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Abstract: To ensure the security of highly sensitive remote sensing images (RSIs) during their
distribution, it is essential to implement effective content security protection methods. Generally,
secure distribution schemes for remote sensing images often employ cryptographic techniques.
However, sending encrypted data exposes communication behavior, which poses significant security
risks to the distribution of remote sensing images. Therefore, this paper introduces deep information
hiding to achieve the secure distribution of remote sensing images, which can serve as an effective
alternative in certain specific scenarios. Specifically, the Deep Information Hiding for RSI Distribution
(hereinafter referred to as DIH4RSID) based on an encoder–decoder network architecture with Parallel
Attention Mechanism (PAM) by adversarial training is proposed. Our model is constructed with
four main components: a preprocessing network (PN), an embedding network (EN), a revealing
network (RN), and a discriminating network (DN). The PN module is primarily based on Inception
to capture more details of RSIs and targets of different scales. The PAM module obtains features
in two spatial directions to realize feature enhancement and context information integration. The
experimental results indicate that our proposed algorithm achieves relatively higher visual quality
and secure level compared to related methods. Additionally, after extracting the concealed content
from hidden images, the average classification accuracy is unaffected.

Keywords: remote sensing image; distribution; deep information hiding; attention mechanism

1. Introduction

As advancements in spatial, informational, and communication technologies persist,
the primary method for applying spatial information has shifted towards the utilization of
digital products and network integration [1], which has greatly facilitated the communica-
tion and sharing of remote sensing information, allowing for further utilization of remote
sensing images. However, it has also introduced security concerns during distributing
such information through networks [2]. RSIs obtain data from vulnerable sites like military
installations, oil fields, and airports, posing potential misuse and theft risks. Moreover,
processing these images without implementing proper security measures can simplify
unauthorized data retrieval and offer uninterrupted access to confidential information,
which could subsequently be used for illicit purposes [3]. Adopting a robust content se-
curity protection strategy is essential to safeguard the confidentiality of highly sensitive
remote sensing data. Encryption is commonly acknowledged as a prevalent technique
for protecting the confidentiality of remote sensing images during their transmission and
storage [4]. That is, using symmetric or public key cryptographic algorithms to transform
plaintext into ciphertext, then transmitting it through a public channel to the recipient. Be-
cause ciphertext presents itself as unintelligible or scrambled text, it readily draws the focus
of attackers monitoring the communication channel, which can lead to two consequences:
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firstly, if the attacker intercepts the ciphertext, they can attempt to decrypt it using various
attack methods against different cryptographic systems [5].

Secondly, if the attacker cannot decrypt the ciphertext, they may disrupt the channel
to prevent distribution. Indeed, exploring alternative methods for the secure distribution of
RSIs in certain cases is necessary. The information-hiding technology in information security
has begun to attract increasingly more attention [6,7]. Unlike encryption, in an information-
hiding scheme, secret information is embedded in seemingly harmless host information,
and attackers cannot intuitively determine whether the information they are monitoring
contains secret information. In other words, hosts containing hidden information will not
attract the attacker’s attention and suspicion. The purpose of information hiding is to make
enemies unaware of where there are secrets, as it hides the form of information that exists.
The comparison between the idea of our scheme and the traditional encryption distribution
method is shown in Figure 1. Although there is relatively little publicly published literature
on the use of information-hiding technology for remote sensing image distribution, some
scholars’ research results [8–12] provide us with good insights. These methods mainly
achieve the hiding of one image within another of the same size. However, they do not
address discussions and research regarding RSIs. Due to the characteristics of RSIs, such as
being taken from a long distance and at a steep angle, they do, indeed, contain complex
backgrounds and scattered small objects, which are significantly different from natural
images captured in everyday life [13], as shown in Figure 2. Therefore, this paper draws
on their ideas to design a new algorithm suitable for the secure distribution task of RSIs.
Although there are many categories of RSIs, such as hyperspectral RSIs, multispectral
RSIs, and panchromatic RSIs, this study only investigated the multispectral images that
have been processed into RGB format after compression. The primary contributions of our
proposed scheme are as follows:

Figure 1. The comparison between steganography and the traditional encryption distribution
methods. The encrypted RSI is presented in garbled code, which is easy for attackers to pay attention
to. In steganography, the remote sensing image is hidden in the ordinary image in an invisible form,
which can be more effective and secure for distribution.

Figure 2. By comparing RSIs (from NWPU-RESISC45 dataset [14]) with regular natural images (from
ImageNet dataset [15]), it is evident that RSIs contain complex backgrounds and scattered small objects,
whereas regular images typically have simpler backgrounds and more distinct foreground elements.
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• To our knowledge, DIH4RSID is the first to explicitly propose using deep information-
hiding technology to ensure the secure distribution of RSIs. Therefore, our method
opens a new way of thinking about RSI security distribution and expands the applica-
tion fields of information-hiding technology.

• Unlike the existing HIWI (Hiding images within images) framework, our study pro-
poses a novel preprocessing network architecture, which is designed based on In-
ception networks and crafted to conform to the unique properties of remote sensing
images, which can capture detailed information of objects at different scales.

• According to the characteristics of our tasks and RSIs, a new attention mechanism,
PAM, is designed in this paper, which carries out two kinds of pooling from two
dimensions, respectively. Convolution operations can then capture cross-channel
relationships and spatial remote dependencies.

• A discriminator is added to the scheme, and iterative training is carried out by WGAN-
GP (Wasserstein Generative Adversarial Network with Gradient Penalty), which
improves the model’s stability and correct convergence speed.

• In this study, a functional integrity retention test was performed on the extracted RSI,
specifically an accuracy test of scene classification for the RSI after extraction. This
offers a new perspective for assessing the performance of high-capacity information-
hiding technologies.

2. Related Work

The approach in this article draws on many concepts and methods from the field of
image information hiding; therefore, our analysis of related work is confined to the domain
of information hiding. The origins of information hiding technology can be traced back to
ancient covert means of communication, such as invisible ink and miniaturized fonts. With
time, information hiding has gradually changed from traditional physical means to digital
technology. Based on the context of the application, information hiding can be divided
into digital steganography and digital watermarking. Generally speaking, the former is
mainly used for covert communication, while the latter is used for copyright protection.
According to such categorization, our DIH4RSID is essentially an application of steganogra-
phy in RSI distribution. The research on steganography can be roughly divided into three
stages. Early information hiding technologies were mainly based on non-adaptive hiding
strategies, among which the most typical representative is LSB (Least Significant Bit) [16].
LSB is a steganography method that modifies and stores information based on the least
significant bit of an image. Using the insensitivity of human eyes to color differences, the
secret information is put into the least significant bit of the picture by a certain embedding
method so that the information we need to hide is put into the least significant bit of the
picture by a certain method. Because non-adaptive steganography does not consider the
characteristics of the cover image itself, it is not safe and is easy to detect and analyze.
Based on this, adaptive steganography came into being, representing the second stage of
steganography. Adaptive steganography considers the properties of the cover image itself,
such as the texture information and edge information of the image content. According to the
characteristic of difficulty in detecting complex areas of image texture, secret information
is selectively embedded into areas with complex textures or rich edges of the cover, which
improves the anti-steganographic detection ability of loaded images. At the same time,
all kinds of adaptive steganography algorithms are combined with STC (Syndrome trellis
codes) [17] encoding methods. The difference is that the distortion function is different.
Such algorithms are represented by HUGO [18], WOW [19], UNIWARD [20], and HILL [21].
Although adaptive steganography methods have achieved high performance, they are
confronted with several challenges in terms of both content-adaptive and statistics-based
approaches. Firstly, such algorithms can only embed a small number of bits or text in-
formation and cannot embed multimedia information such as images [12]. At the same
time, these methods often require specialized knowledge to design elaborate distortion cost
functions. With the continuous development of analysis algorithms based on deep learning,
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the security of these traditional human-designed information hiding algorithms faces great
challenges, making researchers turn their attention to deep learning and attempt to use deep
learning’s powerful feature fusion ability to realize information hiding. Frameworks for
information hiding based on deep learning, such as HiDDeN [22] and SteganoGAN [9],
have been developed to accomplish the tasks of hiding and extracting information. This
development signifies the progression of information hiding into its third phase, known
as deep information hiding. These frameworks eliminate the need for the manual design
of embedding strategies and achieve higher payloads. However, they still only enable the
covert transmission of small data. To address the challenge of hiding large image data,
Baluja [23] presented a system to embed a full-color image into another of identical size
while minimizing the quality degradation of both images, which is achieved by concurrently
training deep neural networks to carry out both the embedding and extraction processes,
which are specifically tailored to function in tandem. While this approach represents a
significant innovation and yields impressive visual results, its robustness against analyt-
ical attacks leaves something to be desired. Rehman et al. [8] endeavored to develop an
encoder–decoder architecture rooted in convolutional neural networks, accomplishing com-
plete network training by adopting a novel loss function. While this approach proficiently
conserved the fidelity of the concealed image, the visual quality of the crafted stego was
subpar. In addition, Duan et al. [24] introduced a reversible information-hiding network
that utilizes a U-Net architecture to improve the hiding performance. The approach yielded
pleasing outcomes in synthesizing concealed images as well as in the accurate retrieval of
secret images. Nonetheless, their research did not delve into an in-depth examination of
security concerns. Chen et al. [12] posited that certain secret images might possess intricate
spatial characteristics. To address this, he proposed a multi-tiered robust auxiliary module
to augment the feature representation, subsequently elevating the restoration quality of
secret images. However, due to the absence of a discriminator within the framework, the
enhancement in performance was not markedly evident. Some researchers introduced the
attention mechanism into the field of deep information hiding [10,25–27], and promising
results have been achieved. Tan et al. [26] proposed a new end-to-end image network archi-
tecture based on a channel–attention mechanism that generates adversarial networks, which
can produce perceptively indistinguishable stego of different capacities. However, their
programs suitable for embedding and transmitting binary text are not directly applicable
to RSIs due to their inherent nature. According to the above analysis, the existing method
cannot be directly applied to the safe distribution of remote sensing images, so it needs to
be further modified to adapt to this task.

3. Proposed Scheme

In this section, the general structure of DIH4RSID is introduced first, and then, all
parts of DIH4RSID are described in detail. Finally, we delineate the various loss functions
and outline the training methods used.

3.1. Overview

As show in Figure 3, DIH4RSID’s workflow can be described as follows. Firstly, the
sender (RSI’s owner) extracts feature maps through a preprocessing network and then
hides that into a nature image (cover) by an embedding network, which outputs a stego
(also called the hidden image). The stego could be transmitted through public channels to
the receiver, who decodes the information by an extracting network to reconstruct the RSI.
During the embedding process, a discriminating network acts as an attacker to improve
the indistinguishability between the cover and stego.

The secure distribution schema for RSI based on information hiding must satisfy three
properties: (1) to avoid attracting the attention of attackers, an embedding process should
have a minimal visual impact on the cover; (2) in order to enhance the practicality of the
algorithm, the semantics of the extracted RSI should be preserved, and (3) to improve the
security of the model, it is important to restrict the success rate of detecting algorithms to a
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minimal level. Considering these three requirements, we adopted three unique designs
based on the traditional encoder–decoder network, namely, the preprocessing network
based on an Inception structure, a PAM, and a discriminator based on XuNet [28].

Figure 3. DIH4RSID flowchart: Sender (RSI’s owner) transmits RSI to receiver.

3.2. Preprocessing Network

RSIs feature large-scale variations in objects, rich details, complex structures, and
ambiguous distinctions between subjects and backgrounds. Baluja’s [23] preprocessing
network is not very suitable for RSIs, as these images require multiple convolutional
kernels of different sizes to capture the features of targets at different scales. To address
this issue, we integrate the Inception [29] structure into the design of the preprocessing
network, as depicted in Figure 4. The Inception structure is a concept popularized by
the inception architecture of convolutional neural networks, which employs three distinct
sizes of convolutional kernels and one max pooling in parallel to obtain spatial features
at different scale-receptive fields. In the parallel branches, dimensions are first adjusted
through a 1× 1 convolution and then subjected to convolution kernels of varying scales
and pooling operations. Finally, the extracted multi-scale spatial features are fused through
Concat operations, enhancing the network’s ability to capture a more complete description
of target spatial structural features at different depth levels.

Figure 4. Preparing network architecture to extract the feature of RSI.

3.3. Parallel Attention Mechanism

In the realm of deep learning, the attention mechanism trains networks to concentrate
on salient features while disregarding those that are irrelevant. For CNN (Convolutional
Neural Network)-based information-hiding schemes that directly produce a stego, the
secret information is ingrained through integration with the cover features. Given that the
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value of these features varies with respect to information hiding, applying an attention
mechanism could enhance the system’s performance. Our task requires an accurate classifi-
cation of the extracted remote sensing images, with a particular focus on preserving small
targets in RSIs. Therefore, the existing Convolutional Block Attention Module (CBAM) [30]
attention mechanism is not suitable for our task. Drawing inspiration from the Coordinate
Attention [31] (CA) and Efficient Channel Attention [32] (ECA) mechanisms, we design the
PAM to effectively grasp the inter-channel relationships and extensive spatial dependencies,
incorporating precise positional details to enhance the embedding effect of remote sensing
images and improve the accuracy of feature extraction. The detailed structure of PAM is
shown in Figure 5.

Figure 5. Parallel attention mechanism contains four types of pooling strategies.

Firstly, the horizontal average pooling, vertical average pooling, horizontal max pool-
ing, and vertical max pooling are performed for each channel of the input feature map
denoted as F(h, w, c) (h denotes the height of the feature map, w denotes the width of the
feature map, and c denotes the channel of the feature map), respectively, as are formulated
by Equations (1)–(4).

Fhap(h, c) =
1

W ∑w
i=1 F(h, i, c) (1)

Fvap(w, c) =
1
h ∑h

i=1 F(i, w, c) (2)

Fhmp(h, c) = max
0≤i<w

F(h, i, c) (3)

Fvmp(w, c) = max
0≤i<h

F(i, w, c) (4)

Subsequently, to prevent the reduction in channel dimension during cross-channel
interactions, we employ Conv2D with a flexible kernel size. This is designed to pro-
duce attention weights across both spatial dimensions. Additionally, we incorporate two
distinct types of pooling strategies. These processes, collectively, can be expressed as
Equations (5) and (6).

F̂AP(h, w, c) = Conv2D
(

Fvap × Fhap, kernal
)

(5)

F̂MP(h, w, c) = Conv2D
(

Fhmp × Fvmp, kernal
)

(6)

kernal =
∣∣∣∣ log2(c)

γ
+

b
γ

∣∣∣∣
odd

(7)
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According to ECA, the kernel of Conv2D is computed by (7), where ||odd denotes the nearest
odd number, and b and γ are set to 1 and 2.

Finally, to determine the weight of the coordinate attention, we combine the adaptive
pooling features; F̂AP and F̂MP are combined using the operation of matrix multiplication.
This procedure can be mathematically represented as Equation (8).

Weightpam(h, w, c) = sigmoid
(

F̂AP + F̂MP
)

(8)

Figure 5 displays the basic structure and workflow of PAM. The basic structure
primarily consists of four different types of convolution, which yield the final feature
map through matrix multiplication, convolution, and activation functions.

3.4. Embedding Network

We use a network structure similar to Dense Connection Architecture (DCA) as the
backbone of the embedding network. There are several reasons why such architecture is
suitable for DIH4RSID: (1) DCA reduces the problem of gradient disappearance by means
of cross-layer connection so that information will not be lost during transmission. This is
important for DIH4RSID because remote sensing images typically have large sizes and
complex backgrounds that require the network to transmit and utilize feature information
efficiently. (2) DCA can better utilize and enhance features in the transmission process by
including the features of all previous layers in the input of each layer, which is also very
beneficial for DIH4RSID because the features of RSI are often complex, and the network
needs to be able to extract and transmit these features effectively. (3) DCA combines
features of previous layers to form a more detailed description and discrimination of
features. This enables the network to use the feature information more effectively, thus
improving the hiding effect and extraction quality of DIH4RSID. (4) Reducing the number
of parameters: DCA reduces the number of parameters in the model by reducing the
number of connections, thus reducing the complexity and calculation cost of the model,
which is also essential for DIH4RSID because RSI is usually huge and requires low model
complexity and computational cost to achieve effective classification.

To maintain stealthiness, it is crucial for the stego image to bear a close resemblance
to the cover image. Moreover, to ensure the integrity of the recovered image, it should
be nearly identical to the RSI. Nevertheless, the process involving various convolutional
and activation layers can unavoidably lead to a loss of information from input images like
cover images and RSI, which is detrimental to both hiding and revealing capabilities. To
mitigate this issue, introducing global and local skip connections is proposed, as shown in
Figure 6. The global skip connection facilitates the direct transmission of original image
data to the uppermost layer, enhancing edge and texture detail synthesis and boosting
concealment and retrieval efficiency. On the other hand, the local skip connection allows
for the unimpeded flow of RSI within the embedding network, ensuring that its details and
semantic content are effectively incorporated into the stego. This incorporation aids the
follow-up extraction network in precisely restoring the RSI. The embedding procedure is
defined by a specific Equation (9).

Stego = EN(C, PN(RSI, θPN), θEN) (9)

where EN denotes the Embedding Network, C denotes a Cover, PN denotes a Preprocessing
Network, θPN denotes parameters of PN, and θEN denotes parameters of EN.

Figure 6 shows the main units of the encoder and the method of feature fusion. Due to
space limitations, the complete structural diagram is not displayed. In fact, in our specific
implementation, we use 16 convolution, normalization, and activation blocks.
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Figure 6. Embedding network architecture contains Convolution, Batch Normalization, LeaklyRelU,
and PAM.

3.5. Revealing Network

RSI extraction is an inverse embedding process. The revealing network (RN) adopts
a structure similar to the embedded network and still extracts depth features with dense
connections, hoping to recover the RSI with a high accuracy. Unlike the embedding process,
the revealing process does not consider the effect of RSI feature integration, so the modules
of global skip connection and local skip connection used in the embedded network are
not used in the RN. The process of revealing can be expressed by Equation (10) and is
illustrated in Figure 7.

ˆRSI = RN(Stego, θRN) (10)

Figure 7. Revealing network add parallel attention mechanism to improve the extracted quality of a
secret image.

3.6. Discriminating Network

The primary purpose of this study was to realize the safe distribution of remote
sensing images, to ensure visual imperceptibility, and to ensure that there are no apparent
statistical distribution anomalies. To achieve these, we add an authentication network to
the entire training process, which is described later in Algorithm 1. In the selection of the
discriminator network module, we mainly use the design idea of the XuNet [28] network
as a reference but we make some changes. The first is to increase the number of nodes
at the input side to handle the stego with three dimensions, and the second is to add an
ASPP [33] pooling technology, which uses spatial pyramid pooling to obtain the context
information of different scales and residual information to improve the model’s ability to
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perceive and distinguish stego. The details of the DN are listed in Table 1, and the process
of the DN can be formulated by Equation (11).

Probabilities of classes = DN(Stego, θRN) (11)

Table 1. Overall architecture details of the revealing network.

Inputs Modules Kernel Outputs

Stego (3× 256× 256) HPF 3× 5× 5 Out1 (3× 256× 256)
Input1 Conv-ABS-BN-Tanh—Average 3× 5× 5 Out2 (8× 128× 128)
Input2 Conv-BN-Tanh—Average 8× 5× 5 Out3 (16× 64× 64)
Input3 Conv-BN-Tanh—Average 16× 1× 1 Out4 (32× 32× 32)
Input4 Conv-BN-Tanh—Average 32× 1× 1 Out5 (64× 16× 16)
Input5 Conv-BN-Tanh—Average 64× 1× 1 Out5 (128× 8× 8)
Input6 ASPP 3× 3, 1× 1 Out5 (2560× 1× 1)
Input7 Fully Connected - Out5 (2× 1× 1)
Input8 SoftMax - Probabilities of classes (2× 1× 1)

Algorithm 1: Training DIH4RSID. We use default values of λ = 10, nDN = 5,
α = 0.0001, β1 = 0, β2 = 0.9

Input: Cover dataset X , RSI datasetR; initial PN parameters wPN , initial EN
parameters wEN , initial DN parameters wDN , initial RN parameters wRN ;
batch size m, DN iterations per EN iteration nDN; the gradient penalty
coefficient λ, the number of DN iterations per generator iteration nDN, the
batch size m, Adam hyperparameters α, β1, β2., the total iterations N

Output: Trained parameters wPN , wEN , wDN , wRN

for t← 0 to N do
for i← 0 to nDN do
L(i) ← 0
for j← 0 to m do

Sample x ∈ X
Sample r ∈ R
Sample ϵ ∈ U [0, 1]
x ← EN(Concat(PN(r), x))
x̂ ← ϵx + (1− ϵx)
L(i) ← Ld(x, x̂) + λ(∥∇x̂DNwDN (x̂)∥2 − 1)2

end

wDN ← Adam
(
∇wDN

1
mL(i), wDN , α, β1, β2

)
end
Randomly select {xi}m

i=1 a batch from X
Randomly select {ri}m

i=1 a batch fromR
wPN ← Adam(∇wPNLPN,EN,RN , wPN , α, β1, β2)
wEN ← Adam(∇wENLPN,EN,RN , wEN , α, β1, β2)
wRN ← Adam(∇wRNLPN,EN,RN , wRN , α, β1, β2)

end

3.7. Loss Function Design

Our framework is similar to a GAN structure, where the PN, EN, and RN sub-
networks function as a cohesive unit working end-to-end in the pipeline, synchronously
updating each other. Built upon the concept of mutual adversariality, DN is alternately
optimized against them. The loss of the embedding and revealing processes can be denoted
as LPN,EN,RN , which comprises the embedding loss Le, revealing loss Lr, and adversarial
loss Lgd. In contrast, the loss of the discriminating process can be denoted as LDN , which
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consists solely of the adversarial loss. Given that both the generated stego and the recovered
RSI′ are fundamentally RGB images, the generation loss and recovery loss are composed
of pixel-wise loss, structural loss, and perceptual loss. Each loss function is a measurement
between the two images, focusing on different aspects and complementing one another.
Therefore, in our approach, we combine all three to enhance the embedding effect and the
quality of recovery.

Le = MSE(Cover, Stego) + SSIM(Cover, Stego)

+MSE(VGG19(Cover), VGG19(Stego)).
(12)

Lr = MSE(RSI, RSI′) + SSIM(RSI, RSI′) + MSE(VGG19(RSI), VGG19(RSI′)). (13)

In Equations (12) and (13), MSE denotes Mean Squared Error, SSIM denotes Structural
Similarity Index Measure, and VGG19 represents a deep convolutional neural network
architecture. In this context, VGG19 is utilized solely to extract semantic features by
employing its pre-trained model without additional training.

The DN determines the probability that the input stego belongs to the cover, and
the larger the value is, the closer it is to the distribution of the cover. As a loss function,
it is generally optimized by minimizing its value, so a negative sign is added before the
probability value of the loss. Therefore, the adversarial loss EN and PN can be expressed
in accordance with Equation (14).

Lgd = −DN(Stego). (14)

In short, training PN, EN, and RN is to optimize the loss function as expressed in Equation (15).

LPN,EN,RN = λ1Le + λ2Lr + λ3Lgd. (15)

where λ1, λ2, λ3 are weight factors that adjust the proportion of different loss functions in
the total loss function. The DN strives to reduce the predicted cover score while increasing
it for stegos. We optimize it by the loss function as expressed in (16):

LDN = (0− DN(Stego))2 + (1− DN(Cover))2. (16)

3.8. Training Process

When training is complete, and the model is deployed to a real-world application sce-
nario, the stego will be disseminated through public channels. Theoretically, a completely
secure distribution system requires stegos and the cover to follow the same distribution.
It is difficult to achieve the same distribution in practical applications, generally using a
means to measure the distance between the two distributions; the smaller the distance, the
better the hiding effect. Therefore, minimizing the distance between the two distributions
becomes our optimization goal for generating the stego. Under the guidance of this idea,
the original GAN proposed by Goodfellow et al. [34] can optimize the generated distri-
bution based on the KL divergence. Subsequent researchers focused on enhancing GAN
by developing appropriate network architectures and introducing novel loss functions to
mitigate its numerous shortcomings. Among them, Arjovsky et al. [35] discovered that
the Wasserstein distance offers benefits over both KL and JS distances, leading to the
introduction of Wasserstein–GAN (WGAN) to achieve more stable training processes. In
the original version of WGAN, the 1-Lipschitz constraint was imposed via weight clipping.
However, this approach had several drawbacks, such as potentially leading to gradient
vanishing or exploding and limiting the model’s capacity. To overcome these limitations,
WGAN-GP [36] was proposed. Building on the foundation of WGAN, WGAN-GP intro-
duces a gradient penalty to more effectively enforce the 1-Lipschitz constraint, resulting in
several advantages: improved training stability, elimination of problems associated with
weight clipping, enhanced sample quality during training, and simplified fine-tuning. As a
result, we utilize WGAN-GP to more accurately align the generator’s output distribution,
which similarly facilitates the achievement of a stable training regimen. For our task, the
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Wasserstein-1 distance between the cover distribution Pcover and the stego distribution
Qstego is denoted by the following Equation (17).

W(Pcover, Qstego) = inf
γ∈Π(Pcover ,Qstego)

∫
X×Y

∥x− y∥ dγ(x, y). (17)

In Equation (17), W(Pcover, Qstego) represents the Wasserstein-1 distance between prob-
ability distributions of Cover and Stego. Π(Pcover, Qstego) represents the collection of all
combined distributions γ that transport Pcover to Qstego, where each γ must satisfy the
marginal distributions to be consistent with Pcover and Qstego. ∥x− y∥ represents the Eu-
clidean distance between two points x ∈ Cover and y ∈ Stego in space, and the integral
calculates the expected cost of moving from x to y over all possible transport plans γ.
Our training process is described later in Algorithm 1 based on the principles above. The
(PN, EN, RN) and DN are trained alternately until the number of iterations reaches the
maximum value, where (PN, EN, RN) jointly learn to minimize LPN,EN,RN while DN
aims to minimizeLDN . Note that DN is iterated five times once (PN, EN, RN) is iterated.
The generator can receive dependable gradients within this framework that consistently
enhances the embedding’s effectiveness.

4. Experimental Results and Analysis

In this study segment, we performed a series of comprehensive ablation experiments to
methodically assess the impact and efficacy of the various design choices incorporated into
our model. These experiments are critical for understanding the contribution of individual
components and features to the overall performance of our system. By methodically
disabling specific elements or altering configurations, we can isolate and identify the value
and functionality of each discrete design decision.

4.1. Experimental Environment

We delve into the specifics of the datasets used for testing and validation and the
details regarding the experimental framework structured for evaluating our model. We
meticulously selected comprehensive datasets, ensuring a broad representation of various
image types and complexities to train and test our system robustly. We then elaborate on
the configuration of our experimental setup, which includes the hardware specifications,
software environments, and the parameters set for conducting the experiments. This will
clarify how the trials were performed and under what conditions, setting the stage for
replicable and transparent results.

ImageNet [15] is extensively utilized as the primary data source for challenges in
image recognition and classification. Meanwhile, the NWPU-RESISC45 [14] database,
comprising 31,500 aerial images spanning 45 different scene categories with abundant
spatial diversity and variation, serves as the repository for the RSI collection.

During our experimental setup, we utilized a workstation equipped with an NVIDIA
GeForce RTX 3080 Ti GPU as the hardware. The software environment was configured with
the Python 3.8 programming language and the Pytorch 1.31.0 framework, operating on
the Windows 10 platform. For training purposes, we employed a corpus of 30,000 images
from the ImageNet dataset as the cover images, alongside 1500 images designated for
testing. Similarly, for the confidential images, we trained on 30,000 images and allocated
1500 images for testing, all sourced from the NWPU-RESISC45 dataset.

4.2. Visual Quality Test and Analysis

The primary purpose of this scheme is to hide RSIs through natural images to achieve
an efficient and secure distribution. One of the most basic requirements is that the hidden
image is not visually detectable by the attacker because the attacker will steal the stego
or block the distribution channel if they find the image suspicious. Therefore, the first
experiment we performed after the program was trained was to test the visual effects
of the stego. In addition, we also tested the visual quality of the RSI extracted from the
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stego, aiming to test the hiding performance of the scheme from the perspective of visual
quality. Figure 8 shows the five randomly selected image pairs in our experimental results:
Cover, RSI, Stego from left to right, the extracted RSI, and the residual between Cover and
Stego. Intuitively, the stego generated by the scheme and the extracted RSI had sound
visual effects. A subjective evaluation was not very accurate, and we made some objective
evaluations, mainly using PSNR [37] and SSIM [38], two general visual quality evaluation
criteria. Table 2 shows the results of the objective evaluation. It is generally believed
that PSNR reaches 37 db and SSIM reaches 0.85, which means that the evaluation object
has better visual quality. That is, no visual anomaly can be detected compared with the
reference object.

PSNR = 10 · log10

(
MAX2

MSE

)
(18)

In Equation (18), MAX is the maximum possible pixel value of the two images involved in
the calculation, and MSE represents the Mean Squared Error.

SSIM(x, y) =
(2uxuy + C1)

(u2
x + u2

y + C1)
·

(2δxy + C2)

(δ2
x + δ2

y + C2)
(19)

In Equation (19), ux and uy represent the average values of images, δxy represents covariance
between images, δx and δy represent the variances of images, and C1 and C2 are two
constants which are used to prevent unstable results.

Figure 8. Visual performance display. The first column is the cover, the second column is the RSI,
the third column is the stego, the fourth column is the extracted RSI, the fifth column is the residual
between the cover and the stego, and the final column is the residual between the RSI and the
extracted RSI.



Remote Sens. 2024, 16, 1331 13 of 18

Table 2. Objective evaluation of embedding and revealing effects.

The Test Pairs
Cover and Stego RSI and Extracted RSI

PSNR/SSIM * PSNR/SSIM *
Row#1 46.8 db/0.97 38.7 db/0.86
Row#2 47.1 db/0.98 39.3 db/0.84
Row#3 46.9 db/0.96 39.2 db/0.86
Row#4 46.8 db/0.97 38.6 db/0.88
Row#5 47.2 db/0.98 38.8 db/0.86
Row#6 46.9 db/0.96 39.1 db/0.85

* PSNR and SSIM can be calculated by Equations (18) and (19), respectively.

4.3. Semantic Retention Capability Test

In image classification, three standard evaluation metrics are commonly utilized:
overall accuracy, average accuracy, and the confusion matrix. Overall classification accuracy
(OCA) is measured by the proportion of correctly classified samples across all classes
relative to the total sample count. Average classification accuracy (ACA) calculates the mean
classification accuracy for each class, independent of the class sample size. The confusion
matrix, an insightful layout, dissects the classification performance, detailing each correct
or mistaken prediction by class through an accumulative tabulation of tested samples.

It is important to note that in the case of the NWPU-RESISC45 dataset, each class
contains an identical number of images. Consequently, the overall accuracy coincides with
the average accuracy. As a result, in our study, we only employed overall accuracy as
in Table 3 and the confusion matrix as in Figure 9 to gauge the effectiveness of various
classification methodologies.

Table 3. Overall accuracy of three kinds of methods based on CNN and their fine-tuned variants
under the training ratios of 70% and 80%.

Method Based on CNN
70% Training Ratio 80% Training Ratio

Native/Extracted Native/Extracted
AlexNet 91.5 ± 0.18/91.3 ± 0.17 92.7 ± 0.12/92.6 ± 0.11

VGGNet16 90.5 ± 0.19/90.6 ± 0.15 92.6 ± 0.20/92.6 ± 0.19
GoolgeLeNet 91.8 ± 0.13/92.1 ± 0.12 92.3 ± 0.13/92.2 ± 0.15

Fine-tuned AlexNet 97.5 ± 0.18/97.2 ± 0.16 98.7 ± 0.10/98.5 ± 0.11
Fine-tuned VGGNet16 97.6 ± 0.18/96.9 ± 0.19 98.9 ± 0.09/98.3 ± 0.08

Fine-tuned GoolgeLeNet 97.3 ± 0.18/97.5 ± 0.17 98.7 ± 0.12/98.4 ± 0.13

Figure 9. On the left is the confusion matrix results of scene classification for the cover; and on the
right are the confusion matrix results of scene classification for the stego.
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Furthermore, to ensure the dependability of the overall accuracy and confusion matrix
metrics, we conducted ten iterations of the experimental process for each training–testing
split. The outcomes were then presented as a mean and standard deviation, providing a
robust and trustworthy statistical analysis of the classification results.

4.4. Security Test and Analysis

The security index is an essential measure of the practicality of the scheme proposed
in this paper, which mainly refers to the ability of the scheme to resist detection by rel-
evant algorithms, that is, to detect whether the stego contains an RSI. Referring to the
general practice of security testing in steganography, we chose two steganographic analysis
algorithms, one based on statistical analysis and the other based on deep learning. The
former representative tool is stegexpose [39], and the latter representative algorithm is
YeNet [40]. In order to obtain the experimental results accurately, 10,000 natural images
from ImageNet were selected in the test, and the corresponding stego was obtained by
inputting these 10,000 images into the trained embedded model. First, the stegexpose
resistance test was carried out, and 2000 images obtained from the result were randomly
selected and input into the stegexpose program. The stegexpose detection result was 0.51,
similar to the random guessing result. It can be seen that the proposed algorithm does
not affect the least significant bit, DCT coefficient, and noise distribution of the carrier
image, and it can effectively resist the analysis attack of stegexpose. In other words, the
scheme in this paper is safe when only the stegexpose test is used. In order to further
verify the security of our scheme, we then carried out the experiment of resistance to YeNet,
randomly selecting 8000 pairs of the above 10,000 pairs of images for training and then
using the remaining 2000 pairs as a test. From the experimental results, the accuracy of
YeNet reached 0.90%. However, this high level does not mean that our algorithm is unsafe
because this supervised detection algorithm needs to obtain the stego generated by our
algorithm and the corresponding cover for model training, which is almost impossible in
many cases.

In our method, the sender and the receiver initially communicate through a secure
channel to pass the trained decoder, and subsequent communications involve sending
stegos through a public channel. For an attacker, reconstructing a decoder with the same
effectiveness as the sender’s is highly challenging, as each encoder and decoder network
pair is co-trained and designed to work together. Such a design means that even if the
attacker can access the transmitted stegos, without the corresponding decoder, it would
be difficult to retrieve the hidden information. Nevertheless, the attacker may still have
an opportunity. They might attempt to train many variants of a randomly initialized
steganographic system to collect extensive statistical information about the hiding process,
using this to crack the system. While such an approach might increase the likelihood
of a successful attack, it also requires significant computational resources and a deep
understanding of the hiding mechanism. As for this issue involving the defense and attack
of neural networks, this article does not elaborate further.

4.5. Comparison

In order to verify the necessity of this study, we performed some comparative ex-
periments to verify that the proposed algorithm is more suitable for our RSI security
distribution task from different perspectives. Specifically, we selected five deep information
hiding algorithms [8,11,23,24,27] that are close to the idea and method of the algorithm
in this paper. They only completed the process of hiding pictures in pictures without a
special design for RSI. Therefore, to make the comparison fair, we only compared some
performance indicators tested jointly in these papers, including the stego’s visual quality,
the extracted RSI’s visual quality, and the detection resistance.

In the experiment, we replicated the schemes mentioned above and tested them with
the same cover and RSI. The experimental results are shown in Table 4 and Figure 10.
According to the experimental results, the proposed algorithm achieved the best visual
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effect and anti-steganalysis ability, which is mainly due to the PN and PAM module
designed in this study according to the characteristics of RSIs and the addition of a DN
network, which was further verified in a subsequent ablation experiment.

Figure 10. From top to bottom, the results of hiding and extraction on remote sensing images are from
reference [8] (Rehman, 2018), reference [24] (Duan, 2019), reference [11] (Chen, 2020), reference [23]
(Baluja, 2020), reference [27] (Chen, 2022), and our proposed scheme respectively.

Table 4. Performance comparison with existing algorithms.

Schemes
Cover and Stego RSI and

Extracted RSI
Acurracy of
Detection ACA

PSNR/SSIM * PSNR/SSIM * Stegexpose/YeNet
Literature [8] 34.78 db/0.92 31.5 db/0.90 0.55/0.99 0.92
Literature [24] 34.6 db/0.96 36.1 db/0.94 0.53/0.98 0.91
Literature [11] 44.1 db/0.97 39.8 db/0.98 0.58/0.98 0.93
Literature [23] 41.3 db/0.95 33.1 db/0.97 0.52/0.98 0.91
Literature [27] 44.6 db/0.97 38.6 db/0.97 0.53/0.98 0.93
Literature [12] 42.3 db/0.99 38.8 db/0.96 0.52/0.96 0.94
The proposed

method 47.1 db/0.99 38.9 db/0.99 0.51/0.90 0.98

* PSNR and SSIM can be calculated by Equations (18) and (19), respectively.

4.6. Ablation Experiments

In our study, we incorporated the Position Attention Module (PAM) and the Percep-
tual Network (PN) into our Inception Network-based architecture to dynamically refine the
distribution of RSI data. The PN within our framework serves to enhance the embedding
ability of the Encoder Network (EN) by progressively approximating the visual characteris-
tics and distribution of the cover images and to improve the restoration capability of the
Revealing Network (RN) by ensuring the recovered images closely match the visual and
semantic qualities of the RSI.
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To assess the impact of the PAM and PN, we conducted an ablation study with varia-
tions to the original DIH4RSID configuration, producing three offshoots: (1) DIH4RSID-
PAM-PN lacking both PAM and PN; (2) DIH4RSID-PAM without PAM, but including PN;
(3) DIH4RSID-PN lacking PN, but incorporating PAM. We trained the main DIH4RSID
network and its variants on the same dataset and evaluated their efficacy based on im-
age quality, extraction accuracy, visual appeal, security, and classification precision. The
quantitative outcomes are presented in Table 5.

Table 5. Ablation study results.

Variants
Cover and Stego RSI and

Extracted RSI AD *
ACA

PSNR/SSIM PSNR/SSIM Stegexpose/YeNet
DIH4RSID-
PAM-PN 36.8 db/0.80 29.6 db/0.80 0.53/0.96 0.89

DIH4RSID-PAM 40.9 db/0.83 30.1 db/0.82 0.55/0.92 0.94
DIH4RSID-PN 42.1 db/0.92 32.3 db/0.88 0.52/0.91 0.93

DIH4RSID 47.1 db/0.99 38.9 db/0.99 0.51/0.90 0.98
* AD denotes the accuracy of detection of Stegexpose or YeNet, and ACA denotes the average accuracy classification.

The comparison between DIH4RSID and DIH4RSID-PAM-PN demonstrates the sig-
nificant enhancements PAM and PN provide across all benchmarks. These components
optimize feature utilization, highlighting relevant details while suppressing extraneous
ones and generating steganographic images with less perceptible noise. Additionally,
including PN in DIH4RSID aids in a more accurate recovery of RSI.

A marginal decline in performance with DIH4RSID-PN suggests that PAM contributes
to stable embedding by promoting the imperceptibility of steganographic content. Further-
more, the effectiveness of RSI extraction and visual quality also relies on PN, as it facilitates
the concurrent training of both the EN and RN, underscoring the complementary roles of
PAM and PN in our network design.

5. Discussion

In order to provide an alternative scheme for the safe distribution of remote sensing
images, this paper proposes a new end-to-end network structure based on the idea of deep
information hiding. The remote sensing images we want to hide are no different from
ordinary natural images, so the intuitive idea is to transplant the existing image-to-hide
image algorithm. Through comparative and ablation experiments, we found that it can be
barely used in scenes with low-performance requirements. However, further experimental
results showed that the proposed algorithm can achieve better visual quality and higher
security. Through analysis, the scheme in this paper achieved better performance than the
existing algorithms because of the delicate design of the network structure.

Firstly, in this study, we designed a PN according to the characteristics of RSIs. Theo-
retically, to capture more details of RSIs and targets of different scales, the features extracted
by the PN module are used as input for subsequent embedding in the network. Secondly, a
newly designed attention mechanism module, PAM, is adopted in the encoder network,
similar to the Coordinate Attention Mechanism, which can realize feature enhancement
and context information integration. In addition to adding PAM to the encoder, we also add
local skip connections and global skip connections to achieve good information embedding
and visual quality maintenance. Finally, to achieve better security, we add the discriminator
module to the pipeline to achieve higher security and embedding effects.

Although this study provides a novel approach to the secure distribution of remote
sensing images, the RSI images used were compressed RGB images, and the efficiency and
complexity of the algorithm were not analyzed. The method presented in this paper cannot
be directly applied to hyperspectral RSIs. Then, due to the complexity of the network
architecture, it can be anticipated that the efficiency will not be very high. Therefore, to
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extend the applicability of this algorithm and improve efficiency, future work could attempt
to efficiently implement the embedding and extraction for hyperspectral images to achieve
their secure distribution.
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