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Abstract: Wildland fires cause economic and ecological damage with devastating consequences,
including loss of life. To reduce these risks, numerous fire detection and recognition systems using
deep learning techniques have been developed. However, the limited availability of annotated
datasets has decelerated the development of reliable deep learning techniques for detecting and
monitoring fires. For such, a novel dataset, namely, SWIFT, is presented in this paper for detecting
and recognizing wildland smoke and fires. SWIFT includes a large number of synthetic images and
videos of smoke and wildfire with their corresponding annotations, as well as environmental data,
including temperature, humidity, wind direction, and speed. It represents various wildland fire
scenarios collected from multiple viewpoints, covering forest interior views, views near active fires,
ground views, and aerial views. In addition, three deep learning models, namely, BoucaNet, DC-Fire,
and CT-Fire, are adopted to recognize forest fires and address their related challenges. These models
are trained using the SWIFT dataset and tested using real fire images. BoucaNet performed well in
recognizing wildland fires and overcoming challenging limitations, including the complexity of the
background, the variation in smoke and wildfire features, and the detection of small wildland fire
areas. This shows the potential of sim-to-real deep learning in wildland fires.

Keywords: fire recognition; synthetic data; simulation; wildfire; 3D platform; deep learning; SWIFT

1. Introduction

In recent years, the rise in wildfires has been noted and partially attributed not only
to an increase in climate change [1,2] but also to human activities, whether accidental or
purposeful [2]. This phenomenon has been increasing in the past years, with projections
for an even worse scenario over the next 40 to 50 years [3]. In 2023, in Canada, a record-
breaking wildfire occurred, with 6623 fires burning a total of 18,401,197 hectares [4]. In
Europe, 2022 was the worst year for forest fires, resulting in a total of approximately 900,000
hectares burned and a higher risk of economic losses [5]. In addition, in recent years, the
United States has faced losses estimated between USD 63.5 and 285 billion [6]. Following
economic losses, human health is also at risk when dealing with wildfires. While the loss
of human lives directly associated with wildfires is usually not high [6], there are health
problems related to them [7].

Consequently, as a response to these recent events, there has been a strong effort to
develop ways to combat and monitor this natural disaster. Recently, DL (deep learning)
methods have been used to process images and videos collected from satellites [8,9],
surveillance cameras [10], and unmanned air vehicles such as drones [11,12]. These models
have shown high performance, proving their effectiveness for the detection, segmentation,
and classification of wildfires at different stages [13–15].

DL methods require visual and numerical data to be trained, meaning that all of
these methods will require a vast amount of data collected from wildfires [16]. However,
there are few datasets available, and of those, some contain as few as 226 images [17],
1135 images [18], 1900 images [19], and 2003 images with their corresponding binary

Remote Sens. 2024, 16, 1627. https://doi.org/10.3390/rs16091627 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16091627
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0002-4650-6536
https://orcid.org/0000-0002-9645-2452
https://orcid.org/0000-0002-4378-2669
https://doi.org/10.3390/rs16091627
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16091627?type=check_update&version=2


Remote Sens. 2024, 16, 1627 2 of 22

masks [20] for training purposes. Data on these events are usually collected and com-
piled by government agencies, according to their necessity [21]. Experimental wildfire data
are also limited by missing data, notably meteorological data and fuel maps [21,22]. In
addition, obtaining new fire data, such as through controlled burns, necessitates substantial
backing from diverse stakeholders and might pose challenges in execution.

A simple way to generate visual data for wildland fires is by using digital twin models
of real-life scenarios [23]. This digital solution allows for any project to develop a higher
amount of data. As an example, Lockheed Martin’s CMM (Cognitive Mission Manager)
project used a digital twin and machine learning to help firefighters reduce fire damage
by determining fire perimeters and simulating fire propagation [24]. By exploiting this
innovative method, it is possible to generate a substantial amount of wildfire data without
the constraints inherent in real-world conditions and improve the performance of deep
learning models.

For such, we developed a novel dataset, namely, SWIFT (Simulated Wildfire Images
for Fast Training), for wildland fire recognition, segmentation, and simulation. SWIFT
includes more than 69,000 synthetic images labeled as wildfire, smoke, both smoke and
fire, and no-fire, and 15 videos depicting various scenarios of complex backgrounds,
wildfire, and smoke, along with their corresponding masks. It also includes data on
related environmental conditions, such as temperature, humidity, wind direction, and
wind speed. This dataset was generated from multiple viewpoints, offering views from
inside the forest, views close to active fires, ground views, and aerial views, providing
comprehensive coverage of wildland fires. Additionally, SWIFT was used for training the
recent DL methods CT-Fire [25], BoucaNet [26], and DC-Fire [27], as well as for addressing
the limitations of few available wildland fire data.

This paper presents the following contributions:

1. A novel dataset, namely, SWIFT, consisting of a large amount of data labeled as
wildfire, smoke, both fire and smoke, and no-fire, is developed to improve wildland
fire recognition, segmentation, and simulation tasks.

2. By exploiting the SWIFT dataset, DL models can be trained using diverse fire scenarios,
allowing the development of accurate prediction and detection of fire models.

3. Recent DL models are explored and adopted for wildland fire recognition. These
models are trained using the SWIFT dataset and show high performance when tested
on real images (sim-to-real), overcoming challenging limitations, such as background
complexity and detection of small wildfire areas.

The rest of this paper is organized as follows: Section 2 introduces recent developments
in wildfire simulation and digital forest generation, published wildfire datasets, and wildfire
recognition methods. Section 3 presents materials and methods, including DL methods
(BoucaNet, CT-Fire, and DC-Fire) and the development and details of the SWIFT dataset.
Section 4 illustrates the experimental results obtained using these DL methods. Section 5
discusses these results. Section 6 summarizes the paper.

2. Related Works
2.1. Three-Dimensional Simulation Platform

A 3D platform for simulating wildfires is any system with visual control in a three-
dimensional environment that allows the setup of and consequently simulates fire in the
scenario. The simulation of fire related here is necessary to obtain realistic visual data and
not a truly realistic simulation of a wildfire-scale fire scenario. This platform can be easily
used to generate digital wildland fire data, which are very important compared to real data,
which are generally difficult to collect and require significant investment and risk [28].

Numerous projects have been developed to simulate data collection in digital environ-
ments and many others to digitally simulate wildland fire, with fewer works undertaken to
integrate both ideas into the same platform. In 2017, Microsoft undertook the development
of AirSim, a simulation interface developed for Unreal Engine (UE). Being open source,
AirSim is one of the best simulation tools developed for drones and other vehicles. It is an



Remote Sens. 2024, 16, 1627 3 of 22

example of the training of DL with digital twins, with APIs exposed for external control
and support for popular protocols such as MavLink [29]. With interaction between DL
and simulation as its main focus, AirSim offers an easy acquisition of simulation data for
images and parameters. It is greatly influential not only for its ease of use and versatility
but also for being one of the first tools developed for game engines used for the acquisition
of data. Bhattarai and Martínez-Ramón [30] developed a deep Q-learning agent for path
planning in dynamic environments caused by fires. Using the UE platform with AirSim
tools, they exploited the interactivity with the environment and the replay of experience
to accelerate the training of the agent. Presented as a helpful tool for firefighters during
stressful scenarios, the latter outperformed models trained with alternative path planning
systems. Ma et al. [31] developed a simulation environment based on ROS (Robot Operat-
ing System), AirSim, and PX4 SITL (Software In The Loop, v1.12.3) for testing quadcopter
aircraft. The matching of their simulation environment with real-life scenarios yielded
promising results.

Stava et al. [32] studied the inverse procedural modeling of trees through the usage of
parameters and definitions. They simulated the realistic growth of any plant, involving
interactions with the environment such as walls and other plants. They also used a
modeling approach that utilizes Monte Carlo Markov chains to find optimal parameters and
a polygonal model as input. Makowski et al. [33] developed a project on the natural growth
and simulation of a biome, from its bare land to the eventual formation of flora, following
a completely procedural method. This method is capable of simulating up to 500,000
individual plants, with resource competition, diverse tropism, and other biological features.
Pirk et al. [34] presented an interactive wood combustion model for procedural tree models.
In this method, trees are represented as connected points for branches and polygonal surface
meshes for combustion. The points are associated with physical properties that affect the
fire behavior, such as moisture, fuel, and stress, all of which dictate the simulation. The
model is interactive and can simulate multiple trees at the same time. Hädrich et al. [35]
continued the previous research of Pirk et al. as a wildfire simulation on the scale of
entire forests by simulating the combustion process of each individual tree. This wildfire
simulation focuses on the fire spread of the combustion of plants, considering heat transfer,
char insulation, and mass loss. It runs at an interactive pace, letting the user interact with
the simulation and explore different types of actions that affect the fire, such as rain and
the creation of firebreaks.

In 2021, Lockheed Martin initiated an internal project, namely, CMM, to demonstrate
the usefulness of multidomain processes and machine learning to support firefighters
during their wildland fire missions. This project was subsequently partnered with the
Colorado Division of Fire Prevention and Control. It integrates MX-15 data to draw the fire
perimeter using machine learning. Then, the fire spreading for the next 24 h was modeled
using a physics-based simulation, taking into consideration topography, weather, and fuel
type of the area [24].

Likewise, for wildfire simulation and prediction, some projects are being developed
to generate digital twins of forests and environments. This new method employs LiDAR
(light detection furthermore, ranging) technology to generate individual models of real-
life environments. Nita [36] studied the use of GeoSLAM mobile LiDAR scanners and
VirtSilv AI to produce digital twins of individual trees in a plot. This method was evaluated
for around 1.4 thousand trees, showing a high accuracy compared to existing methods.
Buonocore et al. [37] also introduced a framework for designing digital forest twins. They
integrated various state variables at the forest and tree levels to generate a virtual forest
copy. The tree or forest is formed by three layers: the first layer is composed of the biotic
and physical state variables, the second layer contains the tools for digitizing and recording
the state variables, and the third layer consists of the physiological processes.
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2.2. Wildland Fire Datasets

Many projects have been developed to emulate wildland fires, greatly varying between
methods and results. However, there is little undertaken in the area of data generation
for training and testing wildland fire models, which is a modest area of development. In
addition, there is a lack of tools to implement a scenario and simulate this environment in
order to obtain new data.

Several wildland fire datasets have been developed with different resolutions and
objectives, as presented in Table 1. BowFire [17] is a small dataset containing a few images
ranging from urban fires, which affect artificial human constructions, to large-scale wildland
fires. It also includes images of false-positive scenarios, with red and yellow objects and
sunsets. The FLAME dataset [20] consists of aerial images and videos collected from RGB
and thermal cameras, with high-resolution images of wildfire in snowy regions. It also
contains a mask of wildfires for DL segmentation tasks. CorsicanFire [18] consists of both
RGB images and near infrared; the latter were obtained with a longer exposure time. It
also contains binary mask images used in the context of fire segmentation. FD-Dataset [38]
combines two other datasets, BowFire [17] and dataset-1 [39], which contains wildfire and
background images collected from the internet. ForestryImages [40] is a public dataset
developed by the University of Georgia’s Center for Invasive Species and Ecosystem Health.
It includes a large number of images attributed to different categories, some of which are
not of relevance to DL wildfire training, such as forest insects and pests. FiSmo [41]
contains a large collection of data from the internet; these are labeled fire, non-fire, and
ignore. It combines four other datasets, BowFire [17], Flickr-FireSmoke [42], Flickr-Fire [42],
SmokeBlock [43]. FLAME2 [12] is also a public dataset from prescribed wildfires in 2021
in the canopy pine forest of northern Arizona. It includes a large amount of aerial images
extracted from video recorded by a Mavic 2 Enterprise Advanced dual RGB/IR camera.

Table 1. Wildland fire datasets overview.

Ref. Dataset Name Image Type Labeling Type Fire Data No-Fire Data

[17] BowFire Terrestrial Classification
Segmentation

119 images; 119 mask images 107 images

[20] FLAME Aerial Classification
Segmentation

17,855 images; 2003 mask images 30,155 images

[18] CorsicanFire Terrestrial Segmentation 1135 images with their masks None
[38] FD-Dataset Terrestrial Classification 50,000 images; 14 videos 25,000 images; 17 videos
[40] ForestryImages Terrestrial Classification 317,921 images None
[41] FiSmo Terrestrial Classification 9448 images; 158 videos None
[12] FLAME2 Aerial Classification 39,751 image pairs; 7 video pairs 13,700 image pairs

As illustrated in Table 1, there is a clear imbalance when comparing terrestrial data to
aerial. This problem is found when analyzing the actual number of ground-truth masks
available in these datasets. Generating a mask is naturally difficult and time-consuming.
It almost always requires the manual labor of experts to properly describe and label the
fire zone in thousands of images. In addition, there is the human error risk. Machine
learning methods for autolabeling have been developed, but they carry a lower-than-ideal
accuracy for their labeling, triggering false alarms, especially with tricky scenarios such
as sunsets [12]. This factor helps in understanding why many images are missing their
fire-zone description. With no mask, a DL method is unable to learn from the dataset unless
manually created. Some of them lack mask images, and others are missing their labeling.

Additionally, the quality of these datasets depends on the methodology employed
to generate data, with the best-case scenario being a prescribed fire and setup of cameras
and drones to record as much data as possible, similar to what was employed during the
prescribed fire in Arizona to generate FLAME2 [12]. Prescribed fires are not easily arranged,
requiring many aspects to be solved before the permission to start one is received. These
many aspects can be separated into three categories: risk-related challenges, such as the fear
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of liability or uncontrolled spread; resource-related challenges, such as limited financial
resources and crew experience and availability; and regulation-related challenges, such as
environmental regulation and poor meteorological conditions for burning [28]. Wildfires
are the maximum extreme when referencing fire; with their heat values, cameras become
fragile when trying to record their data. Even for drones far away from the center of a
wildfire, the radiation heat can still be enough to cause damage to the electronics and ruin
its ability to collect meaningful data.

In conclusion, the use of fire datasets is still limited; sometimes we are without the
specific type on which a DL method will be trained, or the dataset is without labeling from
an expert that guarantees performance. In these cases, a 3D platform would be immensely
useful for allowing not only the acquisition of data but also the automatic creation of any
mask at the same time. This would considerably reduce the danger and cost of generating
these data, as well as the manual labor and time required to generate masks.

2.3. Deep Learning Approaches for Wildland Fire Recognition

Numerous DL models have been proposed for detecting and recognizing wildland
fires, as well as for reducing their damage. Table 2 represents recent DL methods used to
identify and recognize wildfires using aerial, ground, and satellite images.

During the creation of the FLAME dataset, a wildfire classification method was tested
utilizing a DCNN (deep convolutional neural network) called Xception [20], which achieved
an accuracy of 76.23%. Sandra and Risteska [44] studied five deep learning models, namely,
VGG19, VGG16, ResNet50, Inception, and Xception, for recognizing wildfires. Based on
a transfer learning technique that allows the model to learn from a different task and
transfer this newfound knowledge to fire recognition, ResNet50 achieved the best result
with an accuracy of 88.01% on the FLAME dataset. EfficientNet-B5 and DenseNet201 were
combined to improve the performance of the wildland fire recognition task [45]. Using the
FLAME dataset, they reached an accuracy of 85.12% better than state-of-the-art methods.
In [46], FT-ResNet50, as a modified ResNet50 method, was also adopted to recognize forest
fires using aerial images. It obtained an accuracy of 79.48% using the aerial dataset FLAME.

The VGG16 method was also employed to classify wildland fire in aerial images [12].
Using a large amount of images collected from the FLAME2 dataset, this method showed
a high performance with an accuracy of 99.91%. It outperformed baseline methods, such
as Xception, MobileNetV2, and ResNet18. A lightweight model, namely, FireXnet, was
developed for improving the performance of forest fire classification task [47]. It integrates
an explainable artificial intelligence method, SHAP (SHapley Additive exPlanations), to en-
hance its decision. It was tested on various datasets, achieving an accuracy of 98.42% better
than the InceptionResNetV2, VGG16, MobileNetV2, InceptionV3, and DenseNet201 mod-
els. Wong et al. [48] proposed a novel wildland fire image classification method, namely,
Reduce-VGGNet. This method is a modified VGG16 model, replacing the three fully con-
nected layers with two fully connected layers and using the softmax method. It achieved a
great classification performance with an accuracy of 91.20% using the FLAME dataset.

Ghali and Akhloufi [25–27] proposed three ensemble learning methods, namely, DC-
Fire [27], CT-Fire [25], and BoucaNet [26], to identify and classify wildfires, as well as
addressing their related challenging limitations, such as background complexity, detecting
small fire and smoke areas, and fire variability in terms of size, shape, and intensity. The
first method, DC-Fire, combines the two CNNs (convolutional neural networks) DenseNet
and EfficientNet to extract wildfire features using infrared aerial images as input data.
It achieved a high accuracy of 100%, outperforming existing methods such as Xception,
VGG16, LeNet5, ResNet18, and MobileNetV2. The second method, CT-Fire, integrates the
DCNN method RegNetY-16GF and the vision transformer EfficientFormerV2 to identify
flames from many different datasets, including from both terrestrial and aerial images. It
showed great results, with an accuracy of 87.77%, 99.62%, and 85.29% using aerial, ground,
and both ground and aerial images, respectively. The third method, BoucaNet, combines
the EfficientFormerV2 and EfficientNetV2 models as its backbone for recognizing smoke in
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satellite images. Test results showed that BoucaNet achieved an accuracy of 93.67% better
than published methods such as SmokeNet. This demonstrates its potential to distinguish
similarities between smoke, dust, haze, and cloud classes. Jonnalagadda and Hashim [49]
developed a novel DL method, SegNet (Segmented Neural Network), to enhance the
processing time of the wildfire detection method. SegNet is a simple CNN consisting of
five convolutional layers, five ReLU activation functions, and two max pooling layers.
SegNet’s input was a segmented fire image, produced by dividing an input image with a
resolution of 1280 × 720 pixels into 12 smaller segments, each measuring 320 × 240 pixels.
This method showed a high performance with an accuracy of 98.18% and fast processing
speed, enabling real-time detection.

Table 2. Deep learning models for wildfire recognition.

Ref. Methodology Object Detected Dataset Image Type Accuracy (%)

[20] XCeption Flame FLAME: 47,992 images Aerial 76.23
[44] ResNet50 Flame FLAME: 47,992 images Aerial 88.01
[45] EfficientNet-B5, DenseNet-201 Flame FLAME: 48,010 images Aerial 85.12
[46] FT-ResNet50 Flame FLAME: 47,992 images Aerial 79.48
[12] VGG-16, Flame/smoke FLAME2: 53,451 images Aerial 99.91
[47] FireXnet Flame/smoke Kaggle, DFire, FLAME2: 3800 images Aerial

Terrestrial
98.42

[48] Reduce-VGGNet Flame/smoke FLAME: 1900 images Aerial 91.20
[49] SegNet Flame Custom: 10,242 images Aerial

Terrestrial
98.18

[25] CT-Fire Flame FLAME, CorsicanFire, DeepFire, FIRE:
51,906 images

Aerial
Terrestrial

87.77
99.62

[27] DC-Fire Flame/smoke FLAME2: 53,451 images Aerial 100.00
[26] BoucaNet Smoke USTC_SmokeRS: 6225 images Satellite 93.67

3. Materials and Methods

This section describes the development of SWIFT, briefly explaining how each aspect
of the platform was determined and created using UE features. Following this, a detailed
explanation of how data are generated through the use of predetermined movie renders
and graphical shaders. Finally, the proposed DL methods are presented.

3.1. SWIFT Development

To develop SWIFT, various IDEs (integrated development environments) were consid-
ered. Among these, Unity and Nvidia Omniverse are the best-known development tools.
Unity is in a very similar state to UE, containing very well-written documentation and
countless guides made by the community, but it lacks graphical technologies that are ready
to use in UE and are critical for the development of SWIFT, such as Nanite and Lumen. On
the other hand, Nvidia Omniverse lacks easy-to-use documentation and guides made by
the community that are expected from other IDEs like UE and Unity, therefore requiring
more time spent on learning the software. Nvidia Omniverse’s software is even more
complicated; it requires an RTX graphics card and expensive proprietary hardware that
many developers may not have for their projects, meaning that developing SWIFT in this
restrictive IDE could well limit future development opportunities. Accordingly, UE was
chosen to create, develop, and generate SWIFT. Developed by Epic Games, it was originally
designed as a gaming engine and has quickly gained the support of scientific developers.
UE has impressive graphical capabilities and technologies, facilitating easier and quicker
development for SWIFT. This allows for a greater focus on developing the simulation
while UE handles the graphical aspects of the dataset. UE is constantly being updated and
upgraded with the industry’s best graphical simulation and gaming technologies, keeping
it ahead of other IDEs in graphical performance. Therefore, it has a broad lifetime for the
future, with plentiful support and maintenance from Epic Games.
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SWIFT underwent development during versions 5.2 and 5.3 of UE. These versions are
pivotal since PCG was introduced in version 5.2 and Nanite received significant updates in
version 5.3, which now includes landscape support.

Nanite and Lumen, technologies crafted by Epic Games for UE, stand as important ad-
vancements in graphical processing. Nanite reduces process time for rendering geometries
by virtualizing geometries; with this, it can dynamically change the resolution of triangles
to better accommodate screen space. Lumen, on the other hand, acts as a light system; with
a hybrid ray-tracing technology, it achieves indirect lighting and dynamic illumination
with significant speed and light-processing demand. Temporal Super Resolution (TSR)
is another graphical technology developed for UE version 5, enabling the use of heavy
technologies such as Lumen. TSR is an antialiasing technology, which improves image
resolution through the use of algorithms by rendering parts of the screen in extreme defini-
tion and then meshing them together to form a single image. By rendering small parts per
frame, TSR significantly reduces the computational load of each frame, allowing the use of
heavy features like Lumen with a reduced performance.

Inspired by Makowski et al.’s work on biomes [33], three biomes that could be formed
in ecological ecosystems found in Canada were developed, as shown in Figure 1: temperate
and boreal forests, with their respective dense vegetation, and bare tundra for regions that
suffer from extreme cold conditions. These biomes were generated using UE 5.2’s new
tool, PCG. A modular forest model was quickly developed for each type, with different
densities, heights, and steepness tolerances as well as flora. PCG was employed to allow
the project to adapt to any landscape with its forest types. This feature allowed the project
to be completely automated regarding its scenarios, from landscape to forests.

Figure 1. Images of developed biomes for SWIFT, from left to right: boreal, temperate, and tundra.

Nowadays, the digital elevation model that represents the elevation of terrain and
objects is an extensively developed technology, with satellite images already supporting the
extraction of the mentioned maps. UE allows the importing of these maps for the generation
of landscapes; therefore, any terrain from any place in the world can be imported into the
project. Since PCG is used to generate vegetation, these realistic terrains are automatically
covered by millions of trees and plants and can quickly be used to simulate our wildfire.

3.2. Data Simulation

The full simulation of a phenomenon such as a wildfire is still an open issue. Wildland
fires at a landscape scale are so massively complex and their processing is so heavy that no
proper understanding has been developed yet. In addition, with many factors affecting a
wildfire, such as weather conditions, flora properties, physics simulations, and heat transfer,
modeling wildfires is a challenging task [50].

SWIFT simulates weather conditions with a few parameters, i.e., wind speed, wind
direction, humidity, and temperature, which dictate the simulation conditions and di-
rectly affect wildland fire behavior. Rain and snow are also simulated; when humidity is
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above 85%, rain starts falling, and when the temperature drops below −4 degrees, snow
completely overtakes rain and then paints everything white.

Plants are simulated individually. They contain their values and parameters that
determine the fire behavior when burning and heating. Thus, they contain their own fuel,
heat transfer, plant humidity, plant temperature, flash point, and a flag indicating whether
they are already burning or not.

Initially, SWIFT’s fire model was greatly inspired by the work of Pirk et al. [34] on
burning trees, incorporating functionalities such as heat being consumed to evaporate the
liquid content of plants instead of building up inside the plant, the pyrolysis of material,
and the decrease in fuel efficiency. However, when testing the simulation of thousands of
individual fires, the performance of the simulation decreased significantly. Consequently,
some features were simplified, with the understanding that the focus of SWIFT is on the
visual fidelity of fires rather than the accurate simulation of this phenomenon.

The simulation performance requires more improvements to be interactive for large-
scale fires, but it is better than the first prototype and is enough to be rendered with no
performance loss. Fire in SWIFT is simulated by separating the visual and mechanical
aspects. The visual fire is built with a combination of UE Niagara particles, a system that
allows complex simulations by unifying features such as indirect light, heat distortion, or
mirage, and different types of particles for fire, embers, and smoke.

Fire contact is determined by two geometries, a sphere around the center of the fire
and a fan-shaped polygon. These geometries are determined by the fire size, the strength
of the wind, and its direction. Any flora inside or in contact with these two objects is
considered within the fire’s reach and will be directly affected by it. When affected by the
fire, a plant’s temperature increases with each frame following Equation (1).

AddedTemperature = SP × (PHA × (1 − PH × 0.5))× FH
PF × 0.33

(1)

where SP is the current simulation speed, PHA is the plant’s heat absorption, PF is the
plant’s total fuel, PH is the plant’s humidity, and FH is the fire’s heat. Many aspects of
this mathematical statement are transformed into multiplications from fractions to reduce
process costs. Firstly, the humidity value is calculated, generating a range between 0.5
and 1. This value affects the rate of heat accumulation, meaning that a plant with higher
humidity will heat more slowly. The humidity absorption is then multiplied by the heat
absorption of the plant and the heat of the fire. This calculation gives the value of the heat
absorbed by the plant, which is then divided by one-third of its total mass, represented by
the remaining fuel. This means that a larger flame will be required to heat a bulkier plant.
This process is then multiplied by the simulation speed, which simplifies the calculation for
multiple iterations without needing to recalculate the value each time. This simplification
implies minimal errors, which are not significant in large-scale simulations. When the
plant’s temperature rises sufficiently to reach its flash point, i.e., the point at which the
material evaporates into flammable gas and ignites, the simulation marks the plant as
burned and creates a new fire to consume it.

Fire cannot burn on a large scale if the flora it burns is small or has little available fuel,
which means that the heat of the fire is limited by the biomass of the flora. However, when
the fire adequately consumes its fuel source, the increase in heat follows Equation (2).

IncreaseHeat = SP × (((1 − PH × 0.5)× 0.45)− (GH × 0.4)) (2)

where SP is the simulation speed, PH is the plant’s humidity, and GH is the global humidity.
Similar to Equation (1) of flora temperature increase, the fire can only burn the biomaterials
available to it. This is simulated by reducing material consumption according to humidity;
all functions share this same decrease of up to 50% due to flora humidity. Then, this value
is multiplied by 0.45, an arbitrary value that determines how fast the heat of a fire will
increase. Ideally, this value should be related to fuel type and energy release, but for
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simplification purposes, an arbitrary number was chosen. In addition, there is a second
part to this function in the form of a heat reduction according to the global humidity to
emulate saturated surroundings that are extremely humid, such as those found in snow or
rain. This means that our simulated fire will be progressively dampened and eventually
put out by wet weather conditions.

This fire has a visual effect that increases as the fire heats up. This increase in size is
also influenced by the amount of fuel remaining, which indicates that a single example of
flora that is very close to dying or is initially small will not produce a large flame in the
same way as a tree. When the example of flora achieves a temperature above 60 degrees, its
water content begins to evaporate, slowly decreasing over time, as shown in Equation (3).

RemovedHumidity = SP × (0.001 × PT − 60
300 − 60

) (3)

where SP is the simulation speed and PT is the plant’s current temperature. This equation
normalizes a value to a range between the minimum of 60 degrees and the maximum of
300 degrees and then multiplies the result by 0.1%. Therefore, when the temperature reaches
300 degrees, the plant will lose 0.1% of its humidity each time the function runs. Since the
plant temperature is affected by its mass, the plant’s mass will also affect this calculation.

3.3. SWIFT Data

To generate the SWIFT dataset, a UE feature, namely, Sequencer, was widely used
to produce movie renders and mass images. A complete forest environment was devel-
oped, as shown in Figure 2. It was directly generated using heightmaps extracted from
satellite images of a region in Moncton, New Brunswick, Canada. PCG was then ap-
plied to this generated landscape, producing three distinct biomes over the expanse of the
Moncton region.

Figure 2. Background image examples.

This environment simulates approximately 4.7 million plants, encompassing various
types from trees to grass chunks. These plants lack code functionality, which greatly
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improves performance for such a large environment but also makes it difficult to simulate
the actual spread of a fire.

All simulations and data were processed on a machine with an NVIDIA GeForce RTX
3090, an AMD Ryzen 9 5900X 12-Core Processor 3.70 GHz, and 32 GB of RAM (NVIDIA,
Santa Clara, CA, USA).

Four wildfire scenarios were developed in the vast Moncton landscape, each with
different angles and viewpoints. They include ground and aerial views, providing a
comprehensive visual exploration of each scenario as well as a rich and diverse dataset for
training DL models. The videos were also recorded in a daytime simulated environment
without weather change (a clear sky, a temperature of 21 Celsius, and at 1 p.m.).

With the simulation ready, four render sequences were developed to showcase multiple
wildfire scenarios. Each sequence ranged from 1 to 2 min and produced both images and
videos for SWIFT. These sequences were also designed to provide a wide variety of data by
changing the angle and position of the camera. Quick movements simulated fast-flying
drones resulting in blurry images, while slower movements captured clearer images. Aerial
views provided an overview of the fire, and the final sequence included both distant and
close-up fire shots.

These render sequences were then processed; the time to process each frame was
approximately 0.127 s, with an average of 5000 images per render sequence before filtering
out bad frames. It took roughly 11 min to render an entire scenario of 2 min and 47 frames
per second. These were then converted into an MP4 (MPEG-4) video file using the FFmpeg
conversion algorithm.

Both normal images and their corresponding ground truths (masks) were generated.
They required different passes to be generated. For each class sequence and its ground truth,
the processing time was effectively doubled. The switch between images was performed
internally via UE by changing material properties and rendering configurations. When
generating a ground-truth mask, all lighting features were turned off, turning the world
completely black. However, the fire or smoke material was set to be emissive, allowing it to
be visible even without external lighting. This technique ensured that the fire or smoke
was the only visible element in the scene.

RGB images and their corresponding ground-truth images were generated separately
using the Niagara feature. The latter enables consistent simulations that remain unchanged
even after being regenerated numerous times. Adding to that, this feature allowed us to
develop a single scenario and record it from multiple angles and image types without any
differences from the actual fire simulation.

Ground-truth images are the basis for DL training. They are a copy of a normal image
but in binary or grayscale format. The learning method can recognize the fire in the normal
image by matching it with the corresponding ground truth. For fire images, we generated
grayscale images as the corresponding ground-truth images, as shown in Figure 3. When
these images include more than one class, such as fire and smoke in the same image, the
ground truth is set to adjust dynamically, displaying multicolored pixels whenever the
two masks overlap, as depicted in Figure 4.

Smoke ground-truth images were generated using two methods, as depicted in
Figure 5. One is a normal grayscale image, which can be used to acquire specific in-
formation such as the strength of the effect, i.e., when a flame has moved far from its source
and is quickly dying or when smoke particles are less dense and therefore less visible. The
second method is the use of a graphical binary filter. This code analyzes the pixels in the
frame and paints them either completely white for pixels that have values above 0.015 for
their respective colors or completely dark in the case of failure to achieve this threshold.

The SWIFT dataset comprises around 70,000 images of 1920 × 1080 pixels, as illustrated
in Table 3. These images were filtered to improve quality, notably by removing overly
blurred images. Three background videos were generated, containing around 18,000 images.
They contain no fire or smoke and therefore required no ground-truth variants.
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For actual wildfire data, four scenarios were developed, each of which was used to
generate ground-truth data. These scenarios were then processed in different configurations:
only fire effects, only smoke effects, and visible fire and smoke effects. This distinction was
useful for generating a broad database for different types of DL methods.

Figure 3. Fire image examples. (Top): RGB fire images. (Bottom): Their corresponding ground-
truth images.

Figure 4. Fire and smoke image examples. (Top): RGB images. (Bottom): Their corresponding
ground-truth images.

Table 3. SWIFT dataset overview.

Data Type Images Videos

Only fire 16,404 4
Only smoke 17,638 4
Fire and smoke 17,116 4
Total of fire, smoke, and both together 51,158 12
Background, no wildfire 18,048 3
Total of fire, smoke, and background 69,206 15

Besides the fire data, five simulation videos were produced. These videos showcase
the simulation in effect, its behaviors, and its functionalities, allowing for a demonstration
of the actual developed simulation. These simulation videos contain their simulation
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parameters, such as weather conditions, wind, simulation speed, temperature, and time of
day, as shown in Table 4.

Figure 5. Smoke example images. (Top) to (Bottom): RGB smoke images, their corresponding
grayscale ground truth, and their corresponding binary ground truth.

Table 4. SWIFT dataset overview.

Name View Type Day Time Temperature Humidity Wind Speed Wind Direction

GroundView_Fire_1 Terrestrial 1 p.m. 31 to −4 Celsius 0 to 1 32 km/H (0,−1,0) south
GroundView_Fire_2 Terrestrial Complete day cycle 21 Celsius 0.25 24 km/H (0,−1,0) south
AerialView_Fire Aerial 1 p.m. 21 Celsius 0.25 24 km/H (0,1,0) north
InsideFire Terrestrial 1 p.m. 21 Celsius 0.25 24 km/H (0,−1,0) south
IndividualFire Terrestrial 1 p.m. 21 Celsius 0.25 24 km/H (0,1,0) north

In summary, the SWIFT dataset was generated using UE. It comprises 69,206 synthetic
images and 15 videos of wildland fires with a high resolution of 1920 × 1980 pixels, de-
picting aerial, terrestrial, and forest interior views. This dataset is annotated and divided
into four categories: fire (16,404 images and 4 videos), smoke (17,638 images and 4 videos),
both fire and smoke (17,116 images and 4 videos), and no-fire/no-smoke (18,048 images
and 3 videos). Each folder also includes the corresponding ground-truth images and
videos. Additionally, the SWIFT dataset contains five simulation videos with their simu-
lation parameters, including weather conditions, wind speed, humidity, wind direction,
temperature, and time of day.

3.4. Proposed Methods
3.4.1. BoucaNet

BoucaNet [26] was developed to improve the smoke recognition task using satellite
data. It is an ensemble learning method, incorporating two deep learning methods, Ef-
ficientFormerV2 [51] and EfficientNetV2 [52], as depicted in Figure 6. First, the input
images are resized to 224 × 224 pixels. Then, these images are analyzed simultaneously by
the EfficientFormerV2 and EfficientNetV2 methods to extract deep complex features and
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generate two diversified feature maps. Next, the Gaussian dropout method with a rate of
0.3 is used to improve BoucaNet generalization and prevent overfitting after concatenating
the two generated feature maps. Finally, a sigmoid function determines a probability score
between 0 and 1, assigning the relevant class such as fire and no-fire to the input images.

Figure 6. The proposed architecture of BoucaNet and CT-Fire methods. L and L1 refer to the
likelihood of the input image being classified as fire or no-fire.

3.4.2. CT-Fire

CT-Fire [25] was introduced to improve wildfire recognition and detection. It is
an ensemble learning method, combining the vision transformer EfficientFormerV2 [51]
and the deep CNN RegNetY [53], as shown in Figure 6. First, the input images are
resized to 224 × 224 pixels. Then, the RegNetY and EfficientFormerV2 models are adopted
simultaneously for extracting wildfire features. Then, the two generated feature maps
are concatenated before applying Gaussian dropout with a rate of 0.3. Finally, a sigmoid
function generates CT-Fire’s output, providing a probability score between 0 and 1 and
indicating wildland fire presence in the input data.

3.4.3. DC-Fire

DC-Fire [27] is a deep learning method designed for detecting and identifying wildfires
in infrared images. DC-Fire combines two deep CNNs, DenseNet-201 [54] and EfficientNet-
B5 [55]. Firstly, as shown in Figure 7, the image, resized to 224 × 224 pixels, is fed
simultaneously into these CNNs to extract relevant characteristics of wildland fires. Follow-
ing the concatenation of the feature maps generated by these models, an average pooling
layer is used to reduce the dimensions of the concatenated feature map. Subsequently,
Gaussian dropout with a rate of 0.3 is utilized. Finally, a sigmoid function is employed to
determine a probability value, ranging from 0 to 1, indicating the presence of wildfires in
the input images.

Figure 7. The proposed architecture of DC-Fire. L and L1 refer to the likelihood of the input image
being classified as fire or no-fire.

3.5. Evaluation Metrics

To analyze and evaluate the performance of the proposed DL methods, we employed
popular evaluation metrics, notably accuracy, precision, recall, and F1-score, used in object
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classification tasks as well as in wildland fire recognition. These metrics are defined in terms
of false-positive rate (FP), true-positive rate (TP), false-negative rate (FN), and true-negative
rate (TN).

• Accuracy is the proportion of images correctly predicted over the total number of
images, as shown in Equation (4).

• F1-score is the harmonic mean of recall and precision metrics, as given by Equation (5).
Precision determines the percentage of correct predictions, meaning the number of
images predicted as fire which are fire, as presented by Equation (6). Recall measures
the percentage of actual fire images correctly recognized by the proposed DL models,
as illustrated in Equation (7).

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

F1-Score =
2 × Precision × Recall

Precision + Recall
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Additionally, the inference time, which represents the mean average time required
by the proposed DL model to predict the presence of wildland fire using testing data, is
employed to determine the ability of these models for early detection of wildfires.

4. Results Analysis

The BoucaNet, DC-Fire, and CT-Fire models were developed using Python and Ten-
sorFlow on a machine with an Intel Xeon Gold 6148 and an NVIDIA Tesla V100SXM2
GPU. These models were trained using our proposed dataset, SWIFT. They were also tested
using real wildfire images collected from the CorsicanFire [18], DeepFire [19], and Fire [56]
datasets. The training data include 28,130 images, of which 13,692 are fire images and
14,438 are no-fire images. The testing data consist of 780 images, comprising 541 fire images
and 239 no-fire images.

We employed a batch size of 8, 150 epochs, a learning rate of 0.001, and we input
images with 224 × 224 pixels to train these models. We also adopted the loss function binary
cross-entropy [57], which determines the likelihood of the presence of wildland fires using
input images, as shown in Equation (8).

Cross − entropy = − 1
n

n

∑
i=1

(xi log(x̂i) + (1 − xi) log(1 − x̂i)) (8)

where x̂i refers to the generated output and xi represents the label (no-fire and fire).
On the other hand, no data augmentation techniques were applied during the train-

ing stage. An early stop was implemented after 15 epochs without improvement in
validation loss. The model yielding the lowest loss of validation was selected as the
best-performing model.

Table 5 illustrates the parameter numbers for the proposed models, BoucaNet, DC-Fire,
CT-Fire, RegNetY-16GF, and ResNeXt-101, in recognizing wildland fires. Among these,
CT-Fire and BoucaNet are complex models, as each is an ensemble learning with two sophis-
ticated DL models. CT-Fire has the highest number of parameters (109,850,670 parameters).
BoucaNet and RegNetY-16GF have over 80 million parameters, significantly more than
ResNeXt-101 (44,317,562 parameters) and DC-Fire (46,843,449 parameters), which inte-
grates two simple CNNs, compared with those in the CT-Fire and BoucaNet models. Model
complexity can improve modeling data ability as well as learning speed. However, it also
requires more computing resources during the training step.
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Table 5. Number of parameters of BoucaNet, DC-Fire, CT-Fire, and other models.

Models Number of Parameters

BoucaNet 80,569,102
DC-Fire 46,843,449
CT-Fire 109,850,670
RegNetY-16GF 83,714,958
ResNeXt-101 44,317,562

To evaluate the performance of CT-Fire, DC-Fire, and BoucaNet, we first analyzed their
testing results based on the obtained accuracy, precision, recall, F1-score, and inference time,
which represents the average time taken by each model for predicting the presence of wildland
fires. Additionally, these results were compared with the performance of RegNetY-16GF [53]
and ResNeXt-101 [58] as baseline methods. Next, we present the F1-score values of these
models for each no-fire and fire class. Then, the confusion matrix of DC-Fire, BoucaNet, and
CT-Fire is introduced. Finally, examples of predicted images are presented.

Figure 8 presents the loss curves of the BoucaNet, DC-Fire, CT-Fire, RegNetY-16GF,
and ResNeXt-101 models during the training and validation stages. We can see that all
models showed rapid improvement during the early learning epochs, with training and
validation losses rapidly decreasing and converging. This indicates that these models are
well learned and generalized with no overfitting.

Figure 8. Loss curves for the proposed DL methods (BoucaNet, DC-Fire, CT-Fire, RegNetY-16GF, and
ResNeXt-101) during training and validation steps.
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Table 6 presents the performance of DC-Fire, BoucaNet, CT-Fire, RegNetY-16GF, and
ResNeXt-101 using real images. Based on the accuracy and F1-score, BoucaNet performed
well, with an accuracy of 93.21% and an F1-score of 93.13%, demonstrating its reliability in
recognizing wildfires. CT-Fire achieved the lowest results, with an accuracy of 88.33% and
an F1-score of 88.50%. In addition, BoucaNet achieved a precision of 93.17%, superior to
DC-Fire, CT-Fire, RegNetY-16GF, and ResNeXt-101. This result shows the accurate ability
of this model in predicting positive scenarios using real data. Moreover, BoucaNet obtained
the best recall value of 93.21% among all proposed DL models, which also indicates its
reliability in recognizing wildfires and solving challenges related to wildfire detection
tasks. Based on the F1-score, BoucaNet slightly outperformed DC-Fire, RegNetY-16GF, and
ResNeXt-101 by 0.49%, 1.89%, and 1.14%, respectively. The high performance of BoucaNet
is achieved thanks to the rich and diverse feature maps generated by its backbone models,
EfficientFormerV2 and EfficientNetV2. These feature maps include comprehensive global
and local features, including colors, edges, shape, contrast, and textures for each fire and no-
fire class. As a result, BoucaNet can differentiate wildland fires from complex background
features and predict the presence of small areas of wildland fire. In addition, BoucaNet
obtained a fast processing time of 0.09 s, better than the inference time of DC-Fire, CT-Fire,
and RegNetY-16GF by 0.03, 0.02, and 0.01 s, respectively, enabling real-time detection.
However, this inference time is higher compared with the time taken by ResNeXt-101,
which is 0.03 s.

Table 6. Comparative analysis of BoucaNet, DC-Fire, CT-Fire, and other models using real images.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) Inference Time (s)

BoucaNet 93.21 93.17 93.21 93.13 0.09
DC-Fire 92.82 92.96 92.82 92.64 0.12
CT-Fire 88.33 88.89 88.83 88.50 0.11
RegNetY-16GF 91.41 91.39 91.41 91.24 0.10
ResNeXt-101 92.05 91.98 92.05 91.99 0.03

Table 7 illustrates the F1-score results of BoucaNet, DC-Fire, CT-Fire, RegNetY-16GF,
and ResNeXt-101 for recognizing no-fire and fire classes. BoucaNet achieved superior per-
formance with F1-scores of 95% and 89% for fire and no-fire classes, respectively, showing
its ability to distinguish between wildfires and complex backgrounds. DC-Fire reached the
high F1-score of 95% for the fire class, like BoucaNet. However, it obtained an F1-score
slightly lower than that of BoucaNet by 2% in recognizing the no-fire class. CT-Fire showed
the lowest performance, with F1-scores of 91% and 82% for fire and no-fire classes, respec-
tively. RegNetY-16GF and ResNeXt-101 also achieved lower results than BoucaNet for both
fire and no-fire classes.

Table 7. Comparative analysis of BoucaNet, DC-Fire, CT-Fire, and other models for both fire and
no-fire classes using real images.

Models F1-Score (%)
Fire No-Fire

BoucaNet 95 89
DC-Fire 95 87
CT-Fire 91 82
RegNetY-16GF 94 85
ResNeXt-101 94 87

Figure 9 depicts three confusion matrices of BoucaNet, CT-Fire, and DC-Fire for no-
fire and fire classes using real data, reporting the number of true positives (fire images
correctly recognized as fire), false negatives (no-fire images incorrectly classified as fire),
false positives (fire images incorrectly predicted as no-fire), and true negatives (no-fire
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images correctly predicted as no-fire). DC-Fire and BoucaNet achieved a high number of
true positives (531 images for DC-Fire and 523 images for BoucaNet) compared to CT-Fire
(482 images), indicating their ability to identify wildfires. However, they had a low number
of missed wildfire instances, with a false-positive rate of 18 images for BoucaNet and
10 images for DC-Fire. On the other hand, BoucaNet and CT-Fire showed a high rate of
correctly recognizing no-fire images (204 images for BoucaNet and 207 images for CT-Fire)
compared to DC-Fire (193 images), demonstrating their proficiency in identifying scenarios
without wildfires and overcoming false alarms.

Figure 9. Confusion matrices of BoucaNet, CT-Fire, and DC-Fire using real images. From (left) to
(right): BoucaNet results, CT-Fire results, and DC-Fire results.

As depicted in Figures 10 and 11, BoucaNet, DC-Fire, and ResNeXt-101 showed their
accurate potential in differentiating between wildland fire and no-wildland-fire images.
For example, they well predicted wildland fire images as fire images with high confidence
scores of 1.00 for BoucaNet, 0.99 for DC-Fire, and 0.97 for ReseNext-101, as presented in
Figure 10c. They also correctly identified small wildland fire areas (see Figure 10b) and
differentiated between wildfire and no-wildfire images, which have similar features as
fire, such as colors (see Figure 11b). However, CT-Fire badly predicted wildfire images, as
shown in Figure 10b,c. RegNetY-16 GF also misclassified no-wildfire images as fire images
(see Figure 11b).

(a) Ground truth: fire.
Predictions:
BoucaNet: fire (score: 0.99).
DC-Fire: fire (score: 0.99).
CT-Fire: fire (score: 0.84).
ResNeXt-101: fire (score: 0.97).
RegNetY-16GF: fire (score: 0.98).

(b) Ground truth: fire.
Predictions:
BoucaNet: fire (score: 0.64).
DC-Fire: fire (score: 0.82).
CT-Fire: no-fire (score: 0.88).
ResNeXt-101: fire (score: 0.97).
RegNetY-16GF: fire (score: 0.98).

(c) Ground truth: fire.
Predictions:
BoucaNet: fire (score: 1.00).
DC-Fire: fire (score: 0.99).
CT-Fire: no-fire (score: 0.99).
ResNeXt-101: fire (score: 0.97).
RegNetY-16GF: fire (score: 0.98).

Figure 10. Fire classification results of the proposed models.



Remote Sens. 2024, 16, 1627 18 of 22

(a) Ground truth: No-Fire
Predictions:
BoucaNet: No-Fire (score: 0.99)
DC-Fire: No-Fire (score: 0.99)
CT-Fire: No-Fire (score: 0.98)
ResNeXt-101: No-Fire (score: 0.74)
RegNetY-16GF: No-Fire (score: 0.62)

(b) Ground truth: No-Fire
Predictions:
BoucaNet: No-Fire (score: 0.99)
DC-Fire: No-Fire (score: 0.69)
CT-Fire: No-Fire (score: 0.99)
ResNeXt-101: No-Fire (score: 0.75)
RegNetY-16GF: Fire (score: 0.95)

(c) Ground truth: No-Fire
Predictions:
BoucaNet: No-Fire (score: 1.00)
DC-Fire: No-Fire (score: 1.00)
CT-Fire: No-Fire (score: 1.00)
ResNeXt-101: No-Fire (score: 0.97)
RegNetY-16GF: No-Fire (score: 0.98)

Figure 11. No-Fire classification results of the proposed models.

To summarize, BoucaNet effectively predicted the presence of wildland fires using
real images. It outperformed the baseline models DC-Fire, CT-Fire, ResNeXt-101, and
RegNetY-16GF. It also performed well in challenging scenarios, including small wildland
fire zones and complex backgrounds.

5. Discussion

In this paper, recent deep learning models (BoucaNet, CT-Fire, DC-Fire, RegNetY-
16GF, and ResNeXt-101) were adopted for predicting wildland fires and addressing their
challenging limitations. These models were trained using a synthetic dataset, namely,
SWIFT, and were tested using real fire images (sim-to-real) to address the scarcity of
available annotated wildfire data. BoucaNet performed well compared to other DL models
based on F1-score, precision, recall, and accuracy metrics. It achieved an accuracy of 93.21%
and an F1-score of 93.13%, better than CT-Fire, DC-Fire, RegNetY-16GF, and ResNeXt-101
by 4.88%, 0.39%, 1.80%, and 1.16%, respectively, in terms of accuracy and by 4.63%, 0.49%,
1.89%, and 1.14%, respectively, in terms of F1-score. It also obtained the highest precision
of 93.17% and recall of 93.21% among these models. It showed its reliability in identifying
wildfires and overcoming challenging scenarios such as the complexity of the background;
the varying shape, intensity, and size of wildfires; and the detection of small wildland
fire zones. Additionally, these proposed models obtained an interesting inference time
when detecting the presence of wildfire zones in real images. Among them, BoucaNet,
DC-Fire, and ResNeXt-101 obtained inference times of 0.09 s, 0.012 s, and 0.03 s, respectively.
This allows early intervention to reduce the damage of wildfires and shows the reliability
of deep learning models when integrating with drone or surveillance systems to detect
wildland fires and improve wildfire detection strategies.

However, these models misclassified some wildland fire instances. There are still
numerous challenging scenarios due to the varying size, shape, and intensity of wildland
fires, varying meteorological factors, and the visual resemblance between fire and other
objects regarding their colors, such as sunrise and sunset. Hence, generating more synthetic
wildfire data, including these challenging scenarios, can improve the performance of
wildfire recognition tasks and enhance the potential of deep learning models in detecting
wildfires, as they need big data for accurate learning.
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On the other hand, while simulation platforms play a crucial role in wildland fire
prevention and management, SWIFT still lacks many features expected of a true simulator,
such as more realistic smoke and dynamic burn of flora and ambient environment. At
present, the simulation is only able to emulate fire growth and spread associated with the
environment via simplified calculations. To address these limitations, we plan to improve
the generated simulation data, integrating dynamic combustion of flora and interactive
simulations with real-time fire spread. In addition, we will develop wildfire scenarios
in urban environments. Then, we will use SWIFT for testing and evaluating wildfire
segmentation and propagation methods. This offers a comprehensive representation of
wildland fire behaviors and facilitates decision making in fire management.

6. Conclusions

In this paper, a synthetic wildland fire dataset, namely, SWIFT, is presented. SWIFT
was developed in UE, utilizing its newest graphical features such as TSR, Nanite, and
Lumen. It includes around 70,000 synthetic images, with their corresponding mask images,
generated from wildland fire scenarios. This dataset contains images that vary between
camera positions, aerial and terrestrial, and differ in the classes presented for ground truth,
with smoke, wildfire, both smoke and fire, and no fire. It presents numerous wildland
fire scenarios collected from multiple viewpoints, including interior forest views, near
active fires, ground views, and aerial views. SWIFT also includes wildfire videos with
their related environmental conditions, such as temperature, humidity, wind direction, and
wind speed used for wildfire simulation. Additionally, this dataset was used to train the
recent DL methods BoucaNet, CT-Fire, and DC-Fire. After training, these DL models were
tested against real images (sim-to-real), extracted from the CorsicanFire, DeepFire, and
Fire datasets. BoucaNet showed great results with an accuracy of 93.21% and an F1-score
of 93.13%, better than DC-Fire, CT-Fire, and the baseline methods RegNetY-16GF and
ResNetXt-101. It showed its ability to overcome challenging scenarios, such as complex
backgrounds, detecting small wildfire zones, and diverse wildland fire intensities, shapes,
and sizes. The proposed DL models also demonstrated remarkable speed in detecting
wildfires, as BoucaNet and DC-Fire achieved inference times of 0.09 and 0.012 s, respectively.
This rapid detection demonstrates the potential of integrating deep learning into drones or
surveillance systems to enhance the detection of wildland fires.
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Abbreviations
The following abbreviations are used in this manuscript:

SWIFT Simulated Wildfire Images for Fast Training
DL Deep learning
UE Unreal Engine
IDE Integrated development environment
PCG Procedural Content Generation
CNN Convolutional neural network
DCNN Deep convolutional neural network
TSR Temporal Super Resolution
ROS Robot Operating System
SITL Software In The Loop
CMM Cognitive Mission Manager
LiDAR Light detection furthermore, ranging
SHAP SHapley Additive exPlanations
SegNet Segmented Neural Network
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36. Nit, ă, M.D. Testing Forestry Digital Twinning Workflow Based on Mobile LiDAR Scanner and AI Platform. Forests 2021, 12, 1576.
[CrossRef]

37. Buonocore, L.; Yates, J.; Valentini, R. A Proposal for a Forest Digital Twin Framework and Its Perspectives. Forests 2022, 13, 498.
[CrossRef]

38. Li, S.; Yan, Q.; Liu, P. An Efficient Fire Detection Method Based on Multiscale Feature Extraction, Implicit Deep Supervision and
Channel Attention Mechanism. IEEE Trans. Image Process. 2020, 29, 8467–8475. [CrossRef] [PubMed]

39. Foggia, P.; Saggese, A.; Vento, M. Real-Time Fire Detection for Video-Surveillance Applications Using a Combination of Experts
Based on Color, Shape, and Motion. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1545–1556. [CrossRef]

40. University of Georgia. ForestryImages Dataset. Available online: https://www.forestryimages.org/ (accessed on 12 March 2024).
41. Cazzolato, M.T.; Avalhais, L.P.; Chino, D.Y.; Ramos, J.S.; de Souza, J.A.; Rodrigues, J.F., Jr.; Traina, A. Fismo: A Compilation of

Datasets From Emergency Situations for Fire and Smoke Analysis. In Proceedings of the Brazilian symposium on databases-SBBD,
Uberlandia, Brazil, 2–5 October 2017; pp. 213–223.

42. Flickr Team. Flickr-FireSmoke and Flickr-Fire Datasets. Available online: https://www.flickr.com/ (accessed on 12 March 2024).
43. Cazzolato, M.T.; Bedo, M.V.N.; Costa, A.F.; de Souza, J.A.; Traina, C.; Rodrigues, J.F.; Traina, A.J.M. Unveiling Smoke in Social

Images with the SmokeBlock Approach. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy,
4–8 April 2016; pp. 49–54.

44. Treneska, S.; Stojkoska, B.R. Wildfire Detection from UAV Collected Images Using Transfer Learning. In Proceedings of the 18th
International Conference on Informatics and Information Technologies, Xi’an, China, 12–14 March 2021; pp. 6–7.

45. Ghali, R.; Akhloufi, M.A.; Mseddi, W.S. Deep Learning and Transformer Approaches for UAV-Based Wildfire Detection and
Segmentation. Sensors 2022, 22, 1977. [CrossRef]

http://dx.doi.org/10.1016/j.firesaf.2017.06.012
http://dx.doi.org/10.1155/2022/5358359
http://dx.doi.org/10.1016/j.comnet.2021.108001
http://dx.doi.org/10.1214/13-STS451
http://dx.doi.org/10.1038/s41597-019-0312-2
http://dx.doi.org/10.3390/asi4020036
http://dx.doi.org/10.1080/01431161.2023.2283904
http://dx.doi.org/10.3390/fire6120455
http://dx.doi.org/10.1038/s41893-019-0451-7
http://dx.doi.org/10.1111/cgf.12282
http://dx.doi.org/10.1145/3306346.3323039
http://dx.doi.org/10.1145/3130800.3130814
http://dx.doi.org/10.1145/3450626.3459954
http://dx.doi.org/10.3390/f12111576
http://dx.doi.org/10.3390/f13040498
http://dx.doi.org/10.1109/TIP.2020.3016431
http://www.ncbi.nlm.nih.gov/pubmed/32813654
http://dx.doi.org/10.1109/TCSVT.2015.2392531
https://www.forestryimages.org/
https://www.flickr.com/
http://dx.doi.org/10.3390/s22051977


Remote Sens. 2024, 16, 1627 22 of 22

46. Zhang, L.; Wang, M.; Fu, Y.; Ding, Y. A Forest Fire Recognition Method Using UAV Images Based on Transfer Learning. Forests
2022, 13, 975. [CrossRef]

47. Ahmad, K.; Khan, M.S.; Ahmed, F.; Driss, M.; Boulila, W.; Alazeb, A.; Alsulami, M.; Alshehri, M.S.; Ghadi, Y.Y.; Ahmad, J.
FireXnet: An Explainable AI-based Tailored Deep Learning Model for Wildfire Detection on Resource-constrained Devices. Fire
Ecol. 2023, 19, 54. [CrossRef]

48. Wang, L.; Zhang, H.; Zhang, Y.; Hu, K.; An, K. A Deep Learning-Based Experiment on Forest Wildfire Detection in Machine
Vision Course. IEEE Access 2023, 11, 32671–32681. [CrossRef]

49. Jonnalagadda, A.V.; Hashim, H.A. SegNet: A segmented Deep Learning Based Convolutional Neural Network Approach for
Drones Wildfire Detection. Remote Sens. Appl. Soc. Environ. 2024, 34, 101181. [CrossRef]

50. Papadopoulos, G.D.; Pavlidou, F.N. A Comparative Review on Wildfire Simulators. IEEE Syst. J. 2011, 5, 233–243. [CrossRef]
51. Li, Y.; Hu, J.; Wen, Y.; Evangelidis, G.; Salahi, K.; Wang, Y.; Tulyakov, S.; Ren, J. Rethinking Vision Transformers for MobileNet Size

and Speed. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October
2023; pp. 16889–16900.

52. Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. In Proceedings of the 38th International Conference on
Machine Learning, Virtual Event, 18–24 July 2021; pp. 10096–10106.

53. Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollár, P. Designing Network Design Spaces. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, DC, USA, 14–19 June 2020; pp. 10428–10436.

54. Gao, Z.; Laurens, V.D.M.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

55. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

56. Saied, A. Fire Dataset. Available online: https://www.kaggle.com/datasets/phylake1337/fire-dataset?select=fire_dataset%2C+
06.11.2021 (accessed on 12 March 2024).

57. Al-Dabbagh, A.M.; Ilyas, M. Uni-temporal Sentinel-2 Imagery for Wildfire Detection Using Deep Learning Semantic Segmentation
Models. Geomat. Nat. Hazards Risk 2023, 14, 2196370. [CrossRef]

58. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/f13070975
http://dx.doi.org/10.1186/s42408-023-00216-0
http://dx.doi.org/10.1109/ACCESS.2023.3262701
http://dx.doi.org/10.1016/j.rsase.2024.101181
http://dx.doi.org/10.1109/JSYST.2011.2125230
https://www.kaggle.com/datasets/phylake1337/fire-dataset?select=fire_dataset%2C+06.11.2021
https://www.kaggle.com/datasets/phylake1337/fire-dataset?select=fire_dataset%2C+06.11.2021
http://dx.doi.org/10.1080/19475705.2023.2196370

	Introduction
	Related Works
	Three-Dimensional Simulation Platform
	Wildland Fire Datasets
	Deep Learning Approaches for Wildland Fire Recognition

	Materials and Methods
	SWIFT Development
	Data Simulation
	SWIFT Data
	Proposed Methods
	BoucaNet
	CT-Fire
	DC-Fire

	Evaluation Metrics

	Results Analysis
	 Discussion
	Conclusions
	References

