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Abstract: Although deep neural networks have made significant progress in tasks related to remote
sensing image scene classification, most of these tasks assume that the training and test data are
independently and identically distributed. However, when remote sensing scene classification models
are deployed in the real world, the model will inevitably encounter situations where the distribution
of the test set differs from that of the training set, leading to unpredictable errors during the inference
and testing phase. For instance, in the context of large-scale remote sensing scene classification
applications, it is difficult to obtain all the feature classes in the training phase. Consequently,
during the inference and testing phases, the model will categorize images of unidentified unknown
classes into known classes. Therefore, the deployment of out-of-distribution (OOD) detection within
the realm of remote sensing scene classification is crucial for ensuring the reliability and safety of
model application in real-world scenarios. Despite significant advancements in OOD detection
methods in recent years, there remains a lack of a unified benchmark for evaluating various OOD
methods specifically in remote sensing scene classification tasks. We designed different benchmarks
on three classical remote sensing datasets to simulate scenes with different distributional shift. Ten
different types of OOD detection methods were employed, and their performance was evaluated
and compared using quantitative metrics. Numerous experiments were conducted to evaluate the
overall performance of these state-of-the-art OOD detection methods under different test benchmarks.
The comparative results show that the virtual-logit matching methods without additional training
outperform the other types of methods on our benchmarks, suggesting that additional training
methods are unnecessary for remote sensing image scene classification applications. Furthermore,
we provide insights into OOD detection models and performance enhancement in real world. To
the best of our knowledge, this study is the first evaluation and analysis of methods for detecting
out-of-distribution data in remote sensing. We hope that this research will serve as a fundamental
resource for future studies on out-of-distribution detection in remote sensing.

Keywords: image scene classification; out-of-distribution (OOD); open set recognition (OSR); safety;
reliability; uncertainty

1. Introduction

In the past five years, the field of remote sensing image scene classification has seen
significant advancements through the use of deep-learning-based methods [1,2]. The
goal of remote sensing image scene classification is to convert satellite images into clear,
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structured semantics that automatically identify the type of land and how it is used, such
as for residential or industrial areas [3]. This technique is crucial for analyzing aerial and
satellite images to categorize them into specific types of land use and land cover (LULC)
based on what is in the image [4,5]. However, traditional models for remote sensing scene
classification, which primarily depend on supervised learning, face several challenges.
These methods usually train on closed datasets and struggle to correctly identify rare or
previously unseen types of land cover in the real world. When encountering unfamiliar
land covers, these models tend to misclassify these anomalies into existing categories
with high confidence [6–8], leading to inaccurate scene classification. Figure 1 illustrates
a case in remote sensing scene classification: when models trained on urban datasets
confront unknown land cover types, they tend to over-assign confidence to unknown
classes, limiting the reliability and safety of the model in real-world applications [9,10].

Unknow

Unknow

Playground

Overpass

Residential

Station

Figure 1. A remote sensing scene classification model trained on a closed dataset tends to encounter
challenges when faced with unknown categories in open-world scenarios. In such cases, the model
often categorizes them as known ones.

Supervised-learning-based remote sensing scene classification models are based on
the closed-world assumption [11,12], that is, the test data are assumed to be independently
and identically distributed to the training data [13], a situation referred to as in-distribution
(ID). However, when the model is deployed in an open real-world scenario, the test data
may be from a distribution different from that of the training dataset, referred to as out-
of-distribution (OOD) [13]. For large-scale remote sensing scene classification tasks, it
is common for the distributions of training and test sets to exhibit shifts [14]. Given the
intricate nature of surface categories across diverse landscapes, model are prone to encoun-
tering semantic shifts during their application and deployment phases [13]. Additionally,
domain shift [15,16] occurs in the distribution of remote sensing images collected across
different datasets, owing to sensor differences and geographical disparities. We illustrate
the concepts of semantic shift and domain shift in Figure 2. In these situations, the model
tends to assign excessively high confidence levels, raising security concerns [17].
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Figure 2. When deploying a remote sensing scene classification model in the real world, challenges
arise during inference and testing. These challenges include images with land cover categories not
found in the training dataset (referred to as semantic shift) or images with the same categories but
differing sensor differences and geographical disparities (referred to as domain shift). Models often
tend to classify such images as known categories.

Over the past 5 years, numerous OOD detection methods have been proposed to
ensure the safety and reliability of models [13]. The goal of OOD detection is to detect
samples in which the model cannot be generalized [18]. Currently, the main OOD detection
methods can be categorized as post hoc [19–23], training-time regulization [24,25], training
with outlier exposure [26–28], and model uncertainty [29–31]. However, minimal attention
has been given to OOD detection in remote sensing scene classification tasks. Previous
research has focused on semantic shift due to the presence of new categories in the test set
and addressed it using open-set-recognition (OSR) methods [32–34]. Al Rahhal et al. [35]
proposed an end-to-end learning approach based on vision transformers and employed
energy-based learning to jointly model the class labels and data distribution. Liu et al. [14]
proposed a new loss function based on prototype learning and uncertainty measurement
to enhance the interclass discrimination and intraclass compactness of the learned deep
features. Gawlikowski et al. [16] developed a model based on a Dirichlet prior network
to quantify the distributional uncertainty of deep-learning-based remote sensing models,
utilizing this approach for OOD detection.

However, to the best of our knowledge, there is no unified benchmark for comparing
and analyzing the effectiveness of various types of state-of-the-art OOD detection methods
applied to remote sensing scene classification tasks, thereby leading to unfair comparisons
and uncertain results. First, traditional evaluation benchmarks for OOD detection are not
applicable to OOD detection of remote sensing imagery as these benchmarks are designed
for general image datasets [36,37]. Nonetheless, remote sensing images from different
datasets not only encounter semantic shifts but also face domain shifts due to variations
in sensors and spatial distributions [38]. In addition, the performance of OOD detection
methods vary widely across different datasets and benchmark comparisons [28,39]. Many
simple comparison benchmarks for general image datasets are close to saturation, rendering
improvements insignificant [18,40]. Therefore, it is crucial to design an out-of-distribution
(OOD) detection benchmark and accurately assess the performance of existing methods on
remote sensing datasets.

In this paper, we present the following key contributions:
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1. We establish benchmarks for evaluating OOD detection in remote sensing scene
classification, using ResNet-50 as the backbone for all methods;

2. We assess the effectiveness of various OOD detection methods across challenging
datasets like AID, UCM, and EuroSAT, using metrics such as AUROC, FPR@95,
and AUPR;

3. We analyze performance disparities and challenges in applying these OOD detection
methods to large-scale scene classification.

2. Methodology

In this section, we explore the concept of OOD and its related concepts and discuss
the selected OOD detection methods and evaluation metrics. We prioritize using open-
source code packages to quantitatively evaluate and compare their performance across
different benchmarks. The selected methods align with the four most prominent research
directions for OOD detection, as categorized in Table 1. Additionally, we present three
benchmark remote sensing datasets and a backbone for scene classification and evaluate
the performance of the models. Detailed implementation details are provided in the final
part of this section.

Table 1. List of different types of OOD detection methods for remote sensing scene classification tasks.

Methodology Reference

OOD detection methods

post hoc

MSP [17]

VIM [41]

KNN [42]

training-time regularization

ConfBranch [43]

LogitNorm [44]

G-ODIN [45]

training with outlier exposure
OE [28]

MCD [27]

model uncertainty
MCDropout [46]

Tempscaling [47]

2.1. Definition and Related Concepts
2.1.1. Definition

Remote sensing scene classification is a typical supervised multi-classification task [2,48].
For the remainder of this paper, we have assumed that X represents the input space of
the remote sensing images and Y = {1, 2, . . . , C} represents the labeling space of the remote
sensing images. Thus, the training data can be represented as Din = {Xi, yi}n

i=1, its distribution
can be expressed as PXY , and the marginal distribution can be denoted as Pin . The process
of a model trained on the training data is presented as f : X 7→ R|Y|, and the output of the
model is denoted by the logit vector z, which is used to predict the output of the model.

We aim to deploy the model for remote sensing scene classification in the real world
with a trustworthy OOD detector that not only accurately classifies data from the distribu-
tion PXY (ID), but also recognizes data that do not belong to that distribution (OOD). The
problem is expressed as a binary classification problem; that is, at the time of testing, the
model must determine whether the input x ∈ X is from Pin . This can be calculated using
the following expression:

Gλ(x) =
{

ID S(x) ≥ λ
OOD S(x) < λ

, (1)
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where S(x) represents the score of the sample, and samples with scores above a threshold
λ are classified as ID; otherwise, they are classified as OOD. Scene classification models
should not predict OOD samples, as no corresponding intersection in Y can be identified.

To better evaluate the performance of different models on remote sensing scene
classification and examine the labels of OOD samples, we initially segmented the whole
data space D into four subspaces: DID , DSimi-OOD , DNear-OOD , and DFar-OOD . This division
simplifies analysis by organizing samples into categories based on their connection to
certain distributions. Each category shows a different level of uncertainty, from low to
high . Our approach to segmenting the data and defining these categories draws from the
methodology proposed by Liang et al. [19].

1. (DID). Let X denote the input, X ∈ D. { f (X, θ) : θ ∈ Θ} is a family of density
functions on D,θ is the parameter, Θ denotes all the possible parameters that could
generate samples in D. Y = {1, 2, . . . , C} represents the labeling space of the remote
sensing images. Given a subset Θ0 ⊂ Θ, we define ID data space as:

DID :=
{
(X, y) ∈ D ×Y : ∃θ ∈ Θ0, X =

∫
D

u f (u, θ)du
}

2. (DSimi-OOD ). We define Simi-OOD data space as:

DSimi-OOD :=
{
(X, y) ∈ D ×YSimi-OOD : ∃θ ∈ Θ\Θ0, X =

∫
D

u f (u, θ)du
}

where YSimi-OOD ⊆ Y .
3. (DNear-OOD ). We define Near-OOD data space as:

DNear-OOD :=
{
(X, y) ∈ D ×YNear-OOD : ∃θ ∈ Θ\Θ0, X =

∫
D

u f (u, θ)du
}

where YNear-OOD ∩ Y = ∅
4. (DFar-OOD ). We define Far-OOD data space as:

DFar-OOD := D\(DID ∪DSimi-OOD ∪DNear-OOD )

For example, in UCM image sence classification, D is the collection of all possible
256 × 256 images and DID is UCM. If we consider each land cover category as a sample
from a distribution, then { f (X, θ) : θ ∈ Θ} is the collection of all the distributions with land
use label as their expectations. Since UCM consists of 21 land cover categories, the density
functions of UCM should be a subset of { f (X, θ) : θ ∈ Θ}, that is, { f (X, θ) : θ ∈ Θ0 ⊂ Θ}.

In the context of remote sensing scene classification with the UCM dataset, the
DSimi-OOD consists of remote sensing images similar to UCM but with different styles.
DNear-OOD includes remote sensing images without UCM’s classes. DFar-OOD comprises
images unrelated to land cover or use. Labels for OOD data are inaccessible.

2.1.2. Related Concepts

The domains pertinent to Out-of-Distribution (OOD) detection encompass Open
Set Recognition (OSR), Outlier Detection (OD), and One-Class Classification (OCC). A
schematic representation delineating the conceptual distinctions among these domains
is provided in Figure 3. We elucidate the specific differences between these concepts in
the following.

1. OOD detection vs. Open Set Recognition (OSR): In the context of remote sensing
image scene classification tasks, OOD Detection and Open Set Recognition (OSR)
share common ground, as both are concerned with identifying data points that deviate
from the known distribution of training data. OSR focuses on distinguishing between
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known and unknown classes within classification problems, while OOD Detection
involves a broader spectrum of learning tasks and extensive solution space;

2. OOD detection vs. Outlier Detection (OD): In remote sensing outlier detection, a
deviation from the conventional train–test paradigm occurs through the simultaneous
presentation of all data, aligning with the framework of OOD detection by earmarking
the principal data distribution as ID;

3. OOD detection vs. One-Class Classification (OCC): In remote sensing one-class
classification, normal or ID images are in one category; conversely, test images with
semantic shift are classified as OOD, indicating they deviate from the norm.

Train

Test
ID ID

ID

ID
AnnualCrop

Train

Test

AnnualCrop AnnualCrop Residential Industrial

ID
Industrial

ID

Residential

All Observations are provided

OODOOD

(a) One-Class Classification 
(b) Open Set Recognition

& Out-of-Distribution Detection 
(b) Outlier Detection

Figure 3. Conception of One-Class Classification, Open Set Recognition, Out-of-Distribution Detection
and Outlier Detection.

2.2. Evaluating Methods
2.2.1. Post Hoc Methods

Post hoc methods do not require additional models and training data.These methods
directly utilize the parameters in the original model to determine whether sample x is from
Pin. The advantages of this class of methods lie in their time efficiency and ease of use in
practical production environments. For this class of methods, three widely used methods
were selected for evaluation.

Maximum Softmax Probability (MSP) [17] is the simplest baseline method. This
method detects OOD samples based on maximum softmax category probability.

SMSP(x) = max(
ezi

∑C
c=1 ezc

) (2)

The MSP method performs better when the difference between ID and OOD is large.
However, when the difference between ID and OOD is small, this method may classify
samples overconfidently owing to pretrained neural networks, which limits its detection
performance.

Virtual-logit matching (VIM) [41] responds to diverse OOD samples by combining
multiple inputs. The method first defines a virtual logit l0 to generalize the common logit.
The subspace S is set to be the orthogonal complementary space P⊥ of the D-dimensional
principal space P consisting of all training sample features. The larger the projection on P⊥,
the more likely the sample is OOD.

l0 := α
∥∥∥xP⊥

∥∥∥ (3)

The obtained l0 is combined with other logits in softmax to obtain the final predicted
probability p0 for each class. l0 corresponds to p0, which is the probability that the sample is



Remote Sens. 2024, 16, 1501 7 of 24

OOD. Notate the set of orthogonal bases of P⊥ as the matrix R ∈ RN×(N−D), the complete
expression is as follows:

SVIM(x) =
eα

√
xT RTx

∑C
i=1 eli + eα

√
xT RRTx

(4)

where α is the matching coefficient.

α :=
∑K

i=1 maxj=1,...,C

{
li
j

}
∑k

i=1

∥∥∥xP⊥
i

∥∥∥ (5)

This method demonstrates better overall performance on various types of datasets,
does not require additional data for retraining, and offers a good degree of convenience.

Deep Nearest Neighbors (KNN) [42] utilizes a non-parametric nearest neighbor
approach for OOD detection. It employs the normalized penultimate feature vector
z = x/∥x∥2, where ϕ : X 7→ Rm is a feature encoder. During testing, the normalized
feature vector z∗ for a test sample x∗ is derived, and the Euclidean distances ∥zi − z∗∥2 are
calculated with respect to embedding vectors zi ∈ Zn, where Zn represents the embedding
set of training data. The data sequence Zn is reordered based on the increasing distance

∥zi − z∗∥2, denoted as Zn′ =
(

z(1), z(2), . . . , z(n)
)

. The decision function for OOD detection
is defined as

SKNN(x) =
∥∥∥z∗ − z(k)

∥∥∥
2

The advantages of KNN-based OOD detection include distributional assumption-
free testing, independence from unknown data information, user-friendly operation, and
applicability to diverse model architectures.

2.2.2. Training-Time Regularization Methods

The training-time regularization class introduces additional setup conditions on top of
the original model to solve the OOD detection problem using training-time regularization.

ConfBranch [43] incorporates an additional confidence branch to calculate confidence
c and utilizes c as SCon f Branch(x)

p, c = f (x, θ) (6)

The softmax prediction probability pi is adjusted using the confidence level c to obtain
the new prediction probability p′i.

p′i = c · pi + (1 − c)yi (7)

Under this method, the model can effectively learn the decision boundaries of ID
samples to obtain OOD detection.

Logit Normalization (LogitNorm) [44] was proposed to solve the problem of classifier
overconfidence on OOD data. Specifically, the method limits the logit norm to a constant
during the training process, while keeping the direction of the logit vector unchanged. The
LogitNorm cross entropy can be expressed as:

LlogitNorm ( f (x; θ), y) = − log
e fy/(τ∥ f∥)

∑k
i=1 e fi/(τ∥ f∥) (8)

This method does not require changes in the structure of the model and can be
employed for OOD detection using metrics from a variety of post hoc methods. In this
study, to ensure fair comparison, the maximum softmax probability value was computed
via the benchmark method MSP to SLogitNorm(x).
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Generalized ODIN (G-ODIN) [45] defines the logits of category i as:

fi(x) =
hi(x)
g(x)

(9)

g(x) can be computed using the following formula, where f p(x) is the feature of the
penultimate layer, σ is the sigmoid function, BN denotes Batch Normalization, and w and b
represent the learnable weights.

g(x) = σ
(

BN
(
wg f p(x) + bg

))
(10)

For hi(x), this can be realized by using a simple inner product (I):

hi(x) = hI
i (x) = wT

i f p(x) + bi (11)

The computational expression for SODIN is given by:

SODIN(x) = max
i

exp( fi(x))

∑C
j=1 exp( f j(x))

(12)

2.2.3. Training with Outlier Exposure Methods

This approach uses outliers for model training through an unsupervised approach.
Outliers usually refer to the OOD data that can be collected. In this study, experiments
with reference to these methods were performed using a Tiny-ImageNet dataset as outliers
for model training.

Outlier Exposure (OE) [28] represents the baseline work for this branch. The method
introduces a large-scale selected set of OODs as OEs and sets an additional training goal
of expecting f to produce uniform softmax scores for the added data. Setting the original
learning objective L, OE can be formalized as minimizing the objective:

E(x,y)∼Din

[
L( f (x), y) + λEx′∼DOE

out

[
LOE

(
f
(
x′
)
, f (x), y

)]]
(13)

This approach improves the generalization ability of the OOD detector, making it
better suited for outlier distributions not observed previously. Additionally, this approach
is suitable for models with different architectures.

Maximum Classifier Discrepancy (MCD) [27] utilizes a two-head deep convolutional
neural network (CNN) and maximizes the discrepancy between classifiers F1 and F2 to
detect OOD based on the discrepancy between the outputs of the two classifiers. p1(y | x)
and p2(y | x) denote the K-dimensional softmax class probabilities for input x obtained by
F1 and F2, respectively. We used d(p1(y | x), p2(y | x)) to measure the divergence between
the two softmax class probabilities for an input. The discrepancy loss can be defined using
the following equation:

d(p1(y | x), p2(y | x)) = H(p1(y | x))− H(p2(y | x)) (14)

where H(·) is the entropy over the softmax distribution. The experimental results of this
method indicate that it has good generalization in real-world scenarios.

2.2.4. Model Uncertainty Methods

This approach allows the model to learn an attribute that is uncertain about the
input samples. For the test data, the samples within a division exhibit low uncertainty,
whereas those outside the distribution demonstrate high uncertainty. Model uncertainty
methods primarily use Bayesian modeling to solve model reliability problems with less-
principled approximations.
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Monte Carlo Dropout (MCDropout) [46] predicts the same model and sample T
times, and the variance of these T predictions is calculated to compute the uncertainty.
Specifically, the method samples the posterior distribution of weights at test time using
dropout to obtain the posterior distribution of softmax class probabilities. The means of
these samples are used to segment the predictions and the variance is used to output the
model uncertainty for each class. The probability of T sub-predictions can be expressed as:

p(y = c | x, X, Y) ≈ 1
T

T

∑
t=1

Softmax
(

f Ŵt(x)
)

(15)

where Ŵt ∼ qθ∗( W) denotes the model parameters for each sample. The uncertainty can
be measured using the following expression:

H(p) = −
C

∑
c=1

pc log pc (16)

This method is easy to use and does not require modification of the existing neural
network or additional training; it only requires the neural network to drop out.

TempScaling [47] learns and uses a temperature parameter T to calibrate the network.
The calibrated predicted output is:

q̂i = max σSM(zi/T)(k) (17)

where σSM denotes the softmax function, and when T tends to zero, the probability q̂i tends
to 1/K, representing the maximum uncertainty. T = 1 is the original softmax input. The
parameter T is learned from the validation set using the NLL loss function. Temperature
scaling does not affect the model accuracy.

TempScaling is one of the earliest and simplest methods for calibrating uncertainty
measures; nevertheless, TempScaling is a variant of Platt Scaling, which is very effective in
calibrating predictions.

2.3. Evaluating Metrics

OOD detection employs distinct evaluation metrics in contrast to conventional clas-
sification tasks [18]. Primarily, the distribution of categories in OOD detection typically
exhibits an imbalance, characterized by fewer instances of unknown categories. Conse-
quently, this imbalance predisposes models to favor known categories, thereby impacting
accuracy metrics. Secondly, OOD detection places greater emphasis on the model’s false
alarm rate, wherein the misclassification of unknown samples as known categories is a crit-
ical concern. Referring to Hendrycks’ metrics [17] and relevant assessments with reference
to remote sensing [16,49], we used the following five metrics to quantitatively assess the
effectiveness of the OOD detection method on the selected remote sensing datasets:

1. Area Under the Receiver Operating Characteristic Curve (AUROC) is a common
metric for evaluating the performance of a binary classification model, which repre-
sents the size of the area enclosed by the Receiver Operating Characteristic (ROC)
curve and the axes, with a value range of 0–1. The ROC curve is plotted with False
Positive Rate (FPR) as the horizontal axis and True Positive Rate (TPR) as the vertical
axis, AUROC can be obtained by calculating the area enclosed under the ROC curve
with the formula:

AUROC =
∫ 1

0

TPR
FPR

d(FPR) (18)

2. Area Under the Precision–Recall Curve (AUPR) represents the size of the area
enclosed by the Precision–Recall (PR) curve and the coordinate axes, and has values
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ranging from 0 to 1. AUPR can be obtained by calculating the area enclosed under the
PR curve, and its formula is:

AUPR =
∫ 1

0

Precision
Recall

d(Recall) (19)

3. False Positive Rate at 95% specificity (FPR@95) is the proportion of negative samples
that are incorrectly predicted by the model when the model has a TPR of 95%. The
formula for FPR@95 is as follows.

FPR@95 =
FP

FP + TN
(20)

where FP denotes the number of false positive classes (predicting negative classes as
positive) and TN denotes the number of true negative classes (predicting negative
classes as negative);

4. ID classification accuracy (ID ACC) measures the overall correctness of predictions
made by a model across all ID classes.The formula for ID ACC is as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(21)

where FP denotes false positives (predicting negative classes as positive) and TN
denotes true negatives (predicting negative classes as negative). FN represents false
negatives (misclassifying positive classes as negative), while TP represents true posi-
tives (correctly classifying negative classes as negative);

5. Computation time, measured in seconds, is a key factor affecting the method’s
practicality and is detailed in the paper.

2.4. Remote Sensing Datasets and Scene Classification Models

We conducted experiments on three different datasets: the Aerial Image dataset (AID),
the UC-Merced Land Use (UCM) dataset, and Land Use and the Land Cover Classification
with the Sentinel-2 (EuroSAR) dataset. We provide a brief description of these datasets
below and the categories of the different datasets are shown in Figure 4.

1. UCM Dataset: The UCM dataset [50] is a high-resolution aerial RGB image dataset.
The size of each image is 256 × 256 pixels, and the dataset contains 21 categories with
100 samples in each category;

2. AID Dataset: The AID dataset [51] is a high-resolution aerial RGB image dataset. The
size of each image is 600 × 600 pixels, the dataset contains 30 categories, with each
category containing 300 samples;

3. EuroSAT Dataset: The EuroSAT Dataset [52] is a collection of images taken by the
Sentinel-2 satellite, covering 13 spectral bands. Each image is 64 × 64 pixels in size,
and the dataset consists of 10 categories, each containing 2000 to 3000 images, totaling
27,000 samples.

In the field of scene classification, numerous models have been developed for the
UCM, AID, and EuroSAT datasets. Among these, Resnet [53] has achieved state-of-the-art
results on all three datasets [2]. Based on Table 2, ResNet-50 has relatively fewer parameters,
requires lower FLOPS, and has a shorter training time. Considering both performance and
efficiency, this study selects ResNet-50 as the backbone for all the tested Out-of-Distribution
(OOD) detection models.
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Airport BareLand BaseballField Beach Bridge Center Church Commercial DenseResidential Desert

Farmland Forest Industrial Meadow MediumResidential Mountain Park Parking Playground Pond

Port RailwayStation Resort River School SparseResidential Square Stadium StorageTanks Viaduct

AnnualCrop Forest HerbaceousVegetation Highway Industrial Pasture PermanentCrop Residential River SeaLake

Figure 4. Classes and corresponding examples for the EuroSAT dataset, the UCM dataset, and the
AID dataset. For the EuroSAT dataset, only images consisting of the three bands red, green, and blue
are shown.

Table 2. Summary of recent representative model architectures.

Model Year Layers Parameters FLOPS Reference

AlexNet 2012 8 ∼57 × 106 0.72 G [12]
VGG16 2014 16 ∼134.2 × 106 15.47 G [54]

ResNet50 2015 50 ∼23.5 × 106 4.09 G [53]
ResNet152 2015 152 ∼23.5 × 106 11.52 G [53]

DenseNet161 2017 161 ∼26.4 × 106 7.73 G [55]
EfficientNet B0 2019 237 ∼5.2 × 106 0.39 G [56]

Vision Transformer 2020 12 ∼86.5 × 106 17.57 G [57]
MLPMixer 2021 12 ∼59.8 × 106 12.61 G [58]
ConvNeXt 2022 174 ∼28 × 106 4.46 G [59]

Swin Transformer 2022 24 ∼49.7 × 106 11.55 G [60]

2.5. Implementation Details and Parameter Selection

To compare different methods from different domains fairly, we used a unified setup
and hyperparameter architecture. For the remote sensing scene classification models, we
uniformly used ResNet-50 as the benchmark. If the implemented method required training,
we used the accepted settings of the SGD optimizer with a learning rate of 0.01, momentum
of 0.9, and weight decay of 0.0005 for 100 epochs to prevent over-tuning. If the method
requires hyperparameter tuning, we explored only the five most common values and
selected hyperparameters based on the performance of AUROC on the validation set. The
logic of the OOD validation set selection is based on real-world practices, all of which are
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designed for fairness and utility in comparison with benchmarks. The main benchmark
development and testing were conducted using four Nvidia RTX 2080Ti cards.

2.6. Benchmarks

To test the performance of different OOD detection methods under semantic shift and
domain shift, we referred to the construction of OOD detection benchmarks for general im-
ages, designed a series of benchmarks on AID, UCM, and EuroSAT datasets by combining
the characteristics of remote sensing images themselves, and conducted many experiments.
Our benchmarks can be categorized into OSR benchmarks and OOD benchmarks. Refer to
Figure 5 for a diagram illustrating these benchmarks.

In-Distribution(Closed Set)

Out-of-Distribution(Open Set)

In-Distribution

Semi-OOD Near-OOD

Place-365

9 × OSR Benchmarks 6 × OOD Benchmarks

RSI-CB256

(Disjoint Classes)

ImageNet-O

AnnualCrop Forest HerbaceousVegetation Highway

Industrial Pasture PermanentCrop

Residential River SeaLake

UCM

(All Classes)

OpenImage-O

AID EuroSATUCM

7/3 6/4 5/5 7/3 6/4 5/5 7/3 6/4 5/5

AID EuroSATUCM

semi near far semi near far semi near far

Far-OOD

RSI-CB256

(Overlap Classes)

Figure 5. We established nine OSR benchmarks and nine OOD benchmarks on the UCM, AID,
and EuroSAT datasets. Among them, OSR benchmarks only detect semantic shifts, while OOD
benchmarks further detect domain shifts.

2.6.1. OSR Benchmarks

In developing benchmarks for evaluating Open-Set-Recognition (OSR) performance,
we drew inspiration from established benchmarks such as MNIST [61] and CIFAR [62].
These benchmarks typically use different class divisions, for example, 6/4 and 50/50, to test
models’ abilities to identify instances of open set samples within the test set. To implement
this, we divided dataset categories into two groups: closed and open sets. Models are then
trained exclusively on data from the closed set and are evaluated on the entire test set to
ascertain their proficiency in distinguishing between closed and open set samples.

For datasets like AID, UCM, and EuroSAT, we introduced specific configurations—
namely AID7/3, AID6/4, AID5/5, UCM7/3, UCM6/4, UCM5/5, and EuroSAT 7/3, Eu-
roSAT 6/4, EuroSAT 5/5. These configurations indicate the ratio of closed-set to open-set
classes, such as 7:3, 6:4, and 5:5, respectively. A detailed methodology for one of these
randomized divisions is presented in Table 3, illustrating our approach.

The benchmarks we developed are based on randomized class divisions. The per-
formance metrics we utilize are derived from the average outcomes of five distinct splits,
ensuring a comprehensive assessment of a model’s ability to handle open set samples. This
methodology ensures that our benchmarks effectively measure a model’s OSR performance,
contributing valuable insights into their capabilities in dealing with open set scenarios.
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Table 3. The 30 classes in AID, the 21 classes in UCM, and the 10 classes in EuroSAT were divided
into closed-set and open-set classes according to defined proportions in various benchmarks. Five
randomizations were conducted for AID, UCM, and EuroSAT during the evaluation. Here, we
present an example of one random partition.

Benchmark Closed-Set Classes (ID) Open-Set Classes (OOD)

UCM-7/3 agricultural airplane baseballdiamond buildings
chaparral denseresidential forest freeway golf-
course mobilehomepark overpass parkinglot river
sparseresidential tenniscourt

beach harbor intersection mediumresidential run-
way storagetanks

UCM-6/4 agricultural baseballdiamond beach buildings cha-
parral forest freeway golfcourse intersection medium-
residential overpass sparseresidential storagetanks

airplane denseresidential harbor mobilehomepark
parkinglot river runway tenniscourt

UCM-5/5 agricultural buildings chaparral golfcourse harbor
intersection mobilehomepark parkinglot river run-
way storagetanks

airplane baseballdiamond beach denseresiden-
tial forest freeway mediumresidential overpass
sparseresidential tenniscourt

AID-7/3 airport baseballfield bareland beach bridge
denseresidential desert forest mediumresidential
park parking playground pond port railwaystation
river school square stadium storagetanks viaduct

center church commercial farmland industrial
meadow mountain resort sparseresidentia

AID-6/4 baseballfield bareland bridge center desert
denseresidential farmland industrial medi-
umresidential mountain parking port resort
railwaystation school sparseresidential stadium
storagetanks

airport beach church commercial forest meadow
park playground pond river square viaduct

AID-5/5 baseballfield beach center church desert farmland
industrial mediumresidential mountain park park-
ing pond port stadium viaduct

airport bareland bridge commercial denseresiden-
tial forest meadow playground railwaystation resort
river school sparseresidential square storagetanks

EuroSAT-7/3 AnnualCrop Industrial Pasture PermanentCrop
Residential River SeaLake

HerbaceousVegetation Highway Industrial

EuroSAT-6/4 AnnualCrop HerbaceousVegetation Industrial Res-
idential River SeaLake

Forest Highway Pasture PermanentCrop

EuroSAT-5/5 AnnualCrop Forest Highway Residential River HerbaceousVegetation Industrial Pasture Perma-
nentCrop SeaLake

2.6.2. OOD Benchmarks

The common practice for building OOD detection benchmarks is to consider an entire
dataset as in-distribution (ID), and then collect several datasets that are disconnected from
any ID categories as OOD datasets [17]. To better evaluate the model under semantic and
domain shifts, according to the definitions of DSimi-OOD, DNear-OOD, and DFar-OOD, we have
designed a total of nine out-of-distribution (OOD) benchmarks across three datasets: UCM,
AID, and EuroSAT. These benchmarks are named using the dataset name followed by the
definition of the distribution. Specifically, these benchmarks are UCM-Simi-OOD, UCM-
Near-OOD, UCM-Far-OOD, AID-Simi-OOD, AID-Near-OOD, AID-Far-OOD, EuroSAT-
Simi-OOD, EuroSAT-Near-OOD, and EuroSAT-Far-OOD. We provide detailed descriptions
of these nine benchmarks below. In Table 4, we present the specific categorization of the
Simi-OOD and Near-OOD classes across different datasets.

1. In the Simi-OOD benchmark for the UCM dataset, we incorporated 20 categories
exhibiting semantic overlap with RSI-CB256 [63] and UCM [50]. Conversely, the
Near-OOD subset featured an additional 15 categories that do not intersect with this
overlap. Our Far-OOD compilation encompasses datasets such as Places365 [64],
ImageNet-O [65], and OpenImage-O [41], which we resized to 256 × 256 to align with
our Far-OOD criterion;
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2. In the Simi-OOD benchmark for the AID dataset, we focused on 20 categories sharing
semantic traits between NWPU-RESISC45 [2] and AID [51]. In contrast, the Near-
OOD category embraced an additional 15 categories with no overlap. To address
Far-OOD scenarios, we integrated datasets like Places365 [64], ImageNet-O [65], and
OpenImage-O [41], resizing images to 600× 600 to match our definitions of Simi-OOD,
Near-OOD and Far-OOD;

3. In the EuroSAT dataset within the Simi-OOD benchmark, we examined 10 categories
sharing semantic features between RSI-CB128 [63] and EuroSAT [52]. Conversely, the
Near-OOD subset encompassed an additional 35 categories devoid of overlap. Our
Far-OOD consideration included datasets like MNIST [61], CIFAR-100 [62], and Tiny-
Imagenet [12]. Resizing images to 64 × 64 aligned with our definitions of Near-OOD
and Far-OOD.

Table 4. Specific Categorization of Simi-OOD and Near-OOD Classes Across UCM, AID,
and EuroSAT.

ID Dataset OOD Dataset Simi-OOD Classes Near-OOD Classes

UCM RSI-CB256 sea desert snow-mountain mangrove sparse-
-forest bare-land hirst sandbeach sapling
artificial-grassland shrubwood mountain
dam pipeline river-protection-forest container
stream avenue lakeshore bridge

airport-runway residents marina crossroads
green-farmland town parkinglot river forest
coastline airplane dry-farm storage-room city-
building highway

AID NWPU-
RESISC45

snowberg wetland intersection runway island
cloud basketball-court lake golf-course sea-ice
roundabout mobile-home-park freeway terrace
airplane thermal-power-station ship circular-
farmland railway chaparral

parking-lot desert airport tennis-court
church mountain medium-residential sparse-
-residential commercial-area river palace
forest dense-residential storage-tank ground-
-track-field stadium railway-station meadow
baseball-diamond overpass harbor industrial-
area bridge beach rectangular-farmland

EuroSAT RSI-CB128 sea sparse-forest residents green-farmland river
natural-grassland forest dry-farm city-building
highway

turning-circle fork-road desert snow-mountain
mangrove airport-runway bare-land hirst sand-
beach marina crossroads sapling artificial-
-grassland shrubwood mountain town dam
parkinglot rail city-avenue coastline tower
city-green-tree mountain-road pipeline river-
-protection-forest container stream grave av-
enue storage-room overpass lakeshore city-
road bridge

3. Results
3.1. Results on OSR Benchmark

The methods we tested rely on a ResNet-50 backbone trained on closed-set data
corresponding to UCM, AID, and EuroSAT. To quantify the reliability of the OOD detection
model, we used AUROC, FPR@95, AUPR-IN, and AUPR-OUT metrics. In addition, the
computation time, as an aspect of the applicability of the methods, was evaluated and
recorded in seconds. For the AUROC score, AUPR-IN, and AUPR-OUT score, higher scores
were considered better, and for the FPR@95 score and computation time metric, lower
scores were considered better.

According to Table 5, the VIM and KNN methods, which require no additional train-
ing, achieved the best results in AUROC, ranking in the top three across different OSR-AID
and OSR-UCM benchmark splits. Table 6 reveals that, in addition to VIM and KNN, the
LogiNorm method also secured a top-three position in FPR@95 across different benchmarks,
achieving the lowest values in some benchmarks. As per Tables 7 and 8, the OE method,
alongside VIM and KNN, performed well in the AUPR-IN and AUPR-OUT metrics. Ac-
cording to Table 9, all evaluated methods scored highly on the ID ACC metric. Table 10
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indicates that methods such as MSP, VIM, and KNN, which do not require additional
training time, had the shortest computation times, making them more suitable for scenarios
with high real-time requirements.

Overall, the VIM and KNN methods demonstrated excellent performance across
all evaluation metrics without the need for additional training. Surprisingly, methods
requiring substantial additional training time, such as OE and MCD, did not achieve better
AUROC values, suggesting that additional training processes are unnecessary for the OSR
benchmarks. The performance of ConfBranch and G-ODIN methods was suboptimal across
all OSR benchmarks. An analysis of Table 5 shows that ConfBranch had higher AUROC
values on the EuroSAT benchmark than on the AID benchmark, and even more so compared
to the UCM dataset, indicating a propensity for overfitting on smaller-scale datasets (e.g.,
UCM) and suggesting its better suitability for larger datasets. The performance of the
G-ODIN method, which requires an additional training process, was inferior to other
methods, indicating the need for finer parameter tuning when applied to remote sensing
imagery, such as exploring different distance functions h(x).

Table 5. Results from nine OSR benchmarks summarized by the top three average AUROC scores
(percentage) calculated over seven runs and five random category splits. Bold highlights indicate the
top three averages per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogiNorm G-ODIN OE MCD MCDropout Tempscaling

UCM
7/3 94.53 95.01 94.78 58.61 94.48 70.92 93.43 83.86 94.69 94.16
6/4 94.84 93.85 94.15 52.31 92.25 67.85 91.78 81.95 92.67 93.18
5/5 93.59 92.61 93.25 50.48 90.15 65.67 90.66 80.75 92.21 91.51

AID
7/3 94.80 95.26 95.62 75.18 93.21 80.84 92.54 88.42 93.96 94.30
6/4 93.51 95.28 95.76 67.22 93.72 80.50 92.78 88.97 93.88 93.59
5/5 91.70 94.03 94.74 59.07 92.79 79.45 92.29 88.43 93.54 92.93

EuroSAT
7/3 94.04 94.54 92.81 73.63 96.60 83.37 94.24 91.78 92.75 94.27
6/4 91.40 94.95 90.53 73.44 96.23 78.60 91.55 90.77 90.61 91.90
5/5 90.25 94.56 89.65 72.98 94.38 72.87 89.49 89.66 88.46 90.96

Table 6. Results from nine OSR benchmarks summarized by the top three average FPR@95 scores
(percentage) calculated over seven runs and five random category splits. Bold highlights indicate the
top three averages per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM
7/3 26.33 22.15 17.33 88.00 21.00 75.67 36.67 72.33 22.67 25.33
6/4 32.31 23.46 25.38 89.62 28.46 72.31 41.54 75.38 41.92 29.62
5/5 35.82 28.18 31.55 87.73 32.95 73.18 45.00 79.55 58.64 34.27

AID
7/3 22.20 17.58 19.07 70.52 20.44 56.89 22.70 36.00 27.92 24.30
6/4 24.34 22.83 23.93 87.24 23.42 60.14 24.05 33.59 25.95 23.97
5/5 28.34 25.63 27.12 91.85 27.65 66.60 27.96 42.69 28.95 23.02

EuroSAT
7/3 39.57 23.86 33.73 80.51 18.63 69.49 35.32 36.27 36.78 55.63
6/4 47.74 23.47 53.44 79.91 20.91 75.76 49.53 40.26 36.15 57.59
5/5 53.79 22.43 78.00 83.54 26.93 80.57 67.39 61.04 46.43 61.24

Furthermore, results from Figure 6 illustrate that nearly all methods performed better
on the 7/3 split for AUROC and AUPR metrics compared to the 6/4 split, and significantly
better than the 5/5 split. This can likely be attributed to the openness of the different
benchmarks, with the 5/5 split having the highest openness and thus presenting a greater
challenge. Additionally, the analysis of the AUPR-IN and AUPR-OUT results indicates
an inverse effect of category division on these metrics. The 5/5 split showed better per-
formance in AUPR-IN compared to other splits, while its performance in AUPR-OUT
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was poorer, likely due to the higher probability of similar features being classified as
in-distribution or out-of-distribution, leading to higher AUPR-IN and lower AUPR-OUT.

Table 7. Results from nine OSR benchmarks summarized by the top three average AURP-IN scores
(percentage) calculated over seven runs and five random category splits. Bold highlights indicate the
top three averages per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM
7/3 85.62 90.23 89.61 36.27 85.95 47.19 91.81 68.33 87.00 85.75
6/4 88.20 92.51 91.14 35.96 87.01 55.95 96.97 71.52 89.47 90.35
5/5 89.88 94.65 92.89 48.28 85.84 64.18 97.14 76.46 92.09 93.90

AID
7/3 86.91 90.90 92.46 44.47 87.29 63.03 87.91 77.78 88.78 86.98
6/4 90.09 94.44 94.04 38.67 90.62 68.71 89.22 80.97 91.92 90.25
5/5 93.68 94.13 94.72 58.60 93.31 71.54 92.11 84.45 93.55 94.63

EuroSAT
7/3 81.03 85.80 86.77 57.06 88.37 54.39 78.98 75.54 77.33 82.13
6/4 88.20 88.92 87.31 65.75 92.87 69.26 86.07 81.82 84.39 87.57
5/5 94.01 93.56 89.95 72.54 92.24 78.51 93.98 90.59 90.99 93.74

Table 8. Results from nine OSR benchmarks summarized by the top three average AURP-OUT scores
(percentage) calculated over seven runs and five random category splits. Bold highlights indicate the
top three averages per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM
7/3 97.72 96.80 98.09 76.77 97.67 85.40 97.10 89.70 97.72 97.54
6/4 94.64 95.91 96.37 67.40 94.17 74.69 95.84 86.45 94.52 94.44
5/5 90.31 93.54 94.70 57.14 90.77 68.95 91.54 81.83 90.57 91.30

AID
7/3 96.90 97.18 97.51 76.81 96.97 91.83 97.23 95.12 96.92 97.04
6/4 94.70 96.49 95.26 69.28 94.75 85.55 95.05 92.73 94.63 94.68
5/5 94.89 94.72 94.58 60.37 94.07 78.22 93.65 90.10 92.94 95.19

EuroSAT
7/3 93.95 97.44 96.43 83.25 97.68 84.46 94.48 91.68 95.69 94.02
6/4 93.97 95.77 93.26 80.07 94.67 82.32 94.41 91.06 92.66 94.64
5/5 94.36 94.53 91.76 75.12 92.41 81.14 94.88 91.82 93.47 93.96

Table 9. Results from nine OSR benchmarks summarized by the top three average ID-ACC scores
(percentage) calculated over seven runs and five random category splits. Bold highlights indicate the
top three averages per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM
7/3 98.67 98.67 98.67 99.00 99.00 83.00 98.00 92.00 98.67 99.00
6/4 99.23 99.23 99.23 98.46 98.46 81.15 98.46 92.31 99.23 98.85
5/5 99.55 99.55 99.55 98.64 98.64 82.27 97.73 89.09 99.09 98.64

AID
7/3 97.08 97.08 97.08 96.80 96.24 86.21 96.10 91.57 96.52 97.14
6/4 97.25 97.25 97.25 97.08 97.25 84.88 95.96 93.30 96.39 96.99
5/5 98.81 98.81 98.81 99.11 98.91 89.53 98.42 95.45 98.91 99.01

EuroSAT
7/3 98.84 98.84 98.84 98.95 98.70 95.68 98.51 97.51 97.22 98.92
6/4 99.62 99.62 99.62 99.62 99.41 96.56 99.03 98.03 96.65 99.56
5/5 99.54 99.54 99.54 99.43 99.46 95.82 99.25 98.71 99.32 99.50
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Table 10. Results from nine OSR benchmarks summarized by the top three average computation time
(seconds) calculated over seven runs and five random category splits. Bold highlights indicate the
top three averages per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM Avg. 4 4 4 668 744 638 2930 1572 736 5

AID Avg. 10 10 10 2570 2682 2397 10205 7370 2644 12

EuroSAT Avg. 5 5 5 698 810 732 4832 5699 4021 6

Figure 6. Performance against OSR Benchmark.

3.2. Results on OOD Benchmark

The methods we tested rely on a ResNet-50 backbone network trained on the en-
tire UCM, AID, and EuroSAT datasets. Figure 7 illustrates the test results on the OOD
benchmark, showing the AUROC, FPR@95, AUPR-IN, and AUPR-OUT metrics of 10 meth-
ods primarily on the OOD benchmark. Moreover, more detailed results are provided in
Tables 11–14. In addition to the previously mentioned metrics, the in-distribution accuracy
(ID-ACC) and overall computation time are also presented in Tables 15 and 16, respectively.
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Table 11. Results from nine OOD benchmarks summarized by the top three average AUROC
scores (percentage) calculated over seven runs. Bold highlights indicate the top three averages
per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM
Semi-OOD 79.46 85.43 45.41 66.07 79.70 66.13 77.43 68.03 79.46 78.93
Near-OOD 89.68 87.11 66.92 83.27 89.96 67.10 93.07 83.69 88.13 88.80
Far-OOD 97.03 99.54 14.72 54.75 97.14 78.02 98.48 76.07 97.98 97.22

AID
Semi-OOD 78.60 82.68 37.73 52.28 78.76 66.98 76.64 70.63 75.50 78.95
Near-OOD 91.66 96.08 30.81 55.04 92.05 77.01 88.47 85.22 91.10 91.90
Far-OOD 95.88 99.64 26.36 54.85 96.58 82.10 91.35 91.25 96.60 95.72

EuroSAT
Semi-OOD 93.43 98.54 96.40 86.89 93.98 90.73 99.55 91.84 84.60 92.79
Near-OOD 89.12 97.70 95.37 85.24 89.39 87.44 98.84 94.95 71.20 90.72
Far-OOD 95.59 99.95 99.35 65.29 96.06 95.52 99.98 97.26 44.76 82.26

Table 12. Results from nine OOD benchmarks summarized by the top three average FPR@95
scores (percentage) calculated over seven runs. Bold highlights indicate the top three averages
per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM
Semi-OOD 76.90 59.29 98.33 89.05 75.95 82.62 100.00 88.10 72.38 76.90
Near-OOD 36.19 57.86 95.24 54.76 35.00 80.71 24.52 53.10 43.33 40.95
Far-OOD 12.06 1.98 100.00 85.87 11.03 68.17 6.27 96.83 9.37 10.95

AID
Semi-OOD 75.70 59.20 98.80 93.60 75.65 86.30 81.70 88.20 78.55 76.55
Near-OOD 31.50 16.35 98.85 90.60 31.90 65.95 51.90 52.85 38.35 30.30
Far-OOD 14.78 1.48 96.22 87.15 13.30 57.47 35.23 32.30 14.72 15.52

EuroSAT
Semi-OOD 24.48 6.39 16.31 51.20 22.31 30.91 3.07 33.07 100.00 34.48
Near-OOD 100.00 12.19 23.74 61.78 100.00 56.15 6.37 17.43 100.00 100.00
Far-OOD 15.34 0.14 3.70 81.74 13.75 18.25 1.06 8.28 100.00 52.31

Overall, among all performance metrics, the VIM method without additional training
and the OE method requiring extra training and auxiliary data achieve high AUROC values
and low FPR@95.Conversely, the ConfBranch and G-ODIN methods exhibit below-average
performance across all OOD benchmarks, indicating limited applicability in OOD bench-
marking. Surprisingly, the KNN method, which performs well on the OSR benchmark,
demonstrates poor performance on our UCM and AID benchmarks of OOD. Specifically,
the AUPR-OUT scores are notably low on UCM and AID, indicating poor classification
of out-of-distribution data. This result might arise from the unequal sample sizes be-
tween out-of-distribution and in-distribution data, necessitating further fine-tuning of
hyperparameters, particularly K, to align with our OOD benchmarks.

Additionally, based on Figure 7, it is observed that nearly all methods demonstrate
better performance in AUROC and AUPR metrics on Far-OOD compared to Near-OOD,
which in turn outperforms Simi-OOD. This suggests that the Simi-OOD benchmarks, which
identify domain shift exclusively, pose the greatest challenge. Conversely, simultaneously
detecting both domain shift and semantic shift in Near-OOD benchmarks is relatively
easier, while Far-OOD benchmarks, characterized by significantly greater semantic shift,
are the most manageable. In AUPR-IN, different methods generally perform better on
Near-OOD benchmarks. However, in AUPR-OUT, Far-OOD benchmarks exhibit superior
performance overall. This indicates that models find it relatively more challenging to
discern remote sensing image datasets compared to conventional image datasets, consistent
with our expectations.
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Table 13. Results from nine OOD benchmarks summarized by the top three average AUPR-IN
scores (percentage) calculated over seven runs. Bold highlights indicate the top three averages
per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM
Semi-OOD 98.85 99.18 96.10 97.77 98.86 97.75 98.80 97.94 98.87 98.83
Near-OOD 99.61 99.53 98.52 99.33 99.62 98.45 99.73 99.32 99.56 99.58
Far-OOD 99.67 99.98 85.68 91.82 99.68 96.86 99.86 97.44 99.79 99.70

AID
Semi-OOD 96.56 97.17 86.78 90.85 96.65 94.18 96.28 94.88 96.14 96.66
Near-OOD 98.37 99.29 80.06 88.46 98.51 95.04 97.82 97.02 98.40 98.48
Far-OOD 97.90 99.91 68.70 77.29 98.29 91.47 96.28 95.69 98.49 97.92

EuroSAT
Semi-OOD 95.79 99.15 98.05 91.52 96.16 93.32 99.78 94.80 90.30 95.68
Near-OOD 96.86 99.36 98.67 95.25 96.94 95.63 98.71 98.14 90.72 97.25
Far-OOD 98.59 99.99 99.86 88.94 98.74 98.30 98.89 98.86 65.43 96.77

Table 14. Results from nine OOD benchmarks summarized by the top three average AUPR-OUT
scores (percentage) calculated over seven runs. Bold highlights indicate the top three averages
per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM
Semi-OOD 11.92 31.86 3.33 6.86 12.23 9.89 15.55 8.02 12.93 11.85
Near-OOD 56.90 31.53 4.24 28.11 57.85 9.44 54.23 23.58 47.50 45.08
Far-OOD 75.01 95.94 4.00 9.40 76.33 19.47 85.98 12.90 80.50 76.94

AID
Semi-OOD 28.93 45.53 7.56 11.12 28.48 17.83 24.81 18.65 25.26 29.37
Near-OOD 69.64 86.17 8.41 15.60 68.22 39.14 54.57 53.09 64.15 69.76
Far-OOD 86.77 98.28 17.69 26.50 87.83 53.38 67.37 74.31 85.86 84.70

EuroSAT
Semi-OOD 89.32 97.56 93.67 75.92 90.19 84.58 99.12 86.12 77.53 87.34
Near-OOD 67.80 92.70 87.99 60.92 67.47 66.33 95.29 88.96 51.45 72.84
Far-OOD 83.78 99.64 95.82 26.40 85.04 85.67 98.77 93.42 38.47 59.12

Table 15. Results from nine OOD benchmarks summarized by the top three average ID-ACC
scores (percentage), calculated over seven runs. Bold highlights indicate the top three averages
per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM ID 98.33 98.33 98.33 98.10 98.33 83.81 97.38 90.24 98.10 98.33

AID ID 96.35 96.35 96.35 96.85 96.45 84.75 95.40 92.00 96.25 96.50

EuroSAT ID 98.28 98.28 98.28 98.39 98.30 94.54 97.81 96.85 71.48 98.26

Table 16. Results from nine OOD benchmarks summarized by the top three average computation time
(seconds) calculated over seven runs. Bold highlights indicate the top three averages per benchmark.

Benchmark
Post Hoc Training-Time Regularization Outlier Exposure Model Uncertainty

MSP VIM KNN ConfBranch LogitNorm G-ODIN OE MCD MCDropout Tempscaling

UCM Semi+Near+Far 112 123 142 1191 987 1244 4116 2940 1266 114

AID Semi+Near+Far 118 158 221 3705 3525 765 17,885 12,310 3822 117

EuroSAT Semi+Near+Far 44 62 161 1268 1128 1253 6763 5699 1218 44
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Figure 7. Performance against OOD benchmark.

4. Discussion

Based on our research findings, we have discovered that existing methods for de-
tecting out-of-distribution (OOD) instances are quite applicable to remote sensing scene
classification tasks. However, the current research is predominantly based on common
datasets, and there is a notable gap when it comes to applying these methods to real-world
remote sensing scene classifications. Firstly, the semantic clarity under different scenes in
remote sensing scene classification tasks is lacking, with insufficiently pronounced differ-
ences between classes, necessitating the detection of certain features at a finer granularity.
Additionally, significant variance exists within the same category, and identical feature
types can vary extensively due to time, geographical location, and spatial scale. Moreover,
due to the resolution of images used in real-world scenarios and the substantial variance in
the spectral reflectance of images, identifying sensor shifts caused by different sensors is a
topic worth investigating.

To enhance the reliability of remote sensing scene classification models in open scenar-
ios, we believe further exploration in the following directions could improve the perfor-
mance of OOD detection models. Firstly, this research has validated the effectiveness of
post hoc methods, which do not require an additional training process. Therefore, these
methods can be further explored in real-world scenarios. Secondly, in real-world scene
classification tasks, it is sometimes necessary to differentiate between in-distribution (ID)
and OOD instances within a small range, such as distinguishing between airports and
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roads [66]. Hence, fine-grained features could be further extracted from a fine-grained
classification perspective for OOD detection. Lastly, due to the semantic ambiguity in
single-label classification of remote sensing samples [67], we believe that developing OOD
detection methods suited for multi-label classification will be useful for large-scale remote
sensing scene classification tasks.

5. Conclusions

We evaluated different classes of OOD detection methods that are highly representative
of the corresponding research directions to improve the reliability and security of remote
sensing scene classification models. To further compare the performances of the different
methods under semantic and domain shifts, we set up a series of benchmarks on the AID,
UCM, and EuroSAT datasets. We quantitatively evaluated them using AUROC, AUPR,
FPR@95, ID-ACC, and computation time metrics. We conducted numerous experiments
to quantitatively evaluate the performance of these methods across different benchmarks.
Based on the evaluation results, we found that that virtual-logit matching methods, without
extra training, perform better than other methods on both OSR and OOD benchmarks.
This suggests that additional training methods are unnecessary for scene classification
applications in remote sensing imagery. Our results show that existing OOD detection
methods can provide reliability and security for further deployment of remote sensing
scene categorization applications with large-scale, diverse ground coverage involving
multiple types of sensors. Additionally, our findings provide valuable insights to explore
better OOD detection methods suitable for large-scale remote sensing applications.
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