs has been a boon to a range of environmental science applications, including terrestrial 
ecology [1], ecosystem characterization [2], disturbance [3-5], land use and land cover change [6-8], 
and biogeochemical cycling and ecosystem functioning [9-11], to name a few important avenues of 
research. The origins of these efforts were often contemporaneous with the development of national 
remote sensing programs such as Landsat (e.g., [12,13]). More recently, remote sensing analysis and 
products have begun to be integrated into public health research. Despite some skepticism (e.g., [14]) 
this is in large a positive trend, allowing for the examination of broad scale patterns in landscapes 
that may lead to or prevent spread of disease [15], delineation of habitat patches and refugia for disease 
vectors or their hosts [16-18], and the measurement of environmental and biophysical variables 
(e.g., temperature, amount and health of vegetation) for use in process-based models that capture 
human-animal disease dynamics and predict disease risk [18-20]. Remote sensing has been used to 
target sampling efforts and health interventions [21], and in the analysis of chemical and other 
exposures [16,22]. 

It is illuminating to discuss the contributions of remote sensing to the field of public health in light 
of two recent parallel trends in remote sensing: the first is the resurgence in production and use of 
field-based products best exemplified by normalized difference vegetation index (NDVI) [23,24], and 
by recent additions such as continuous percentage of tree cover (e.g., [25]) or continuous percentage of 
impervious surface cover [26,27]. These field-based, continuous data products derived from remotely 
sensed imagery are very useful in ecology: they capture inherent spatial gradients in the target being 
mapped (vegetation vigor, soil moisture, etc.) which vary over space, and they are commonly used in 
computational spatial models that are raster based and require control over cell size [28]. They are 
large-scale, economical, and anonymous [22], and they are in widespread use across environmental 
science, and are often included in epidemiological models [19,29]. 

Paralleling this development is the recent increase in object-based approaches for classification of 
fine (e.g., <5 m) and sometimes moderate (e.g., 10–30 m) spatial resolution imagery across multiple 
mapping domains [30]. It is increasingly acknowledged that pixel-based methods, while useful in 
classifying coarse-scale (>30 m) remotely sensed imagery, are less suitable for classifying fine spatial 
resolution images, such as those provided by digital aerial photographs and IKONOS and QuickBird 
satellites [31,32]. Pixel-based methods are less useful as they often result in image speckle and overall 
inaccuracies when applied to fine-resolution imagery (Figure 1). This is discussed more below. These 
object based image analysis (OBIA) methods are becoming more commonly used when the target 
being mapped has natural or clear discrete boundaries: patches, fields, houses, etc., or when the pixel 
size in the imagery being analyzed is smaller than its target [30]. The OBIA approach first segments an 
image into image objects, or segments, which are defined as a group of spatially connected pixels with 
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similar spectral properties, and then these segments are classified based on their spectral and spatial 
attributes as well as by their interrelations across scales [31,33] (Figure 2). These kinds of multi-scaled 
patterns can be used to construct rules for classifying image objects and developing classification 
results in an OBIA framework, but they also convey important information about the resulting objects, 
which can be used to help understand how landscapes function and change. In the environmental 
sciences, such approaches have been used to understand how ecological features change through time 
under different management or climactic regimes [34-38]; how landscape pattern can impede or 
promote disease spread in a natural setting [39,40]; and can help guide management or restoration of 
landscapes [41,42]. Many of these concepts have their theoretical origins in landscape ecology. 

Figure 1. Example of the speckle, or the “salt-and-pepper” effect common to pixel-based 
classifications of fine spatial resolution imagery: (a) an unsupervised classification of land 
cover from a suburban area in California; (b) the same area classified with an object-based 
classifier.  

 

Figure 2. The first step of the OBIA process: the image segmentation process: (a) a fine 
spatial resolution color infrared image of an oak forest stand with dead trees; (b) the 
corresponding image segments. 
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Yet compared to the environmental sciences, there are relatively few examples of research in public 
health that use these OBIA approaches. One of the more recent exceptions is Maxwell [22], who 
provides a brief review of the use of remote sensing to map discrete landscape patches that can 
indirectly influence human health—either through the provision of habitat for a disease vector, or 
through a harmful land use practice—and a demonstration of OBIA to more accurately map land cover 
features at multiple scales over time to understand pesticide drift from agricultural fields. There are 
other examples (discussed below), but their relative paucity is interesting, since some of the key 
algorithms commonly used in geographic OBIA were developed for medical and health related 
applications. For example, the challenges faced by analysts examining microscopic images of biopsy 
samples [43,44], counting and classifying microbial colonies or cells on slides [45,46], or searching for 
pathological features in biological imaging applications (including laser-scanning microscopy and 
magnetic resonance imaging (MRI) technology) [47-49] all require the ability to extract meaningful 
objects from their image background, and use that information to support better diagnostics. 
Commercially available software commonly used in geographic OBIA applications, such as 
eCognition (previously known as Definiens’ eCognition) [22,30,41,50,51] were influenced in their 
early development by such analysis of images from cell-based assays, whole tissue slides and full body 
scans [52,53], and indeed the two arenas, medical OBIA and geographic or environmental OBIA, 
continue to develop side-by-side with few interdisciplinary publication outlets. While it is the 
classification accuracy benefits to OBIA that are most often cited in the public health remote sensing 
literature [54,55], it is the ability of OBIA to capture fundamental spatial content across scales, and 
their interactions, that can be critical to understanding a system. This type of spatial content could be 
more frequently used in public health applications to understand complex systems and their 
interrelations.  

This paper seeks to address the relative lack of use of OBIA in public health research, and provide a 
brief review of what has been done in the public health field with remote sensing, both with continuous 
and discrete mapping, and then highlight the key concepts in OBIA that could be useful to researchers in 
the public health arena. In this paper, we adopt a definition of public health similar to the World Health 
Organization, which states that health is a state of complete physical, mental and social well-being and 
not merely the absence of disease or infirmity. While many review papers are organized within a 
biological framework, investigating various disease categories (e.g., [14]), this paper will utilize a 
technological framework, and concentrate on the data products and formats themselves. We make a 
clear distinction between the analysis of continuous and discrete remotely sensed products for public 
health research. This review also positions OBIA for public health applications in a wider 
technological context than do other recent review papers on public health and OBIA (e.g., [22]). 

2. The Use of Continuous Products in Public Health Research 

Any discussion of the use of continuous products derived from remotely sensed imagery in public 
health applications should begin with an examination of the workhorse of the terrestrial remote sensing 
programs worldwide: NDVI [56-59]. NDVI is a measurement of vegetation abundance and vigor and 
is directly related to relative humidity and rainfall as well as to vegetation growth; it is often used as a 
proxy for, or to augment, measures of surface climatic conditions. And since bio-climatic conditions 
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are key determinants of arthropod vector distribution and abundance and consequently affect 
transmission rates of any diseases they may carry [60], NDVI is commonly used in models of vector 
suitability [61,62], abundance [20], and disease transmission and early warning [63,64]. The following 
research is summarized in Table 1.  

Table 1. Summary of literature in public health using continuous data products.* 

Remotely 
Sensed Data 

Remotely Sensed 
Variables/Target 

Location 
Application  
(Disease/Condition) 

Reference

Landsat NDVI 
Marion County, 
Indiana 

Risk modeling (Obesity) [65] 

Landsat NDVI Seattle, Washington Risk modeling (Obesity) [66] 
Landsat NDVI Southern California Risk modeling (Obesity) [67] 
Landsat, 
NLCD 

NDVI, Land 
cover 

Southern California Risk modeling (Obesity) [68] 

Landsat TM Kauth-Thomas 
Westchester 
County, New York 

Vector-borne disease modeling (Lyme) [69] 

Landsat 
ETM+ 

NDVI 
Marion County, 
Indiana 

Risk modeling (Obesity) [70] 

Landsat 
MSS & TM, 
AVHRR 

NDVI Africa 
Vector-borne disease modeling (Ebola 
Hemorrhagic Fever) 

[71] 

Landsat TM, 
NLCD 

LST, Land cover 
Philadelphia, 
Pennsylvania 

Risk modeling (Extreme heat exposure) [72] 

MODIS, 
ASTER, 
QuickBird 

EVI, NDVI, Land 
cover 

Costa Rica 
Vector-borne disease modeling 
(Dengue Fever) 

[61] 

MODIS NDVI, LST Uganda 
Vector-borne disease modeling 
(Schistosoma) 

[73] 

AVHRR Climate, NDVI United States Vector-borne disease modeling (Lyme) [62] 

AVHRR LST United States 
Vector-borne disease modeling (West 
Nile Fever) 

[63] 

AVHRR, 
Meteosat 

NDVI, CCD Kenya 
Vector-borne disease modeling 
(Malaria) 

[74] 

AVHRR, 
Meteosat 

NDVI, CCD Gambia 
Vector-borne disease modeling 
(Malaria) 

[75] 

AVHRR, 
Meteosat 

NDVI, LST, CCD East Africa 
Vector-borne disease modeling 
(Malaria) 

[76] 

AVHRR NDVI, LST Tanzania 
Vector-borne disease modeling 
(Schistosomiasis) 

[77] 

AVHRR Climate, NDVI East Africa 
Vector-borne disease modeling (Rift 
Valley Fever) 

[78] 

AVHRR Climate, NDVI East Africa 
Vector-borne disease modeling (Rift 
Valley Fever) 

[64] 

*Note: NDVI: Normalized Difference Vegetation Index; EVI: Enhanced Vegetation Index; CCD: Cold-Cloud-Duration; LST: 
Land Surface Temperature; MODIS: Moderate Resolution Imaging Spectroradiometer; ASTER: Advanced Spaceborne 
Thermal Emission and Reflection Radiometer; AVHRR: Advanced Very High Resolution Radiometer; ETM: Enhanced 
Thematic Mapper; TM: Thematic Mapper; MSS: Multispectral Scanner System; NLCD: National Land Cover Database. 
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An early and important work by Rogers et al. [74] used terrestrial multispectral imagery combined 
with meteorological remotely sensed data (NOAA-AVHRR and Meteosat-HRR42). Land surface 
temperature, rainfall, cloud cover, middle infrared reflectance and NDVI were transformed with 
temporal Fourier processing and compared with the mean percentage of total annual malaria cases 
recorded each month at three sites in Kenya. The NDVI lagged by one month, and was found to be the 
most significant and consistently correlated variable with malaria admissions across the sites [75,76]. 
Hay et al. [75] continued this analysis in Gambia and found similar results with the exception that the 
cold cloud duration (CCD) was the best predictor of malaria cases. These and other similar work from 
related groups are summarized in Hay et al. [79]. 

Multi-temporal NDVI, when combined with land surface temperature measures across seasons, 
have proven to be a potent combination for vector-borne disease prediction. Models were developed 
using NDVI and temperature to map endemic areas and transmission potential of the disease 
schistosomiasis in China [20], and in Tanzania [77] and Uganda [73] in Africa. Anyamba and 
colleagues [78] used a 19-year NDVI time-series data derived from Advanced Very High Resolution 
Radiometer (AVHRR) to map areas with a potential for rift valley fever outbreak in east Africa. Rift 
valley fever risk was associated with NDVI anomalies in the time-series: they found a close agreement 
between confirmed outbreaks between 1981 and 2000 and these anomalies. Similar methods and 
results were found by Tucker and colleagues [71], who used AVHRR NDVI time-series data to 
examine Ebola hemorrhagic fever outbreaks in the 1970s and the 1990s in tropical Africa. 

More recent and novel uses of continuous products like NDVI in public health focus on chronic 
diseases such as obesity. For example, Liu and colleagues [70] explored associations between risk for 
childhood overweight and two environmental factors: the amount of vegetation surrounding a child’s 
residence and the proximity of the child’s residence to various types of food retail locations. The 
amount of vegetation was obtained using Landsat ETM+ imagery transformed into NDVI. They found 
that after controlling for individual socio-demographics and neighborhood socioeconomic status, 
increased neighborhood vegetation was associated with decreased risk for overweight, but only for 
subjects residing in higher population density regions. Others have found similar results between 
higher greenness (as measured by NDVI) and lower body mass index (BMI) levels in children [65], 
and adults [66]. 

Continuous spatial data has also been used to create measures of neighborhood-level confounding 
variables to better identify the independent effects of particular health hazards and resources. For 
example, Jerrett and colleagues [67] used average NDVI within a 500 m buffer around each subject’s 
residence as one of many confounding risk factors in models that identified a significant 
positive relationship between BMI and automobile traffic density around children’s homes in southern 
California. Similarly, Wolch and colleagues [68] used image derivatives from the Landsat-based 
National Land Cover Database (NLCD) to create measures of average percent urban imperviousness 
and average percent tree canopy cover within 500 m buffers around each subject’s residence. These 
measures, in addition to average NDVI and other neighborhood and individual-level factors, were 
included in models that demonstrate an inverse association between access to parks and recreational 
resources and increases in childhood BMI.  

Alternatives to NDVI and NLCD derivatives include other vegetation image transformations such 
as Kauth-Thomas [80] wetness and greenness indices, which have successfully been used to map 
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risk for Lyme disease in the United States [18,69]. Other remotely sensed products are also useful in 
public health. Johnson and colleagues [72] investigated the complex spatial patterning of extreme heat 
events in urban environments by integrating sociodemographic risk factors with estimates of land 
surface temperature derived from thermal remote sensing data. They found they could better 
understand intra-urban variations in risk from extreme heat when remotely sensed estimates of land 
surface temperature were added to their risk model.  

The aforementioned types of remotely sensed products and applications are not amenable to  
object-based image analysis. Gradients and regional scale spatial heterogeneity are what drive the 
models and dominate the results. However, there are areas where the ability to accurately map and 
delineate discrete landscape features via remote sensing are of importance to epidemiology and public 
health studies. These are primarily in mapping vector habitat and land use/land cover exposures. 

3. Review of the Use of Discrete Products in Public Health Research 

The potential of moderate spatial resolution remotely sensed images to map and measure the habitat 
for disease vectors and to enhance our understanding of the epidemiology and control of diseases was 
highlighted early (e.g., [81,82]), but the practice increased in the late 1990s [19], and continues to grow. 
The distribution of efficiently transmitted pathogens is generally limited by the distribution of vectors, 
whose habitats can sometimes be mapped with satellite imagery [83]. Kalluri and colleagues [15] 
provide a vector-specific review, and there are other literature surveys focusing on continents, e.g., 
Hay and colleagues [79] for mosquito-borne diseases in Africa; schistosomaisis in Africa [19] and in 
China [20,84]. For the most part these are positive assessments, highlighting the ability to map known 
habitats for subsequent surveillance, or to find novel habitats. For example, using Landsat TM and 
ETM+ imagery, Zou and colleagues [85] mapped potential habitats of the larvae of the mosquito Culex 
tarsalis (Coquillett), a main vector in the transmission of West Nile Virus in north central Wyoming, 
and found novel mosquito larval habitats in coal methane water sites in the study area. Seto and 
colleagues [86] used Landsat TM to map habitats suitable for Oncomelania hupensis robertsoni the 
snail vector responsible for schistosomaiasis transmission in Sichuan, China. They used an 
unsupervised classification approach, and distinguished snail habitats from non-habitats in the 
mountainous regions of Sichuan. 

But many scholars point out the mismatch between moderate scale imagery (e.g., Système Pour 
l’Observation de la Terre (SPOT) or Landsat) and the fine-scale habitat features that are not directly 
captured in such imagery. For example, Achee et al. [87] show that the preferred larval habitat of the 
mosquito Anopheles darlingi that spreads the Plasmodium falciparumsions between people and causes 
malaria in Belize is floating bamboo detritus patches along river margins. Their spatial analyses of 
SPOT satellite imagery found no associations between land cover and positive mosquito habitats. 
More promising, Mutuku et al. [88] show that IKONOS imagery was not useful in direct detection 
of small Anopheles larvae habitats in Kenya because of their size, but was useful in the localization 
of them through statistical association with specific land covers. Their classification of IKONOS 
yielded seven land cover classes, and agricultural land covers were found to be positively associated 
with presence of larval habitats, and were located relatively close to stream channels. Whereas  
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non-agricultural land covers were negatively associated with presence of larval habitats and were more 
distant from stream channels. 

Remote sensing classification approaches are also used to elucidate the land covers and land uses 
that when proximate to a vulnerable population, can lead to disease. In this case, the most common 
approach is to use existing land cover and land use products, or to create new classification schemes, to 
map the habitat for a chemical exposure, such as pesticides. These maps are then used in subsequent 
analyses that model disease risk or highlight new insights in disease epidemiology. For instance, 
Brody [89] used land cover maps from Landsat ETM+ to estimate individual historical exposure levels 
to pesticides based on a number of spatial factors, including residential proximity to land cover classes 
most likely to contribute pesticide exposure and size of source area in Cape Cod, Massachusetts. 
Similarly, Landsat imagery was used by Ward et al. [90] to determine whether crop maps were 
useful for predicting residential levels of exposure to crop herbicides in Iowa. They concluded that 
satellite-based crop maps may be useful for estimating levels of herbicides in homes near crop fields, 
serving as a surrogate measure of potential exposure to agricultural pesticides [91].  

Another common approach is to examine the relative proportion of land use/land cover classes that 
surround a feature of interest—a well, or household or a village—to determine if exposure, disease 
outcome or vector abundance can be linked to these contextual features. This approach is common in 
riparian studies [92] and requires mapping of land use/land cover classes as discrete polygons. An 
early example was Roberts et al. [93] who examined the proportion of mapped landscape elements 
surrounding 40 villages in Belize where data on malaria incidence had been collected. They used 
SPOT imagery and pixel-based classifiers to map the land use/land cover surrounding the villages. 
They found that the most important landscape elements in terms of explaining vector abundance in 
villages were transitional swamp and unmanaged pasture. Using a similar approach, but with a 
previously classified dataset, Ayotte et al. [16] hypothesized that increased bladder cancer risk was 
linked to elevated concentrations of inorganic arsenic in drinking water in New England, USA, and 
they examined characteristics in bedrock chemistry in addition to the land cover provided by the 
National Land Cover Data Set (NLCD) [94] in the area immediately surrounding each well for which 
arsenic data had been collected. Dambach et al. [95], who were investigating malaria risk in the 
lowlands of Burkina Faso, classified SPOT imagery into 10 land use/land cover classes using a 
supervised classification approach. The percentage of very high and high-risk land cover within a 500 
m buffer zone of all villages (representing the assumed flying range of Anopheles mosquitos) was used 
to identify villages at risk for malaria. They present this work as a first step in targeting control 
measures in an area with endemic malaria. 

Another important area of research involves the use of land use/land cover maps in subsequent 
landscape analysis. Landscapes are complex systems, displaying a dynamic interplay between structure 
(the spatial relationship among distinct elements or structural components of a system) and function 
(the productivity, nutrient cycling, animal movement and population dynamics of a system) [35,96,97]. 
In this landscape epidemiological view, disease occurrence can arise not just from the presence of a 
habitat, but from the underlying variations in these landscapes [54,98]. Land use/land cover maps have 
been used to examine the interplay between pattern and process across a range of environmental 
sciences. This is typically done through the use of landscape or pattern metrics, which explicitly 
capture spatial structure of patches, classes and landscapes [37,99-101]. Pattern metrics are calculated 
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using equations that quantify the spatial characteristics of individual patches, or a particular class 
within a landscape, and the spatial pattern of the landscape as a whole, using remotely sensed imagery 
as the input data [35]. Landscape metrics measure how patches are shaped, how they are distributed 
across the landscape, and how complex or simple a landscape is.  

While these types of analyses of metrics are common in environmental sciences (e.g., [35,37]) and 
environmental management (e.g., [36]), they are still infrequent in public health. One example in the 
public health field is Liu and Weng [102] who examined landscape configuration and West Nile Virus 
incidence in Cook County, Illinois. They developed land use/land cover maps with six classes using an 
unsupervised classifier on Terra’s Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) imagery. Landscape-level metrics were derived from their land use/land cover maps for the 
municipalities having mosquito/animal host positive reports. They found that the landscape factors, 
such as a landscape aggregation index and urban areas and areas of grass and water, showed strong 
correlations with the prevalence of West Nile Virus. Other examples come from Graham and 
colleagues [103,104] who have been examining the role of landscape pattern in transmission of the fox 
tapeworm Echinococcus multilocularis which causes a rare but fatal liver infection in humans. They 
showed that landscape metrics, derived from Landsat MSS and Landsat TM imagery were related to 
the prevalence of tapeworm infection for 31 villages in Zhang County, China. A summary of the use of 
discrete remote sensing imagery products in public health research are found in Table 2.  

Table 2. Summary of literature in public health using discrete data products.* 

Remotely Sensed 
Data 

Remotely Sensed 
Variables/Target 

Location Application (Disease/Substance) Reference 

IKONOS Land cover Kenya Vector-borne disease modeling (Malaria) [88] 
SPOT, IKONOS Land cover Belize Vector-borne disease modeling (Malaria) [87]  
SPOT Land cover Belize Vector-borne disease modeling (Malaria) [93] 
SPOT Land cover Burkina Faso Vector-borne disease modeling (Malaria) [95] 
Aerial orthophoto, 
Landsat TM 

Land cover, 
NDVI  

California Exposure modeling (Pesticide) [22] 

NLCD Land cover New England, USA Exposure modeling (Arsenic) [16] 

Landsat TM Land cover Sichuan, China 
Vector-borne disease modeling 
(Schistosomaiasis) 

[86] 

Landsat TM & 
ETM+ 

Land cover Central Wyoming 
Vector-borne disease modeling (West 
Nile Virus) 

[85] 

Landsat ETM+ Land cover 
Cape Cod, 
Massachusetts 

Exposure modeling (Pesticide) [89] 

Landsat MSS & 
TM 

Land cover Western China 
Vector-borne disease modeling (E. 
multilocularis) 

[103-104] 

Landsat MSS Land cover Iowa Exposure modeling (Pesticide) [90] 
Landsat ETM+ Land cover Paraguay Vector habitat (Hantavirus) [54] 

ASTER Land cover, LST Cook County, Illinois 
Vector-borne disease modeling (West 
Nile Virus) 

[102] 

*Note: ETM: Enhanced Thematic Mapper; TM: Thematic Mapper; MSS: Multispectral Scanner System; SPOT: Système 
Pour l’Observation de la Terre; ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer; NDVI: 
Normalized Difference Vegetation Index; LST: Land Surface Temperature; NLCD: National Land Cover Database. 
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4. Object-Based Image Analysis 

The land use/land cover mapping discussed in the previous section all resulted from image 
classification, either supervised or unsupervised, in a pixel-based paradigm. As discussed earlier, these 
pixel-based clustering algorithms focus only on the spectral value of each pixel and often result in 
image speckle and overall inaccuracies when applied to fine-resolution imagery [105]. This speckle, 
also known as the “salt-and-pepper” effect (Figure 1) is caused by high local spatial heterogeneity 
between neighboring pixels. Since each pixel is dealt with in isolation from its neighbors in the  
pixel-based paradigm, close neighbors often have different classes, despite being similar. When 
classification to produce discrete mapped entities is needed, an OBIA approach can alleviate many of 
these problems [30,33,37].  

The OBIA approach includes two major steps: first the image is segmented into similar image 
objects (or segments) (Figure 2) and then the objects are classified based on attributes of and 
interrelations between segmented objects [106,107]. The basic processing units in OBIA are thus 
segments and not single pixels [31,106], and the process typically transforms a raster image into a 
vector format: most segments are operationally analyzed as polygons. The image segmentation concept 
is not new, and has been widely studied especially in the field of pattern recognition [30,31,108]. 
Recent developments in computational power have made older segmentation algorithms more useful in 
a mapping context. Once an object is created, meaningful spectral, spatial and contextual measures 
can be gathered about each object, and between adjacent objects in one dimension and across 
scale (Figure 3). These measures can be used to classify each object, at each scale. In Figure 3(a), the  
fine-scale objects (the small orange objects) segmented in the image are characterized by their spectral 
(e.g., spectral values for each object in each band, texture measures), spatial (e.g., their size, shape of 
each object), and contextual (e.g., their closest nearest neighbor, what is surrounding them) measures. 
These measures can be used to classify each fine-scale feature, which might be dead trees, or mosquito 
ponds, or other fine-scale discrete objects. At the medium-scale, these measures are also important, but 
they are calculated for the larger objects that include the fine-scale objects. In Figure 3(b), the orange 
polygon is a collection of smaller features, and in addition to the spectral, spatial, and contextual 
measures calculated for it, but it is the contextual information about its constituent finer-scale objects 
that can help in classification. For example, this medium-scale object might be a forest stand 
containing dead trees, or a marsh with surface ponds. The presence and patterning of the finer-scale 
objects might be useful in making this determination. The coarse-scale features are made of  
medium-scale features, and in a similar fashion, the medium-scale characteristics can be used to 
classify the coarse-scale object—as a forest, or a marsh complex. These multi-scalar classification 
concepts are modified from [31,33]. 

The relationships between an object and its neighbors across scales as shown in Figure 3 are not 
possible in pixel-based approaches. The topological relationships between adjacent pixels is implied in 
the raster data structure (meaning that the spatial relationship of each individual pixel does not need to 
be explicitly formulated), the topology and interaction of adjacent image objects is explicitly 
determined and each object explicitly described in the OBIA approach [106]. The resulting topological 
network is far more cumbersome to store, but it does allow for those relationships to be used for 



Remote Sens. 2011, 3              
 

 

2331

subsequent analysis: either in object classification [31], or for higher order analysis of pattern and 
context in an ecological context. 

Figure 3. Conceptual diagram of the OBIA process for multi-scaled analysis of remotely 
sensed imagery. (a), (b) and (c) are different levels of image segmentation (fine-scale to 
coarse-scale); they are hierarchical. At each scale the target is highlighted in orange. The 
characteristics are those spectral, spatial and contextual measures that can be used to 
classify an object. Only a few examples of characteristics within each category are listed, 
but there are many valuable measures at each scale that can be used for analysis depending 
on the research question (e.g., average, minimum, maximum, composite indexes, etc.). 
Fine-scale characteristics can be used to classify medium-scale features and so on. 

 

The improved classification that typically results from OBIA are often reported in the remote 
sensing literature across a range of applications [30]. As evidenced in the following paragraphs, 
many researchers are choosing OBIA approaches to map discrete landscape features because the 
method typically results in higher accuracies than classification with pixel-based approaches 
(e.g., [54,55,61,109]). We could find no examples of object-based approaches in public health that 
made use of the topological and hierarchical benefits conveyed by the OBIA approach. 

5. Review of OBIA and Public Health Applications 

Object based approaches to classification are most often used with fine-resolution (i.e., <5 m) 
imagery (although not always), when pixel-based methods have proven problematic, and when discrete 
patches or features are the mapping target. Examples that pertain to public health can be found in the 
mapping of vector habitat, in land use/land cover mapping, and increasingly, in urban applications that 
examine urban structure as it influences health outcomes. What follows is a short review—OBIA 
approaches are only recently being integrated into public health research. These papers are summarized 
in Table 3.  
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Table 3. Summary of literature in public health using object-based image analysis.* 

Remotely 
Sensed Data 

Remotely Sensed 
Variables/Target 

Location Application (Disease/Condition) Reference

Panchromatic 
aerial image 

Panchromatic 
band/buildings 

Golcuk, 
Turkey 

Natural hazard damage assessment 
(Earthquake) 

[110] 

Lidar, 
QuickBird 

Elevation, Land 
cover 

Tegucigalpa, 
Honduras 

Social vulnerability (Natural hazards) [111] 

QuickBird Land cover Kazakhstan Vector habitat (Bubonic Plague) [112] 

QuickBird Land cover 
Accra, 
Ghana 

Social vulnerability (Slum mapping) [113] 

QuickBird 
NDVI, Land 
cover 

Northern 
Darfur, 
Sudan 

Humanitarian aid assessment (Population 
characteristics) 

[114] 

QuickBird Land cover Bam, Iran 
Natural hazard damage assessment 
(Earthquake) 

[115] 

IKONOS Land cover 
Palestine & 
Republic of 
Macedonia 

Natural hazard damage assessment 
(Earthquake) 

[116] 

IKONOS Land cover 
New York 
City, New 
York 

Hazard mitigation (Urban heat island effect) [109] 

Aerial 
orthophoto, 
Landsat 

Land cover, 
NDVI  

California Exposure modeling (Pesticide) [22] 

Landsat ETM+ Land cover Paraguay Vector habitat (Hantavirus) [54] 
MODIS, 
ASTER, 
QuickBird 

EVI, NDVI, Land 
cover 

Costa Rica 
Vector-borne disease modeling (Dengue 
Fever) 

[61] 

ASTER Land cover China Exposure modeling (Pollution) [55] 
*Note: OBIA: Object-based image analysis; ETM: Enhanced Thematic Mapper; Lidar: Light Detection and Ranging; 
ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer; MODIS: Moderate Resolution Imaging 
Spectroradiometer; NDVI: Normalized Difference Vegetation Index; EVI: Enhanced Vegetation Index. 

Addink et al. [112] provide a clear case study for the use of OBIA in mapping vector habitat. In 
Kazakhstan the great gerbil (Rhombomys opimus) hosts a flea that is the primary vector for the 
Bubonic plague bacteria Yersinia pestis. Their burrow systems are considered a strong indicator for the 
probability of a plague outbreak. They are also a good target for remote sensing, being large, more or 
less circular complex constructions with a diameter of 15 to 40 m displaying a lack of vegetation above 
and around them, due to herbivory by the gerbils. Their OBIA approach used QuickBird imagery, and 
resulted in very high classification accuracies: overall classification accuracy was 96%; where 98% of 
the observed burrow-systems were identified correctly, and 93% of the non-burrow-system segments 
were classified correctly. An OBIA approach also worked well for Koch et al. [54], who needed to 
classify land cover classes related to the movement and abundance of rodent species that are hosts to 
hantavirus. They used a single Landsat ETM+ image to classify land use/land cover into eight classes 
using both per-pixel and object-based classification algorithms at an Atlantic Forest site in eastern 
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Paraguay. Largely a proof-of-concept paper, they report on the far superior classification results 
provided by the OBIA approach.  

As is clear from the previous paragraphs, much of the work examining the utility of remote sensing 
for vector-borne diseases have occurred in ex-urban settings, and the study of vector-borne diseases in 
urban environments is more difficult due to urban spatial heterogeneity and complexity, the complex 
movement of hosts and vectors, and anthropogenic creation of often fine-scale vector habitats [61]. 
Dengue fever is an example of a disease that affects urban dwellers. Its mosquito vector, 
Aedes aegypti, lives in close association with humans mostly in urban and suburban environments in 
fine-scale micro-habitats that are impossible to capture via remote sensing because they are too small 
or are hidden. Troyo et al. [61] used a combination of imagery and methods to study the spatial and 
seasonal determinants of dengue incidence in Costa Rica. In addition to examining dengue incidence 
and temporal NDVI dynamics, they also mapped urban land use/land cover classes and performed a 
landscape metric analysis to ascertain if urban land cover patterning could indicate dengue incidence. 
They compared both pixel-based and object-based classification approaches; the OBIA method proved 
more accurate. They found a moderate positive relationship between urban tree cover and dengue 
incidence and a significant relationship between the proportion of built area and dengue incidence. 
Furthermore, their landscape metric analysis showed that urban patterning (overall clumpiness index, 
percentage of like adjacencies for built areas, and patch cohesion for trees) showed strong significant 
correlations with dengue incidence. 

Chemical or other exposure assessment applications require detailed land use/land cover maps 
before the spatial relationship of exposure sources and individuals or households can be assessed. An 
OBIA approach works well in this case. Maxwell [22] demonstrated an OBIA approach for delineating 
land use/land cover features at multiple scales using a fine spatial resolution aerial photograph (1 m) 
and a moderate spatial resolution Landsat image (30 m) time series in the context of examining 
exposure from pesticide spray drift. Her work largely aimed to prove the utility of such an approach, 
and she highlights one of the additional advantages of OBIA over pixel-based approaches to 
classification, other than overall accuracy: the spatial fidelity of the resulting objects. She concludes 
that maps derived from a pixel-based approach have to have an explicit topology in their output. Crop 
fields in a pixel-based product are collections of similarly-classified pixels, without spatial cohesion. 
This can have a substantial impact on epidemiological studies that do not consider spatial context. The 
OBIA approach facilitates a more complete representation and characterization of crop fields that 
classifies a field as an intact entity rather than a collection of pixels: this representation can support 
agricultural chemical exposure assessment [22].  

An interesting case that used OBIA with moderate spatial resolution imagery is provided by  
Gao et al. [55] who mapped coal fires with ASTER imagery in China. These exposures are a threat 
to human health, and are a large problem in China [55]. The imagery was segmented using a  
multi-resolution segmentation algorithm in eCognition, and the resulting objects’ spectral and spatial 
information (size, shape, texture and relations to other image objects) were used in classification. 

There is also a small but growing body of OBIA work that focuses on other aspects of public health 
such as disaster recovery, urban crowding, and their related health consequences. Urban environments 
have proven fertile ground for OBIA researchers (e.g., [109]), as they are filled with discrete entities at 
multiple scales. Many of the following studies are reviewed in Blaschke [30]. 
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Spatial variation in urban densities and amenities can influence poverty and health [117], and 
understanding such patterning can help target public health interventions. But spatial analysis of such 
urban patterns often has to deal with datasets of different reporting units and scales, and results based 
on combinations of such datasets are often flawed [118]. To overcome this challenge, Stow and 
colleagues [113] used OBIA with QuickBird imagery to correctly map urban densities and amenities at 
two scales in Accra, Ghana. They found their segmentation and hierarchical classification to be 75% 
accurate. Ebert and colleagues [111] take a different approach to arrive at an understanding of urban 
social vulnerability. They applied OBIA methods for the definition and estimation of variables from 
optical and Light Detection and Ranging (Lidar) data in combination with elevation information and 
existing hazard information. They sought to estimate a physical social vulnerability index that could be 
compared to census data available for the study area on a neighborhood level in Tegucigalpa, 
Honduras. The physical model of social vulnerability explained almost 60% of the variance found in 
the census data. They suggest that contextual segmentation-based analysis of geospatial data can 
substantially aid in urban assessment and public health screening because it provides a more 
economical and optimized workflow. 

Lang et al. [114] applied OBIA methods on a series of QuickBird imagery of the Zam Zam 
internally displaced person (IDP) camp in Northern Darfur to follow the camp’s evolution between 
2002 and 2008. They mapped the camp’s boundaries and inner structure, and derived population 
estimates for the time of image capture through a rule-based procedure. They assessed their ability to 
map individual dwellings (accuracies ranged from 71.6% to 94.9%) and estimated camp occupancy 
(with reference figures for dwelling occupancy obtained from estimates made by aid agencies).  

Turker and Sumer [110] detected damaged buildings from an earthquake in Golcuk, Turkey, 
one of the urban areas most strongly affected by the 1999 Izmit earthquake. They used a creative 
shadow-based filter on fine spatial resolution imagery with a watershed segmentation algorithm to 
detect and map damaged or undamaged buildings. Gusella et al. [115] quantified the number of 
buildings that collapsed following the 2003 Bam earthquake, by first segmenting pre-earthquake 
Quickbird imagery and then comparing the spectral signature of those objects in the post-earthquake 
imagery. They report an overall accuracy of 70% for the damage classification. Change detection is a 
robust method for identifying these kinds of fine-scale changes. Al-Khudairy et al. [116] analyzed 
structural damage caused by conflicts using pre-conflict IKONOS images of Jenin (2 m resolution), in 
the Palestinian territories, and Brest (1 m resolution) in the former Yugoslav Republic of Macedonia. 
They showed that object-oriented segmentation and classification systems of pre- and post-conflict 
facilitated the interpretation of change detection results derived from fine-resolution (e.g., 1 m and 2 m) 
commercial satellite data. 

We recognize that these examples are few in number, and we believe that there are many additional 
new directions in public health research and practice that can benefit from OBIA. For instance OBIA 
may be used to help in research that requires multi-scalar analysis, such as collecting census statistics 
in rural or developing areas. Through the use of OBIA, researchers could identify individual homes 
and other aspects of the built environment, including size, distribution and location, allowing for an 
enhanced understanding about where people live, and their distances to available facilities. OBIA 
could also be beneficial in public health research related to changes over time. In food security 
research, for example, it is essential to accurately account for the temporal variability of the size, 
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shape, and relative productivity of individual fields to estimate the nutritional output of croplands in 
areas at risk of famine. After the initial segmentation and classification of a complex array of diverse 
fields, it may be possible to more easily update the initial map in order to record change over time. 
Both of these multi-scalar and multi-temporal qualities are increasingly important in assessing the 
public health impacts of a changing climate. 

6. Discussion and Conclusions 

In this paper we have reviewed the large and diverse role of remote sensing in the public health field. 
We covered the use of continuous products such as NDVI in modeling risk and spread of vector-borne 
diseases around the world and obesity in urban environments. We covered the use of discrete mapping 
to capture vector habitat and other health exposures through land use/land cover mapping. We explore 
the relative lack of examples of OBIA approaches in this second category, and highlighted some 
important cases—in vector habitat and exposure mapping, and in new areas of indirect public health 
outcomes where the OBIA approach has a natural fit. We also describe possibilities for additional uses 
of OBIA in public health. 

Most of the examples presented here highlight the accuracy benefits of the OBIA approach over 
that of the pixel-based approach, but we contend that there are key areas when the depiction of a 
geographic object as an image object in an OBIA sense—as a multi-scale object, that carries 
knowledge, that has shape—is useful. In ecology, for example, there are situations where the object 
framework is integral to the understanding of the function of an ecological system. While in many 
ecological systems species success and productivity respond to ecological gradients and produce 
transitional patterns across spatial scales (e.g., [119]), in other systems, due to disturbance, thresholds 
in ecological response, or management, vegetation pattern will be naturally discrete. In these cases, 
ecological objects appear with defined edges, such as treeline [38], or gaps in forests [34], or seagrass 
beds [120]. In a landscape ecological sense [121], these “objects” are also characterized by the 
topological relationships with their neighbors, in space and time. Proximity, context and pattern 
through time can influence functional processes of succession, survival and spread (e.g., [9,122]). In 
addition, these ecological objects display hierarchies, and can be characterized by connections across 
multiple scales. And while these kinds of multi-scaled patterns can be used to construct rules for 
classifying image objects and refining classification results in an OBIA framework (e.g., [31,55]), they 
can also convey important agency to the resulting objects, in certain contexts, and give us added 
ecological and epidemiological insight to many systems. For example, Wallentin [38] found an OBIA 
approach’s ability to measure pattern fundamental to understanding the function of treeline dynamics 
in the Austrian Central Alps. In a public health setting, these topological features can be just as useful. 
For example, with vector habitat mapping, knowing that mosquito ponds are more densely arrayed in 
certain types of land use could be an added component to predicting risk for malaria. Knowing that 
snail habitats are more or less connected to village land uses could help understand schistosomaiasis 
spread. Knowing how the crop type in one field changes, and how its neighbors also change can help 
pesticide exposure studies.  

It is important to concede that these kinds of relationships can be built after-the-fact within a 
geographic information system (GIS) from any classification result [102-104], but they are more easily 
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done as part of the classification process with OBIA. Indeed, such landscape analyses of pixel-based 
products are flawed, due to the speckle inherent in the results. Such products require considerable 
post processing to deal with these artifacts, processing that can change the inherent spatial 
relationships one wants to preserve [35]. The OBIA approach keeps relevant objects intact (this was 
the point Maxwell [22] raised about crop fields) and can elucidate relationships between objects and 
sub-objects. Figure 3 demonstrates this conceptually. In an ecological sense the finer-scale objects can 
be dead trees in a forest stand using information about the presence and distribution of these trees, 
forest stands can be classified as to their degree of disease infestation [123,124]. Alternatively, in an 
epidemiological sense, these features might be mosquito ponds in a larger marsh or wet soil area; their 
abundance and distribution might help characterize risk for a neighboring village. It is this kind of 
contextual information about objects that proved so useful for Liu and Weng [102] and Graham and 
colleagues [103,104] in their examination of pattern and disease.  

Burnett and Blaschke [33] state that there are multiple solutions to the decomposition of a 
landscape: some utilize a continuous or field-based model, and some a discrete-based model. While 
there are theoretical developments to unite these two representations (e.g., [125]), often the choice of 
format has to do with purpose, subsequent analysis, and convention. Sometimes one format is superior 
to another in one context. Cohen and colleagues [126] found that land use/land cover mapping did not 
help in predicting household malaria risk in western Kenya. They used an OBIA approach with 
IKONOS imagery to map land use/land cover surrounding households for which they had 
demographic data and information on malaria events. In their case the continuous data format was 
more useful. Variables related to topographic wetness proved most useful in predicting the households 
of individuals contracting malaria in the region, suggesting that the rugged terrain in the study area 
imparted a larger influence on vector habitat through accumulation of water than did land use/land 
cover. Yet whenever a discrete set of interrelated spatial features is needed to understand the 
functioning of a system, be it an ecological or an epidemiological one, an OBIA approach offers many 
advantages in accuracy, and in analysis.  

Given the dynamic nature of our landscape and increasing rate of change due to rising populations 
and changing climates, OBIA can provide a platform to quickly and effectively monitor these changes 
over large areas. Many of the existing studies that have used OBIA to better understand public health 
challenges, such as disease vectors, heat island effects, and toxin exposure have shown the value that 
these techniques can provide. We encourage even further exploration of these same methods to scale 
up their benefits to additional areas in need of greater research and monitoring. As the cost and 
technological barriers to using OBIA and fine resolution imagery continue to decline, we hope to see 
greater use of these tools. Good places to start using OBIA for image classification and analysis are: 
Blaschke [30], Benz and colleagues [106], Maxwell [22], and Navulur [127]. There are also a large 
and increasing range of software packages that perform image segmentation and object-based 
classification analyses, including as mentioned before eCognition [52,53], but also ENVI’s Feature 
Extraction Module [128], Visual Learning Systems’ Feature Analyst extension for ArcGIS [129], 
ERDAS IMAGINE’s Objective module [130] and IDRISI Taiga’s Segmentation module [131] to 
name a few. 
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