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Abstract: Southern China, one of the traditional rice production bases, has experienced significant
declines in the area of rice paddy since the beginning of this century. Monitoring the rice cropping area
is becoming an urgent need for food security policy decisions. One of the main challenges for mapping
rice in this area is the quantity of cloud-free observations that are vulnerable to frequent cloud cover.
Another relevant issue that needs to be addressed is determining how to select the appropriate
classifier for mapping paddy rice based on the cloud-masked observations. Therefore, this study
was organized to quickly find a strategy for rice mapping by evaluating cloud-mask algorithms and
machine-learning methods for Sentinel-2 imagery. Specifically, we compared four GEE-embedded
cloud-mask algorithms (QA60, S2cloudless, CloudScore, and CDI (Cloud Displacement Index))
and analyzed the appropriateness of widely accepted machine-learning classifiers (random forest,
support vector machine, classification and regression tree, gradient tree boost) for cloud-masked
imagery. The S2cloudless algorithm had a clear edge over the other three algorithms based on its
overall accuracy in evaluation and visual inspection. The findings showed that the algorithm with
a combination of S2cloudless and random forest showed the best performance when comparing
mapping results with field survey data, referenced rice maps, and statistical yearbooks. In general,
the research highlighted the potential of using Sentinel-2 imagery to map paddy rice with multiple
combinations of cloud-mask algorithms and machine-learning methods in a cloud-prone area, which
has the potential to broaden our rice mapping strategies.

Keywords: cloud-mask algorithms; machine-learning algorithms; paddy rice; GEE; Sentinel-2
imagery

1. Introduction

Food security is one of the major challenges to human sustainable development, with
growing pressure from an increasing population and limited available land resources [1].
Rice is a staple grain and food source for more than half of the global population and
provides approximately one-fifth of the daily caloric supply [2]. According to the Statistical
Yearbook 2022 released by the Food and Agriculture Organization (FAO), in 2020, rice
paddies accounted for more than 11% of the global cropland area, and China contributed
the world’s largest percent of the rice-cropped area (30.34 million hectares, accounting
for approximately 18.6% of global rice cropped area). Recent studies have shown large
increases in rice area in northeast China during 2000–2017 [3,4] and substantial decreases
in south China between 2000 and 2015 [5]. The Jianghan Plain (JP) has always been
one of the major grain-producing bases in southern China since the early 1960s [6], and
paddy rice flourished subject to its advantaged geographical environment, such as the
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crisscross network of water bodies and fragmented lake or pond patches, as well as rice-
favorable climatic conditions. Over the past three decades, the region has experienced
dramatic changes in rice paddies due to the effects of a series of agriculture-related policy
adjustments, which aimed to balance food security issues and eco-environment sustainable
development. Thus, accurately and efficiently acquiring information about the rice area is
of great importance for policy and decision-making on properly managing and distributing
the food supply, which reduces the threat to food security in the future.

Compared with the time-consuming and labor-intensive field survey of rice areas,
the capability of large-scale coverage and high-frequency revisiting have made remote
sensing technology an efficient tool in mapping paddy rice. The multi-temporal optical
remotely sensed imagery (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS),
Landsat, and Sentinel-2) are the main optical data sources in rice mapping at various spatial
scales [3,7–11]. Paddy fields are a mixture of water and rice plants from the rice transplant-
ing period to the early vegetative growing period, making the flooding signatures easily
captured with the time series normalized difference vegetation index (NDVI), enhanced veg-
etation index (EVI), and land surface water index (LSWI) [3,7]. Therefore, phenology-based
algorithms were boosted in the mapping of paddy rice in recent years [11–15]. However,
flexible flooding signatures from other land cover (e.g., aquatic ponds) [16] and frequent
clouds and rain in southern China limit the practice of phenology-based algorithms in the
region. Moreover, fragmented wetland patches and small ponds in the JP split the paddy
fields to be spatially fractured, which cannot be well detected with coarse or medium spatial
resolution data from satellite sensors such as the MODIS and Landsat [17]. The constella-
tion of Sentinel-2A and Sentinel-2B advanced vegetation monitoring systems experience
periodic changes due to their high-frequency revisit cycle and high spatial resolutions [18].
In addition, the involvement of three red-edge bands in the sensor that are sensitive to the
spectral characteristics of vegetation can be used for mapping paddy rice [11,15].

The Sentinel-1 backscattering coefficient, consisting of the texture of the surface feature,
can help to improve accuracy when vegetation indices are unavailable [19,20]. However,
the inherent speckle noise in SAR data [21] and its sensitivity to soil moisture and surface
roughness could bring substantial uncertainty in separating paddy fields from some land
cover types (e.g., wetland) [22]. Furthermore, the phenology-based algorithm used in
rice mapping with Sentinel-1/2 is highly dependent on cloud-free observations in the
transplanting stages [15,20]. A recent study found that even 5–7 days in revisit cycles
for the Sentinel-2 constellation still could not offer sufficient observations to describe the
time series spectral characteristics of paddy rice [7]. In essence, cloud contamination
poses a serious threat to rice mapping in subtropical and tropical regions when using
freely accessible optical satellite data, such as Landsat and Sentinel-2, at present. Hence, a
comprehensive evaluation of the appropriateness of these data is more practical for rice
mapping in cloud-prone regions.

So far, many researchers have conducted comparisons of different cloud-mask algo-
rithms for Landsat images [23–26] and Sentinel-2 images [23,26–28] across a wide range of
global environments and land cover types. Moreover, concerning time-series mapping of
a specific crop, it is extremely essential to compare the performances of cloud-mask algo-
rithms that are currently available in terms of ease of access and computational performance,
as well as provide advice on which algorithm to use for the remote sensing community inter-
ested in crop mapping. Google Earth Engine (GEE), based on its millions of servers around
the world and its cloud computing and storage capability, has archived a multisource of
earth observation data and provided a supercomputing platform for remote sensing data
processing and broad-scale geospatial analyses [3,29]. Several studies have demonstrated
the effectiveness of rice mapping based on the GEE platform [3,8,9,11,15,19,20]. Yet, to the
best of our knowledge, a large number of studies on rice mapping used the QA60 band
for masking clouds in Sentinel-2 imagery [15], and other GEE-embedded cloud-masking
algorithms were almost absent in the study of rice mapping. Therefore, it is necessary to
thoroughly assess these algorithms in rice mapping, especially in cloudy and rainy areas.
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Here, four common cloud-mask algorithms that are easy to implement and broadly
used in GEE were selected for this comparison. The first one is the QA 60 band of Sentinel-2
MSI, which is a bitmask band with cloud mask information and has been widely used in
rice mapping [11,15]. Secondly, Sentinel-2 cloudless (S2cloudless) is a single-scene cloud
detection algorithm that runs single-pixel-based classification using a machine-learning
method from Sentinel Hub [30]. Thirdly, the CloudScore algorithm employs the spectral
and thermal properties of clouds and uses a min-max normalization function to rescale the
values of reflectance and temperature between 0 and 1. It has been used to mask clouds
in Landsat imagery at first [31] and then broadened to Sentinel-2 imagery [32]. The last
algorithm was the Cloud Displacement Index (CDI), which was developed by using the
three highly correlated near-infrared bands from Sentinel-2 imagery that are observed with
different view angles [27]. Clouds can be reliably separated from artificial surfaces or bright
ground objects through Sentinel-2 NIR parallax.

The GEE platform, along with its built-in cloud-masking algorithms as well as machine-
learning classifiers, offers new opportunities for generating rice maps automatically and
robustly. Previous research has mostly emphasized individual algorithms for rice mapping,
often overlooking comparative analyses between them. Furthermore, current rice mapping
methods mainly rely on the QA60 band in connection with machine-learning techniques
for data processing, thus overlooking the exploration of different cloud mask algorithms
and their combination with these machine-learning approaches. We planned to adopt four
cloud-mask algorithms (QA60, S2cloudless, CloudScore, and CDI) to generate cloud-free
Sentinel-2 imagery and then use these cloud-masked data to map paddy fields based
on four widespread machine-learning algorithms (namely Random Forest (RF), Support
Vector Machine (SVM), Classification and Regression Tree (CART), and Gradient Tree Boost
(GTB), respectively. Specifically, to address the aforementioned issues, this research aims
to (1) evaluate the accuracy of the GEE-embedded cloud-mask algorithms for Sentinel-2
imagery in a typical cloud-prone region of South China during an entire rice growing season;
(2) analyze the appropriateness of cloud-masked Sentinel-2 imagery in rice mapping; and
(3) examine the applicability of different combinations of cloud-mask algorithms and
machine-learning algorithms for mapping paddy rice in the frequently cloudy area.

2. Study Area and Data
2.1. Study Area

The Jianghan Plain (JP) is a typical alluvial plain formed by the Yangtze River and
its longest tributary, the Han River, located in the middle reach of the Yangtze River. It
is located between latitudes 29◦26′ and 31◦37′N and longitudes 111◦14′ and 114◦36′E. It
covers an area of approximately 30,000 km2 and consists of 16 counties (or county-level
municipalities or county-level districts) in the Hubei province. The subtropical monsoon
climate of the JP offers an annual precipitation of about 1100 mm and a mean annual
temperature of ~16.1 ◦C in four seasons [6]. The region is dominated by water bodies,
built-up areas, and cropland with both dryland and paddy fields (Figure 1). Generally, rich
water resources and abundant rainfall not only result in a plain that is ideal for paddy rice
cropping but also render rice mapping from optical remote sensing imagery susceptible to
cloud contamination.

2.2. Data
2.2.1. Remotely Sensed Data

The European Space Agency openly and freely provides Sentinel-2 data with a spatial
resolution of 10 to 60 m depending on the spectral band. Hereby, all available Sentinel-2
Multi-Spectral Instrument (MSI) Level-1C (L1C) scenes covering the JP during the growing
season in 2018 were used because this year is the first full calendar year that imagery from
the constellation could be simultaneously used, and Sentinel-2 L1C top-of-atmosphere
(TOA) imagery has been widely utilized in cropland mapping [9,11,33]. Furthermore, we
collected Level-2A (L2A) surface reflectance (SR) in 2021 to compare the performance of rice
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mapping with L1C datasets in different machine-learning algorithms. The onboard MSI
sensor with visible, near-infrared (NIR), and shortwave infrared (SWIR) bands contains
13 channels: four bands at 10 m (visible and NIR), six bands at 20 m (vegetation red edge,
narrow NIR, and SWIR) and three bands at 60 m (coastal aerosol, water vapor, and SWIR-
cirrus). In our research, eleven Sentinel-2 bands which ranged from visual to SWIR , and
remote sensing spectral indices were calculated (Table 1).

Figure 1. Overview map of the study area. The grids are Sentinel-2 footprints in MGRS (Military Grid
Reference System) with an area of 100 km × 100 km square. Land cover data was from the optimal
mapping results of this study.

Table 1. Description of remote sensing data used in this study.

Bands Central Wavelength Space Resolution Purpose (Cloud-Mask Algorithm/VI)

Blue (B2) 492.4 nm (S2A)/492.1 nm (S2B) 10 m CloudScore/BSI, EVI, PSRI
Green (B3) 559.8 nm (S2A)/559.0 nm (S2B) 10 m CloudScore/GCVI, MNDWI
Red (B4) 664.6 nm (S2A)/664.9 nm (S2B) 10 m CloudScore/BSI, NDVI, EVI, PSRI, MTCI
RE 1 (B5) 704.1 nm (S2A)/703.8 nm (S2B) 20 m -/MTCI
RE 2 (B6) 740.5 nm (S2A)/739.1 nm (S2B) 20 m -/PSRI, MTCI
RE 3 (B7) 782.8 nm (S2A)/779.7 nm (S2B) 20 m CDI
NIR (B8) 832.8 nm (S2A)/833.0 nm (S2B) 10 m CloudScore, CDI/BSI, NDVI, EVI, GCVI, LSWI, NDBI

NIR (B8A) 864.7 nm (S2A)/864.0 nm (S2B) 20 m CDI
Cirrus (B10) 1373.5 nm (S2A)/1376.9 nm (S2B) 60 m QA60
SWIR1 (B11) 1613.7 nm (S2A)/1610.4 nm (S2B) 20 m CloudScore/BSI, MNDWI, NDBI
SWIR2 (B12) 2202.4 nm (S2A)/2185.7 nm (S2B) 20 m CloudScore/LSWI
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2.2.2. Field Survey Data

Field survey data served as the ground truth data for classifier training and validation
of classification results. The ground truth data of JP was collected from two field surveys
of land cover in the summer of 2018 and 2021. Specifically, using GVG (GPS-Video-GIS)
software [34], an application that can gather GPS (Global Positioning System) information
from camera photos based on a smartphone, we recorded the land cover types of field
samples and their geographic positions. Due to road conditions, some field samples were
located at the ridge of the field or on the roadsides next to paddy fields. Consequently, we
examined these samples using high-resolution Google Earth data and 0.75 m resolution
Jilin-1 satellite imagery to rectify the land-cover type information of the samples. In the end,
we collected a total of 2266 and 2296 field samples in five different land-cover categories
(paddy fields, dry land, water bodies, forest land, and building area) in 2018 and 2021,
respectively. These samples were separated into two parts: about 70% of the samples
were used for training machine-learning classifiers, and the remaining 30% were used for
validation (see Table 2 for details).

Table 2. The number of ground truth samples in 2018 and 2021.

Class
Training Validation Total

2018 2021 2018 2021 2018 2021

Water body 329 330 141 142 470 472
Built-up area 255 252 109 108 364 360
Forest land 265 258 113 110 378 368
Dryland 328 232 140 100 468 332
Paddy rice 410 535 176 229 586 764
Total 1587 1607 680 689 2266 2296

2.2.3. Other Reference Data

In addition to field survey data, a recently published Chinese rice map collection
was used to evaluate the spatial distribution similarity of the generated rice maps. The
map collection contains a series of single-cropping rice maps from 2017 to 2022 with a
resolution of 10 m. These rice maps were generated from Sentinel-1A and Sentinel-2 data
by comparing the dissimilarity of each pixel with the standard rice pixel in the time series.
The accuracy assessment was examined using more than 100,000 field samples as well as
county-level statistical data, and the average overall accuracy was greater than 85% [35].
The JP region of the rice maps for 2018 and 2021 was clipped for comparison.

In addition, the rice paddy area derived from the Hubei rural statistical yearbook of
2018 and 2021 was used for validation. The statistical data was compiled at the county
level, and the data from 16 counties in the JP was collected for comparison.

3. Methodology

The overall process of this study included three stages, as shown in Figure 2. In
the beginning, we used cloud-mask algorithms for cloud removal in the TOA and SR
datasets of Sentinel-2 and evaluated the algorithms for each cloud-masked dataset. Next,
the median composite method was used to generate cloud-free composite images based
on the phenology stages of paddy rice in the JP. Lastly, we used selected features of
composite images to map paddy rice with machine-learning classifiers and compared
different combinations of cloud-mask algorithms and classifiers in rice mapping.
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Figure 2. The workflow of the study included data preprocessing and cloud mask algorithm evalu-
ation, sample selection and feature selection, extraction of rice phenology and image compositing,
comparisons of machine-learning algorithms in rice mapping and validation of rice maps (validation
of field data samples, comparison of 10 m rice maps, and comparison of statistical data).

3.1. Cloud-Mask Algorithms

(1) QA60

The Sentinel user guides online offer a detailed description of QA60 (https://sentinel.
esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks, accessed
on 21 December 2023). In brief, dense clouds were identified by B2, B11, and B12 using
the threshold method, and cirrus clouds were detected by B10 based on spectral criteria.
The quality layer of QA60 was embedded in Sentinel-2 data and flagged the opaque cloud
pixels (Bit 10) and cirrus cloud pixels (Bit 11) [36]. Cloud-contaminated pixels flagged as 1
by Bit 10 or Bit 11 in the QA60 band were masked in GEE.

(2) Sentinel-2 cloud detector (S2cloudless)

Using the Light Gradient Boost Machine (Light GBM) framework, one kind of tree-
based learning algorithm, Sentinel-2 cloud detector (S2cloudless), provides automated
cloud detection in Sentinel-2 imagery. Sentinel Hub’s research team led the develop-
ment of the classifier based on a single-scene pixel-based cloud detector. The detailed
description can be found in [26,30] (https://medium.com/sentinel-hub/cloud-masks-
at-your-service-6e5b2cb2ce8a, accessed on 15 December 2023). Fortunately, at present,
the S2 cloudless mask is available as a precomputed layer within Sentinel Hub and has
been used to produce a Sentinel-2 cloud probability dataset for developers that is easy
to use (https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_
S2_CLOUD_PROBABILITY, accessed on 15 December 2023). Ref. [26] recommended a
threshold value of 0.4 to minimize cloud omission errors in this algorithm.

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks
https://medium.com/sentinel-hub/cloud-masks-at-your-service-6e5b2cb2ce8a
https://medium.com/sentinel-hub/cloud-masks-at-your-service-6e5b2cb2ce8a
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY
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(3) CloudScore algorithm

The CloudScore algorithm is a pixel-wise cloud and cloud shadow masking method
initially used with Landsat imagery [31]. It used visible, NIR, SWIR, and thermal bands to
identify and remove clouds by scoring pixels by their relative cloudiness. The algorithm has
been embedded in GEE as an internal function (‘ee.Algorithms.Landsat.simpleCloudScore’)
and was successfully improved for cloud detection in Sentinel-2 MSI data using cirrus and
aerosol bands to substitute the thermal infrared (TIR) band of Landsat [32]. The definition
of the cloud score and its processing with the GEE platform was described in [32].

(4) Cloud Displacement Index (CDI)

The CDI algorithm utilizes the parallax of the near-infrared (NIR) bands between the
TOA dataset and SR dataset of Sentinel-2 imagery to enhance cloud detection. Reliable
separation of clouds from the surface in Sentinel-2 data is achieved by calculating the
parallax between the near-infrared bands for the observation angle. This is used to fully
compensate for the missing thermal infrared bands and is primarily targeted at the detection
of low-level clouds and surface objects within the coverage of low-level clouds [27]. Since
the GEE platform did not offer the SR dataset of the JP in 2018 and the CDI algorithm
requires both the TOA dataset and the SR dataset, we will only use the CDI algorithm for
cloud removal in 2021.

3.2. Paddy Rice Mapping Algorithms
3.2.1. Extraction Phenology of Paddy Rice

In the JP, single-cropping rice is dominated in paddy fields [37], and its growing season
ranged from late March to late October, according to our field surveys in 2018 and 2021 as
well as relevant research on rice mapping in the Hubei province [9,38]. Based on the cloud-
masked imagery, we generated time-series datasets of five spectral indices (BSI, LSWI,
NDVI, EVI, and PSRI) using 200 rice samples in 2018 and 2021, respectively. These datasets
were smoothed by the Savitzky-Golay (SG) filter with a smoothing window of 30 and a
degree of the smoothing polynomial of 5 based on repeated testing (Figure 3). We examined
and compared smoothed time-series curves produced by the TOA datasets and SR datasets
and discovered a lot of similarities between them. Four featured phenology stages were
detected from time-serious observations of the five spectral indices by their day of year
(DOY). These key stages were: (1) the bare soil stage, which is a period before transplanting.
During this stage, NDVI and EVI gradually rose with the growth of the weed and then
started to decrease when the soil was turned before planting. Meanwhile, BSI obtains
relatively high values compared with theirs in the growing stage [11]; (2) transplanting
stage: paddy fields were flooded and then transplanted during this period. LSWI increased
rapidly, and its value greater than NDVI and EVI was recognized as the flooding and
transplanting signal [7]; (3) growing stage: both NDVI and EVI grow dramatically faster
than LSWI in the early growing period, implying paddy rice gradually dominated paddy
fields due to the degradation of water signal. Then, the three indices reached their peaks
while BSI descended the trough at the same stage; (4) harvest stage, the stage in which
NDVI and EVI decreased sharply owing to the reduction of greenness and chlorophyll of
paddy rice, while BSI and PSRI showed a rapid rise due to the enhancement of soil signal
and substantial changes in carotenoid and chlorophyll content (Table 3).

Table 3. Time windows for phenological stages of single-cropping rice in the JP.

Phenology Stages Time Windows

Bare soil stage 20/03–20/04
Transplanting stage 20/04–15/06

Growing stage 15/06–10/09
Harvest stage 10/09–25/10
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Figure 3. Paddy rice phenological stages derived from the fitted curves of five spectral indices based
on the cloud-masked TOA dataset in 2021 (field photographs were taken at 112.8804◦E, 30.0690◦N).

According to the spectral characteristics of paddy fields analyzed above and the latest
associated research, we selected three types of features for rice mapping. The first type was
bands of Sentinel-2 MSI, including Blue, Green, Red, Red Edge1, Red Edge2, Red Edge3,
NIR, SWIR1, and SWIR2. The performance of red-edge bands has been widely explored in
vegetation monitoring, and highly evaluated in rice mapping in recent studies [11]. Second,
we used one soil index (BSI)), four vegetation indices (NDVI, EVI, GCVI, and PSRI), one
red-edge index (MTCI), two water indices (MNDWI and LSWI), and one building index
(NDBI) (Table 4). The advantages of these indices in rice mapping were greatly valued in a
few studies [8,39]. Moreover, year-round synthetic images were used to calculate the water
frequency and served as a feature to distinguish rice paddies from water bodies. The last
type was DEM, which proved to be useful for rice mapping in plain areas [15] because
water storage is easy in flat areas. In each phenological stage, images were composited by
using the median values of all cloud-masked bands and spectral index imagery.

Table 4. Spectral indices and their expressions used in this study.

Spectral Indices Expressions References

Bare Soil Index (BSI) BSI = (SWIR1+Red)−(NIR+Blue)
(SWIR1+Red)+(NIR+Blue) [40]

Normalized Difference Vegetation Index (NDVI) NDVI =NIR−Red
NIR+Red [41]

Enhanced Vegetation Index (EVI) EVI = 2.5×(NIR−Red)
NIR+6×Red−7.5×Blue+1 [42]

Green Chlorophyll Vegetation Index (GCVI) GCVI = NIR
Green−1 [15]

Plant Senescence Reflectance Index (PSRI) PSRI = Red−Blue
RedEdge2 [43]

MERIS Terrestrial Chlorophyll Index (MTCI) MTCI = RedEdge2−RedEdge1
RedEdge2+Red [44]

Modified Normalized Difference Water Index (MNDWI) MNDWI =Green−SWIR1
Green+SWIR1 [45]

Land Surface Water Index (LSWI) LSWI =NIR−SWIR2
NIR+SWIR2 [12]

Normalized Difference Built-Up Index (NDBI) NDBI =NIR−SWIR1
NIR+SWIR1 [46]

3.2.2. Machine-Learning Algorithms

Machine-learning algorithms have been widely used in rice mapping. Here, we
examined the mapping performance of four regular algorithms that were embedded in
GEE. Normally, 70% of the samples were used for training, and the remaining 30% were
selected as the validation data.
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(1) Random Forest (RF). RF is a decision tree-based classifier that integrates multiple
decision trees through the idea of integrated learning. It combines individual decision trees
using a series of subsets of training samples, and these multiple decision trees with high
variance and low bias form several user-defined trees, which can be integrated to vote for
category membership [47]. In GEE, we used the function ‘ee.Classifier.smileRandomForest’
to create an RF classifier. The parameters of the algorithm, such as the number of trees,
bag fraction, and so on, were optimized through the testing of different combinations.
Lastly, 410 and 0.8 were confirmed as the final combination regarding higher accuracy and
relatively high efficiency.

(2) Support Vector Machine (SVM). SVM is a supervised machine-learning algorithm
and the basic principle of the algorithm is to construct a maximum margin hyperplane for
distinguishing different feature types in high-dimensional feature space based on training
data [48]. In GEE, we built an SVM classifier by using the function of ‘ee.Classifier.libsvm()’,
and selected the radial basis function (RBF) as the kernel function type for classification
because of its simplicity, time efficiency, and ability to produce accurate results [49,50].
When using RBF as the kernel type, two hyperparameters (‘gamma’ and ‘c’, used to give
curvature weight of the decision boundary and control error, respectively) need to be set
before the training model. For choosing gamma, we tested values like 0.001, 0.01, 0.1, 1, 10,
and 100, while the same tested for ‘c’ values. Through the parameter tuning experiment,
we chose the optimal combination of 0.01 for ‘gamma’ and 10 for ‘c’.

(3) Classification and Regression Tree (CART). The algorithm creates a tree-like struc-
ture that divides the dataset into different subsets, each of which corresponds to a leaf node
of the tree. In short, it is a tree of multiple decision rules, and all these rules will be derived
from the data features. In our study, the ‘ee.Classifier.cart()’ function was used to create the
CART classifier in the GEE platform. The main parameters within the classifier include
‘minLeafPopulation’ and ‘maxNodes’, whose optimal values were 1 and 10 after different
tests, respectively.

(4) Gradient Tree Boost (GTB). It is an integrated learning method that builds a strong
learner by combining multiple weak learners (e.g., shallow trees) and is suitable for dealing
with complex, high-dimensional datasets and non-linear relationships. In GEE, we used
the ‘ee.Classifier.smileGradientTreeBoost()’ function to conduct the classifier. Among many
parameters, two critical hyperparameters, ‘number of trees’ and ‘shrinkage’ (also known as
the ‘learning rate’), strongly influenced the efficiency and robustness of the algorithm. Other
parameters included ‘sampling rate’, ‘max nodes’, and ‘seed’. We set the values of the above
parameters in order: 100, 0.005, 0.7, 50, and 10 through the testing of different combinations.

3.3. Assessment of Cloud-Mask Algorithms and Rice Maps
3.3.1. Assessment of Cloud-Mask Algorithms

To provide a comprehensive evaluation of the four cloud mask algorithms, we selected
three Sentinel-2 granules to conduct the assessment. These granules are also called tiles,
which are the minimum indivisible partitions in the MSI sensor reference frame of a given
number of lines along the track and detector-separated. The tile IDs are 49REP, 49RFP, and
49RGP, which extensively covered the JP area from west to east. Due to the uneven duration
of each paddy rice growing stage, we chose two tiles acquired in the growing stage and one
tile within the bare soil stage, transplanting stage, and harvest stage, respectively, resulting
in a total of five time-series images for each granule (Table 5). The cloud cover of these tiles
ranged from 0 to 80%, assigning to different growing stages of paddy rice. As each Sentinel-
2 tile covers a surface area of 110 km × 110 km with a 10 m spatial resolution, previous
studies on cloud-mask algorithm evaluation have shown that using about 400 validation
samples per image can achieve a 95% confidence level with a 5% margin of error. Therefore,
we labeled approximately 400 samples with labels of ‘cloud’ and ‘non-cloud’ (clear) for
each tile given dense, cirrus, and haze cloud types in ‘cloud’ labels and different land cover
types (e.g., water bodies, cropland, buildings, and forest) in ‘non-cloud’ labels. The detailed
information on selected images and sample labeling is listed in Table 5. Based on the sample
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labeling, we used the confusion matrix to generate producer accuracy (PA), user accuracy
(UA), and overall accuracy (OA) for the assessment of the four cloud-mask algorithms.
Finally, five evaluation metrics for one year were averaged to assess the performances of
the four cloud-mask algorithms in the TOA dataset of 2018, and the same tiles were used
for the evaluations of the TOA and SR datasets in 2021.

Table 5. The summary of samples used for the evaluation of cloud-mask algorithms.

Data Type Tile Phenology Stages Date Cloud Cover/%
Samples

Cloud Clear Total

2018TOA 49REP Bare soil stage 3/4/2018 7.4915 161 240 401
Transplanting stage 23/5/2018 33.6128 235 182 417
Growing stage 27/6/2018 15.294 187 261 448

6/8/2018 23.0023 304 120 424
Harvest stage 10/10/2018 5.3781 84 389 473

49RFP Bare soil stage 8/4/2018 16.5152 217 252 469
Transplanting stage 28/4/2018 15.0278 260 225 485
Growing stage 17/7/2018 45.5232 212 201 413

1/8/2018 14.4641 251 178 429
Harvest stage 15/9/2018 8.6775 253 259 512

49RGP Bare soil stage 8/4/2018 15.6042 114 253 367
Transplanting stage 8/5/2018 41.6684 281 133 414
Growing stage 17/6/2018 49.8558 259 146 405

22/7/2018 1.9465 204 237 441
Harvest stage 10/10/2018 0.898 77 328 405

2021TOA 49REP Bare soil stage 12/4/2021 8.066 262 205 467
Transplanting stage 11/6/2021 63.7011 352 108 460
Growing stage 5/8/2021 33.6629 220 191 411

9/9/2021 55.6306 267 155 422
Harvest stage 24/10/2021 10.93 179 247 426

49RFP Bare soil stage 28/3/2021 47.4834 279 129 408
Transplanting stage 1/6/2021 34.2679 273 156 429
Growing stage 21/7/2021 26.6127 242 129 371

4/9/2021 34.5427 190 198 388
Harvest stage 24/10/2021 8.3527 263 160 423

49RGP Bare soil stage 12/4/2021 33.8914 265 150 415
Transplanting stage 17/5/2021 17.7569 227 202 429
Growing stage 5/8/2021 19.443 261 152 413

20/8/2021 32.4015 254 161 415
Harvest stage 29/9/2021 18.0409 198 212 410

2021SR 49REP Bare soil stage 12/4/2021 12.200443 262 205 467
Transplanting stage 11/6/2021 75.641401 352 108 460
Growing stage 5/8/2021 35.574219 220 191 411

9/9/2021 47.876539 267 155 422
Harvest stage 24/10/2021 7.954566 179 247 426

49RFP Bare soil stage 28/3/2021 61.947279 279 129 408
Transplanting stage 1/6/2021 46.110165 273 156 429
Growing stage 21/7/2021 17.516239 242 129 371

4/9/2021 27.806534 190 198 388
Harvest stage 24/10/2021 6.579728 263 160 423

49RGP Bare soil stage 12/4/2021 61.947279 265 150 415
Transplanting stage 17/5/2021 42.097832 227 202 429
Growing stage 5/8/2021 22.158073 261 152 413

20/8/2021 23.202318 254 161 415
Harvest stage 29/9/2021 9.179795 198 212 410

3.3.2. Feature Evaluation of Different Cloud-Free Datasets

In addition to the assessment of cloud-mask algorithms, the quality of the cloud
removal imagery that would be input into the machine-learning model also needs to
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be investigated. We calculated the spectral separability of samples in the cloud-masked
imagery. Based on the different spectral responses of vegetation and non-vegetation, the
Jeffries-Matusita (J-M) distance has been proven to be an efficient measure for assessing
spectral separability in vegetation mapping by remote sensing [51]. The spectral separability
was determined by calculating the J-M values of various land cover samples in feature
datasets. It calculates a measure of distance between two classes, and the formula is
presented below:

Jij = 2
(

1 − e−Bij
)

(1)

Bij =
1
8
(
mi − mj

)2 2
v2

i + v2
j
+

1
2

[
v2

i + v2
j

2vivj

]
(2)

where Jij is the separability measure of class i from class j, B is the Bhattacharyya distance,
mi, mj are the means, and vi, vj are the variances of classes i and j [52]. J-M values range
from 0 to 2. A larger J-M distance indicates a higher degree of separation between categories,
which usually implies better classification performance [53].

3.3.3. Validation of Rice Maps

The evaluation of the rice maps was compared with the latest 10 m resolution rice map,
and a spatial distribution similarity assessment proposed by Jaccard [54] was employed.
This statistical metric is a way to assess two sets’ similarity, which is typically used to
gauge how much overlap there is between them. This metric is especially suitable for the
case where the elements of two sets are binary, which corresponds to the rice and non-rice
categories in our study. The formula for Jaccard similarity is as follows:

J(A, B) = (|A ∩ B|)/(|A ∪ B|) (3)

where J(A, B) denotes the Jaccard similarity of sets A and B. A ∩ B denotes the number
of elements in the intersection, i.e., the number of elements shared by the two sets. A ∪ B
denotes the number of elements in the union set, i.e., the total number of all non-repeating
elements in the two sets. The value of the Jaccard similarity metric ranges from 0 to 1. In
this study, we used the reference rice maps as A and generated rice maps as B (in which all
the rice attributes were 1 and the non-rice attributes were 0). We determined the spatial
distribution similarity of the two rice maps by calculating the Jaccard similarity.

Finally, we compared the rice-cropped area derived from our study with that extracted
from the statistical yearbook of the Hubei Province in 2018 and 2021. The metrics of the
coefficient of determination (R²) and the root mean square error (RMSE) were used to
evaluate the comparisons at the county level.

4. Results
4.1. Evaluations of Cloud-Mask Algorithms
4.1.1. Accuracy Assessment of the Four Cloud-Mask Algorithms

Table 6 shows PA, UA, and OA for each cloud-mask algorithm. As SR products were
required in the CDI algorithm, the evaluation of the TOA products was conducted using
the algorithms of QA60, S2cloudless, and CloudScore. For TOA products of 2018 and 2011,
the S2cloudless algorithm has the highest OA of the three algorithms except for the RGP
tile of 2021 TOA products, and CloudScore shows substantially larger OAs than that of
QA60. For the cloudy pixels in TOA products of 2018, S2cloudless holds a larger PA than
that of CloudScore and QA60, while QA60 has the lowest PA among the three algorithms.
Furthermore, S2cloudless has the largest UA in the tiles of REP and RGP, and QA60 has
the largest UA in RFP tiles. For the clear pixels in TOA products of 2018, S2cloudless has
the highest UA and QA60 has the lowest UA. For 2021 TOA products, S2cloudless has the
largest PA and UA for cloudy pixels in the RFP tiles and the highest UA for cloudy pixels
in the tiles of REP and RGP, while QA60 holds the smallest PA for cloudy pixels in the three
tiles. For the SR products of 2021, S2cloudless and CloudScore have essentially larger OA
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than those of the QA60 and CDI algorithms. QA60 has the lowest PA for cloudy pixels and
the lowest UA for clear pixels, respectively. Moreover, CDI holds the smallest PA for clear
pixels and the smallest UA for cloudy pixels.

Table 6. Accuracy evaluation of four cloud-mask algorithms.

Data Type Tile Label
QA60 S2cloudless CloudScore CDI

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

2018TOA REP Cloud 66.68 95.16 92.47 98.09 83.10 93.69 - -
Clear 98.19 75.90 97.28 96.48 95.46 92.13 - -
OA(%) 83.18 96.94 93.45 -

RFP Cloud 72.67 96.97 95.97 92.06 82.51 92.07 - -
Clear 97.48 78.05 87.27 95.82 90.39 85.82 - -
OA(%) 84.46 92.01 86.85 -

RGP Cloud 58.42 96.31 92.92 97.23 77.56 87.22 - -
Clear 95.40 72.62 95.70 96.55 89.84 89.48 - -
OA(%) 80.09 96.47 88.88 -

2021TOA REP Cloud 69.65 99.39 99.29 98.10 99.57 96.16 - -
Clear 99.26 68.96 97.07 99.13 95.67 99.41 - -
OA(%) 81.72 98.54 97.72 -

RFP Cloud 67.86 96.73 99.02 98.66 97.36 96.50 - -
Clear 97.21 69.78 97.50 98.38 93.76 96.36 - -
OA(%) 77.71 98.52 96.09 -

RGP Cloud 47.50 95.90 96.97 97.75 99.36 97.58 - -
Clear 97.22 58.22 95.78 96.54 96.54 99.04 - -
OA(%) 69.21 96.86 98.19 -

2021SR REP Cloud 69.88 99.39 99.51 98.11 98.26 98.93 98.31 81.06
Clear 99.26 69.10 97.07 99.29 98.63 97.86 59.16 95.09
OA(%) 81.82 98.64 98.49 83.70

RFP Cloud 67.95 96.73 99.09 98.66 93.68 98.89 99.28 87.75
Clear 97.21 69.89 97.50 98.46 98.21 92.45 72.83 97.78
OA(%) 77.85 98.64 95.47 89.92

RGP Cloud 47.54 95.92 96.98 97.75 99.12 97.95 92.40 79.49
Clear 97.26 58.27 95.78 96.57 97.16 98.69 63.85 87.17
OA(%) 69.36 96.92 98.28 81.68

Total Cloud 63.13 96.94 96.91 97.38 92.28 95.33 96.63 82.77
Clear 97.61 68.98 95.66 97.47 95.07 94.58 65.28 93.35
OA(%) 78.38 97.06 94.82 85.10

When comparing TOA products of 2018 with those of 2021 in the three tiles, S2cloudless
and CloudScore algorithms have larger OAs in 2021 than those in 2018, while the facts of QA60
are just the opposite. When comparing TOA products with SR products in 2021, the differences
in OA between TOA and SR are microscopic for QA60, S2cloudless, and CloudScore in the
three tiles. Because of the specific tile, S2cloudless shows more overwhelming OAs than other
algorithms in the RFP tile. Generally, the OAs from high to low are S2cloudless > CloudScore
> QA60 for TOA products and S2cloudless > CloudScore > CDI > QA60 for SR products.

4.1.2. Visual Comparisons of the Four Cloud-Mask Algorithms

We also visually inspected the cloud removal of the three tiles (49REP, 49RFP, and
49RGP) (Figure 1) in different phenological stages of paddy rice. The results show that a few
cloud pixels were mistakenly classified as clear pixels by QA60, and it performed poorly in
identifying granular clouds and large-area clouds. In contrast, the S2cloudless algorithm
excels at identifying cloud pixels, whether they are large-area clouds or granular clouds.
CloudScore algorithms also perform well in the identification of cloud pixels. Nevertheless,
banded features are displayed in the cloud pixel detection results of the CDI algorithm
(Figure 4).
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Figure 4. Results of four cloud-mask algorithms in the tile of 49REP, 49RFP, and 49RGP (the specific loca-
tions of these footprints in the study area are shown in Figure 1). Each row shows the cloud identification
results based on 49REP’s May 2018 TOA data, 49RFP’s July 2021 TOA data, and 49RGP’s September
2021 SR data using QA60, S2cloudless, CloudScore, and CDI cloud mask algorithms, respectively.

To further evaluate the detailed features after cloud removal, we selected three
10 × 10 km grids from the three tiles. As shown in Figure 5, a lot of pseudo-clear pixels
are retained for the next procedure when masked by the QA60 algorithm. The S2cloudless
algorithm shows overall excellent performance in identifying cloud pixels with detailed
information. CloudScore algorithm exhibits a rather strong ability to remove cloud pixels,
although it is slightly weak in haze removal (Figures 4 and 5). For the CDI algorithm, the
masks of cloud pixels appear in a stripe shape, and some clear pixels were removed while
cloud pixels were retained.
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Figure 5. Results of four cloud-mask algorithms in three subregions across the tiles of 49REP, 49RFP,
and 49RGP with different land cover characteristics. Panels a, b, and c show the results in a region
mixed with built-up area and paddy rice, a region mixed with dryland and paddy rice, and a region
mixed with paddy rice and aquaculture area, respectively.
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4.1.3. Spectral Separability between Paddy Rice and Other Land Cover Types in
Cloud-Masked Imagery

Figure 6 shows the values of J-M distances of samples between paddy rice and other
land cover types (water area, built-up area, forest land, and dryland) in the cloud-free
imagery by different cloud-mask algorithms. The J-M values were about 1.4 when the
imagery was masked by QA60. For the other three cloud-mask algorithms, all of the J-M
values were greater than 1.9 between paddy rice and other land cover, implying high
spectral separability in this cloud-masked imagery. The J-M values show minor gaps across
TOA products and SR products.
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Figure 6. J-M values of paddy rice and other land cover types to cloud-free datasets for different
cloud-mask algorithms.

4.2. Rice Maps Extracted from the Algorithms of RF, SVM, CART and GTB

The integration of four machine-learning algorithms and four cloud-mask algorithms
was used to map paddy rice in 2018 and 2021. As shown in Figure 7, rice cropped area
(RCA) accounted for more than 40% and 30% of the JP area in 2018 and 2021, respectively.
Specifically, RCA ranges from 12,028.1 to 12,990.4 km2, varying with different machine-
learning algorithms in 2018 (the spatial distribution maps of rice are shown in Appendix A).
The result shows that the largest proportion of the JP area was covered by paddy fields;
dry land came in second; the rest were in order of water bodies, forests, and built-up areas,
except for the mapped result using the combination of SVM and S2cloudless as well as
CloudScore algorithms. In 2021, RCA dropped from more than 40% to ~35% when using the
methods of RF, SVM, and GTB, and fell to ~40% for the CART algorithm. Compared with
RCA of 2018, the discrepancies of RCA extracted by the four machine-learning algorithms
are greater in 2021, ranging from 9264.23 to 11,377.3 km2 in TOA products and 9505.67 to
12,320.3 km2 in SR products. Regarding RCA from TOA products and SR products in 2021,
RCA from SR products is usually larger than that from TOA when using RF, CART, and
GTB algorithms (except for the combination of GTB and CloudScore), while the result is
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contrary for the SVM algorithm. Additionally, there are some differences in the area of
non-paddy fields between TOA products and SR products.

22%

23%

22%

20%

18%

18%

17%

17%

18%

21%

23%

21%

10%

11%

10%

11%

11%

10%

9%

9%

10%

9%

10%

10%

17%

16%

15%

21%

22%

22%

18%

17%

12%

18%

19%

17%

17%

17%

19%

13%

13%

11%

16%

17%

21%

16%

16%

17%

35%

33%

34%

36%

36%

38%

40%

40%

40%

36%

33%

35%

RF_QA60

RF_S2cloudless

RF_CloudScore

SVM_QA60

SVM_S2cloudless

SVM_CloudScore

CART_QA60

CART_S2cloudless

CART_CloudScore

GTB_QA60

GTB_S2cloudless

GTB_CloudScore

0 20 40 60 80 100

 Paddy rice

 Dryland

 Forest land

 Built-up area

 Water body

14%

13%

13%

14%

13%

14%

13%

14%

13%

15%

15%

15%

7%

8%

8%

8%

9%

9%

6%

5%

7%

7%

8%

9%

12%

12%

12%

14%

14%

15%

8%

13%

9%

12%

12%

13%

23%

22%

22%

20%

20%

20%

29%

24%

26%

20%

23%

19%

44%

44%

45%

44%

44%

43%

43%

44%

45%

46%

42%

43%

QA60_RF

S2cloudless_RF

CloudScore_RF

QA60_SVM

S2cloudless_SVM

CloudScore_SVM

QA60_CART

S2cloudless_CART

CloudScore_CART

QA60_GTB

S2cloudless_GTB

CloudScore_GTB

0 20 40 60 80 100

2018 TOA

22%

23%

22%

20%

18%

18%

17%

17%

18%

21%

23%

21%

10%

11%

10%

11%

11%

10%

9%

9%

10%

9%

10%

10%

17%

16%

15%

21%

22%

22%

18%

17%

12%

18%

19%

17%

17%

17%

19%

13%

13%

11%

16%

17%

21%

16%

16%

17%

35%

33%

34%

36%

36%

38%

40%

40%

40%

36%

33%

35%

QA60_RF

S2cloudless_RF

CloudScore_RF

QA60_SVM

S2cloudless_SVM

CloudScore_SVM

QA60_CART

S2cloudless_CART

CloudScore_CART

QA60_GTB

S2cloudless_GTB

CloudScore_GTB

0 20 40 60 80 100

2021 TOA

20%

20%

21%

21%

18%

18%

19%

17%

13%

16%

18%

17%

21%

21%

21%

20%

11%

11%

11%

11%

13%

15%

14%

10%

10%

10%

8%

10%

10%

10%

11%

10%

16%

16%

16%

16%

20%

20%

20%

18%

14%

18%

15%

19%

16%

18%

17%

17%

18%

18%

18%

16%

13%

14%

14%

17%

20%

15%

18%

14%

16%

17%

18%

15%

36%

35%

34%

37%

35%

34%

33%

37%

43%

41%

41%

40%

37%

34%

35%

37%

QA60_RF

S2cloudless_RF

CloudScore_RF

CDI_RF

QA60_SVM

S2cloudless_SVM

CloudScore_SVM

CDI_SVM

QA60_CART

S2cloudless_CART

CloudScore_CART

CDI_CART

QA60_GTB

S2cloudless_GTB

CloudScore_GTB

CDI_GTB

0 20 40 60 80 100

2021 SR

Figure 7. Percentages of the specified land cover area to the total area in different land cover types
were estimated from the different combinations of cloud-mask algorithms and machine-learning
algorithms. The bars show the percentage in area of water body, built-up area, forest land, dryland,
and paddy rice from left to right, respectively.

In summary, RCA showed a slight decline from approximately 45% of the entire JP
area in 2018 to a range of approximately 33–40% in 2021, and dryland also showed a
minor decrease during this period. The areas of water bodies, building area, and forest
have indicated a mild rise from ~14 to ~20%, ~8 to ~10%, as well as ~12 to ~18% during
2018–2021, respectively.

4.3. Accuracy Assessment of Rice Maps
4.3.1. Comparing with Field Survey Data

As shown in Table 7, when RF and cloud-mask algorithms were combined in mapping,
they yielded higher overall accuracy in 2018 and 2021 than when other machine-learning
algorithms were combined with the same cloud-mask algorithms. The combinations of
GTB and cloud-mask algorithms obtain the second-largest OA. Specifically, S2cloudless_RF
(denoted as the combination of the S2cloudless cloud-mask algorithm and RF machine-
learning algorithm, similarly hereinafter) obtains the highest OA with 92.06% in 2018,
98.38% in 2021 TOA products, and CloudScore_RF obtains the largest OA with 99.12% in
2021 SR products, respectively. Generally, the OA of 2021 (TOA products) is ~7–10% higher
than the OA of 2018, while there are minor differences in OA between TOA products and
SR products in 2021. Given paddy rice, the differences in PA and UA are close in 2018, but
their values in 2021 are substantially larger than those in 2018.
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Table 7. Accuracy assessment of rice mapping with algorithm combinations.

Algorithm Combination
2018 TOA 2021 TOA 2021 SR

Class Rice Non-
Rice

PA (%) UA (%) OA
(%)

Kappa Class Rice Non-
Rice

PA
(%)

UA
(%)

OA
(%)

Kappa Class Rice Non-
Rice

PA
(%)

UA
(%)

OA
(%)

Kappa

QA60-RF
Rice 149 27 84.66 78.84

90.15 0.75
Rice 171 5 97.16 95.53

98.09 0.95
Rice 173 3 98.3 94.02

97.94 0.95Non-rice 40 464 92.06 94.5 Non-rice 8 496 98.41 99 Non-rice 11 493 97.82 99.4

S2cloudless-RF Rice 152 24 86.36 83.52 92.06 0.8 Rice 173 3 98.3 95.58 98.38 0.96 Rice 171 5 97.16 97.16 98.53 0.96Non-rice 30 474 94.05 95.18 Non-rice 8 496 98.41 99.4 Non-rice 5 499 99.01 99.01

CloudScore-RF Rice 143 33 81.25 83.14 90.88 0.76 Rice 172 4 97.73 95.03 98.09 0.95 Rice 173 3 98.3 98.3 99.12 0.98Non-rice 29 475 94.25 93.5 Non-rice 9 495 98.21 99.2 Non-rice 3 501 99.4 99.4

CDI-RF
Rice Rice Rice 172 4 97.73 94.51

97.94 0.95Non-rice Non-rice Non-rice 10 494 98.02 99.2

QA60-SVM
Rice 146 30 82.95 75.26

88.53 0.71
Rice 164 12 93.18 92.13

96.18 0.9
Rice 170 6 96.59 94.44

97.65 0.94Non-rice 48 456 90.48 93.83 Non-rice 14 490 97.22 97.61 Non-rice 10 494 98.02 98.8

S2cloudless-SVM Rice 151 25 85.8 78.24 90.15 0.75 Rice 170 6 96.59 93.41 97.35 0.93 Rice 168 8 95.45 94.38 97.35 0.93Non-rice 42 462 91.67 94.87 Non-rice 12 492 97.62 98.8 Non-rice 10 494 98.02 98.41

CloudScore-SVM Rice 141 35 80.11 71.57 86.62 0.66 Rice 168 8 95.45 91.3 96.47 0.91 Rice 167 9 94.89 94.35 97.21 0.93Non-rice 56 448 88.89 92.75 Non-rice 16 488 96.83 98.39 Non-rice 10 494 98.02 98.21

CDI-SVM
Rice Rice Rice 168 8 95.45 93.33

97.06 0.92Non-rice Non-rice Non-rice 12 492 97.62 98.4

QA60-CART
Rice 146 30 82.95 75.26

88.53 0.71
Rice 170 6 96.59 91.4

96.76 0.92
Rice 166 10 94.32 88.3

95.29 0.88Non-rice 48 456 90.48 93.83 Non-rice 16 488 96.83 98.79 Non-rice 22 482 95.63 97.97

S2cloudless-CART Rice 147 29 83.52 79.46 90.15 0.75 Rice 170 6 96.59 91.89 96.91 0.92 Rice 172 4 97.73 90.05 96.62 0.91Non-rice 38 466 92.46 94.14 Non-rice 15 489 97.02 98.79 Non-rice 19 485 96.23 99.18

CloudScore-CART Rice 138 38 78.41 73.02 86.91 0.67 Rice 174 2 98.86 88.32 96.32 0.91 Rice 171 5 97.16 95 97.94 0.95Non-rice 51 453 89.88 92.26 Non-rice 23 481 95.44 99.59 Non-rice 9 495 98.21 99

CDI-CART
Rice Rice Rice 171 5 97.16 84.65

94.71 0.87Non-rice Non-rice Non-rice 31 473 93.85 98.95

QA60-GTB
Rice 142 34 80.68 80.23

89.85 0.74
Rice 169 7 96.02 96.57

98.09 0.95
Rice 172 4 97.73 93.99

97.79 0.94Non-rice 35 469 93.06 93.24 Non-rice 6 498 98.81 98.61 Non-rice 11 493 97.82 99.2

S2cloudless-GTB Rice 153 23 86.93 80.95 91.32 0.78 Rice 171 5 97.16 95.53 98.09 0.95 Rice 171 5 97.16 97.16 98.53 0.96Non-rice 36 468 92.86 95.32 Non-rice 8 496 98.41 99 Non-rice 5 499 99.01 99.01

CloudScore-GTB Rice 143 33 81.25 80.79 90.15 0.74 Rice 173 3 98.3 94.02 97.94 0.95 Rice 169 7 96.02 96.02 97.94 0.95Non-rice 34 470 93.25 93.44 Non-rice 11 493 97.82 99.4 Non-rice 7 497 98.61 98.61

CDI-GTB
Rice Rice Rice 171 5 97.16 93.96

97.65 0.94Non-rice Non-rice Non-rice 11 493 97.82 99
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4.3.2. Comparing with the Latest 10 m Rice Mapping Product

As three cloud-mask algorithms and four machine-learning classifiers were jointly
used in TOA products for rice mapping in 2018 and 2021, and four cloud-mask algorithms
and four machine-learning classifiers were integrated for SR products in 2021, a total of
40 rice maps were acquired, and compared with the most recent rice map with spatial
resolution at 10 m in spatial distribution similarity.

As shown in Figure 8, the values of Jaccard similarity (denoted as ‘J-sim’ hereafter)
of rice maps derived from TOA products of 2018 and reference maps are relatively higher
than the J-sim of 2021. When comparing rice maps of two products in 2021 with corre-
sponding reference maps, the J-sim of rice maps generated from SR products is larger
than that from TOA products. The values of J-sim larger than 0.87 include the algorithm
combinations of S2cloudless_GTB, S2cloudless_RF, and QA60_CART in 2018, while the
values of J-sim smaller than 0.84 contain the combinations of QA60_SVM, QA60_CART,
and S2cloudless_SVM in 2021 TOA products as well as QA60_CART in 2021 SR products.
Generally, the values of J-sim for the total 40 rice maps and their reference maps show a
comparatively high level and vary in a narrow range between 0.8363 and 0.8729.
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Figure 8. J-sim values between the reference rice maps and the maps generated from different
algorithm combinations.

4.3.3. Comparing with Statistical Data

Rice-cropped areas derived from the statistical yearbook of the Hubei Province were
compared with rice areas generated from our study in the JP based on a total of 16 counties.
The statistical rice areas of the counties varied from 120.63 to 1261.11 km2 in 2018 and
179.88 to 1629.87 km2 in 2021. Generally, the mapped rice areas have high consistency
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with the county-level statistics. In the TOA products of 2018, the R2 of all the comparisons
is greater than 0.8 except for the comparison of rice area mapped from the QA60_SVM
algorithm and the statistical area, and the comparison from the algorithm of QA60_CART
has the smallest RMSE at 0.52 km2. For the comparisons in the TOA products of 2021, rice
areas mapped from SVM have comparatively smaller R2 (<0.8) and larger RMSE (>75 km2)
than those from RF, CART, and GTB. While in the comparison of 2021 SR products, SVM
integrated with S2cloudless or CloudScore still had a relatively low R2 (<0.8) and high
RMSE (>65 km2), but showed a comparatively large R2 (>0.9) and smaller RMSE (<11 km2)
when combined with the CDI algorithm (Figure 9).
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Figure 9. Comparisons of rice area between statistical data and mapping results.

5. Discussion
5.1. Clear Observations after Cloud-Mask Processing

Focusing on the effect of cloud-mask algorithms on rice mapping, we adopted and
compared four algorithms, including QA60, S2cloudless, CloudScore, and CDI, that are
easy to operate in the GEE platform. From the result of Section 4.1, it can be concluded that
S2cloudless showed the best performance in both accuracy assessment (OA = 97.04%) and
visual inspection. CloudScore also proved to be a promising algorithm for masking clouds
in the JP. Its OA was up to 94.82%, and both the entire and regional visual inspection results
indicated a better cloud-mask outcome. Compared with S2cloudless and CloudScore, CDI
and QA60 had relatively lower OAs (85% for CDI and 78.35 for QA60), and visual compari-
son findings were unsatisfactory from both a global and local perspective (Figures 4 and 5).
To further help us understand the effect of cloud removal from another viewpoint, clear
observations (pixels) and their frequency after cloud removal were calculated based on
the calendar month and the rice phenological stage (Table 8). Thus, we could determine
the number (or proportion) of clear pixels that might be used for mapping rice after the
cloud-mask procedure.
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Table 8. Percentages of clear observations masked by different cloud-mask algorithms in calendar months and rice phenological stages.

Period of Time Cloud-Mask Algorithms

2018TOA 2021TOA 2021SR

Effective Observation Element Frequency/% Effective Observation Element Frequency/% Effective Observation Element Frequency/%

>0 (0, 20] (20, 40] (40, 60] (60, 80] (80, 100] >0 (0, 20] (20, 40] (40, 60] (60, 80] (80, 100] >0 (0, 20] (20, 40] (40, 60] (60, 80] (80, 100]

March QA60 95.38 19.56 9.83 65.99 0.00 0.00 79.50 57.11 20.35 2.01 0.03 0.00 79.34 57.29 20.04 1.98 0.03 0.00
S2cloudless 71.00 56.08 13.55 1.36 0.00 0.00 61.85 54.69 6.91 0.24 0.00 0.00 61.62 54.65 6.73 0.24 0.00 0.00
CloudScore 86.44 61.06 22.78 2.59 0.00 0.00 66.71 55.28 10.65 0.76 0.01 0.00 70.21 53.79 15.00 1.39 0.02 0.00
CDI - - - - - - - - - - - - 46.57 44.55 2.02 0.00 0.00 0.00

April QA60 100.00 0.02 3.20 39.05 56.02 1.71 92.96 60.70 31.89 0.37 0.00 0.00 92.96 60.80 31.88 0.28 0.00 0.00
S2cloudless 99.98 0.29 14.68 64.53 20.13 0.35 77.47 42.85 32.08 2.51 0.03 0.00 77.45 42.92 32.11 2.38 0.03 0.00
CloudScore 99.31 0.66 4.66 51.95 38.61 3.41 93.08 31.61 53.31 7.54 0.61 0.00 95.68 23.41 60.48 11.02 0.75 0.01
CDI - - - - - - - - - - - - 50.01 44.31 5.55 0.15 0.00 0.00

May QA60 97.44 15.12 36.12 35.59 10.61 0.00 79.13 33.79 36.02 9.07 0.25 0.00 78.99 33.68 36.14 8.93 0.24 0.00
S2cloudless 95.71 14.96 36.24 38.17 6.33 0.01 82.55 32.68 39.23 10.59 0.05 0.00 82.51 32.67 39.37 10.42 0.04 0.00
CloudScore 95.70 10.47 32.22 44.15 8.77 0.07 88.45 21.97 31.81 30.95 3.71 0.01 95.89 17.81 33.61 40.02 4.44 0.02
CDI - - - - - - - - - - - - 70.15 42.88 23.61 3.66 0.00 0.00

June QA60 96.81 11.25 35.65 45.03 4.88 0.00 100.00 8.67 46.54 32.93 10.78 1.08 100.00 8.73 46.62 32.79 10.79 1.07
S2cloudless 96.04 16.02 43.34 35.87 0.81 0.00 99.94 23.41 44.92 26.63 4.88 0.10 99.94 23.53 44.95 26.49 4.87 0.10
CloudScore 97.70 9.14 38.79 46.49 3.27 0.00 98.61 15.36 37.13 35.37 9.63 1.11 99.34 9.62 32.23 42.89 13.04 1.54
CDI - - - - - - - - - - - - 99.98 72.58 24.53 2.80 0.07 0.00

July QA60 99.92 27.35 46.92 20.78 4.87 0.00 99.99 3.43 49.77 46.77 0.02 0.00 99.99 3.53 49.77 46.68 0.01 0.00
S2cloudless 99.42 20.03 43.91 31.40 4.07 0.00 99.74 7.66 53.42 38.61 0.05 0.00 99.74 7.81 53.33 38.55 0.05 0.00
CloudScore 99.01 7.31 29.37 55.67 6.65 0.00 99.13 5.34 44.93 48.32 0.52 0.01 99.46 3.83 38.45 56.01 1.15 0.02
CDI - - - - - - - - - - - - 92.41 44.70 39.48 8.23 0.00 0.00

August QA60 99.98 0.83 6.18 21.45 30.88 40.64 99.58 12.44 47.20 39.88 0.06 0.00 99.57 12.52 47.24 39.80 0.01 0.00
S2cloudless 98.75 11.13 18.63 29.67 22.50 16.82 96.67 14.91 44.73 36.73 0.29 0.00 96.64 14.94 44.81 36.66 0.23 0.00
CloudScore 98.91 5.71 12.83 26.24 26.11 28.00 97.91 12.19 38.17 46.83 0.71 0.00 98.74 9.95 35.41 51.65 1.72 0.00
CDI - - - - - - - - - - - - 85.76 41.17 41.00 3.58 0.01 0.00

September QA60 90.94 58.74 28.87 3.32 0.01 0.00 100.00 0.03 1.62 23.97 32.95 41.43 100.00 0.03 1.65 24.07 33.08 41.17
S2cloudless 84.95 65.28 18.96 0.70 0.01 0.00 99.98 0.15 2.85 23.54 29.96 43.48 99.98 0.15 2.85 23.58 29.98 43.42
CloudScore 85.36 62.00 22.06 1.28 0.01 0.00 99.47 0.64 2.72 20.95 28.03 47.13 99.69 0.35 1.62 18.50 28.96 50.25
CDI - - - - - - - - - - - - 99.74 3.15 17.20 31.81 26.54 21.04

October QA60 99.54 2.64 32.29 61.82 2.79 0.00 100.00 4.56 85.98 9.41 0.05 0.00 100.00 4.66 86.07 9.23 0.04 0.00
S2cloudless 99.92 1.77 28.12 68.21 1.81 0.00 99.96 4.00 89.46 6.41 6.03 0.08 99.96 4.14 89.51 6.22 0.08 0.00
CloudScore 99.45 1.97 23.21 70.77 3.48 0.01 99.02 3.72 89.94 5.35 0.00 0.00 99.61 1.46 89.38 8.75 0.01 0.00
CDI - - - - - - - - - - - - 99.99 7.63 91.02 1.33 0.00 0.00

Bare soil stage QA60 100.00 0.82 19.54 73.81 5.83 0.00 97.96 36.11 57.52 4.32 0.01 0.00 97.75 35.97 57.54 4.23 0.00 0.00
03/20–04/20 S2cloudless 99.98 0.48 17.77 79.89 1.84 0.00 88.24 35.38 46.89 5.73 0.24 0.00 88.22 35.44 46.86 5.69 0.22 0.00

CloudScore 99.25 0.70 6.04 84.53 7.98 0.00 96.87 21.53 59.69 14.66 0.98 0.01 99.08 14.77 63.79 18.49 1.99 0.04
CDI - - - - - - - - - - - - 62.98 46.10 16.74 0.14 0.00 0.00

Transplanting stage QA60 99.98 4.23 38.74 51.77 5.24 0.00 100.00 23.64 61.28 14.65 0.43 0.00 100.00 23.70 61.43 14.45 0.42 0.00
04/20–06/15 S2cloudless 99.09 13.10 53.51 32.05 0.43 0.00 99.96 29.72 58.43 11.73 0.08 0.00 99.96 29.75 58.60 11.53 0.08 0.00

CloudScore 95.56 3.23 46.53 44.37 1.43 0.00 96.79 16.03 48.42 31.50 0.83 0.00 99.59 8.00 48.31 41.96 1.31 0.00
CDI - - - - - - - - - - - - 99.99 60.56 37.45 1.98 0.00 0.00

Growth stage QA60 100.00 0.17 25.55 68.10 6.18 0.00 100.00 1.85 70.21 27.66 0.28 0.00 100.00 1.91 70.26 27.56 0.27 0.00
06/15–09/10 S2cloudless 99.99 3.95 48.07 45.09 2.88 0.00 99.99 9.43 61.59 28.88 0.08 0.00 99.99 9.48 61.66 28.76 0.08 0.00

CloudScore 99.59 1.66 23.45 65.42 9.06 0.00 99.67 5.72 49.71 42.83 1.41 0.00 99.81 2.78 42.92 52.12 1.99 0.00
CDI - - - - - - - - - - - - 92.17 35.52 42.99 13.66 0.00 0.00

Harvest stage QA60 100.00 3.67 81.12 14.90 0.31 0.00 100.00 0.00 0.45 92.90 6.65 0.00 100.00 0.00 0.56 92.84 6.59 0.00
09/10–10/25 S2cloudless 99.97 6.48 84.45 8.95 0.09 0.00 99.98 0.02 2.15 96.04 1.76 0.00 99.98 0.02 2.30 95.89 1.76 0.00

CloudScore 99.38 5.81 72.02 21.41 0.14 0.00 99.34 0.37 2.33 92.67 3.97 0.00 99.67 0.23 1.24 90.98 7.22 0.00
CDI - - - - - - - - - - - - 99.99 0.03 16.09 83.65 0.22 0.00
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As shown in Table 8, clear observation frequency (COF, defined as the ratio of clear
observation to total observation) greater than 0 has a high percentage (>85%) in each
calendar month from March to October, except 71% of S2cloudless in March of 2018. Hence,
when the time scale changed into phenological stages of paddy rice, the percentage of
COF > 0 increased to more than 95% in 2018. It indicated that nearly every pixel had at least
one clear observation at each phenological stage in the JP while using the four cloud-mask
algorithms. However, it was difficult to map rice in a cloud-prone region when each pixel
had only one clear observation within each phenological stage. Therefore, we separated
COF into five ranges (0–20%, 20–40%, 40–60%, 60–80%, and 80–100%) and calculated the
percentage of COF in each category. For TOA products in 2018, the largest proportion of
COF spread in different ranges, varying with the cloud-mask algorithm during different
calendar months and phenological stages. Yet, it had high consistency in September and
October, as well as the bare soil stage and harvest stage. The percentages of COF between
40 and 60% were larger than 70% in the bare soil stage and harvest stage, which implied
spectral signatures of these phenological stages in rice paddy could be used for mapping
rice in 2018. If we combine the second largest percentages of COF with the first largest
percentages, more than 90% of the pixels contain 20–60% clear observations during the bare
soil and harvest stage that could be used for rice mapping. Likewise, rice mapping could
be facilitated by the fact that over 85% of pixels had 20–60% unambiguous observations at
the transplanting and growing stages.

The COF of 2021 TOA products showed somewhat different statistics from the COF of
2018 TOA products while having great consistency with the COF of 2021 SR products. From
the view of the calendar month of 2018 TOA products, the largest percentages of COF were
placed into the ranges of 0–20% in March, the ranges of 20–40% in May, June, and October,
and the ranges of 80–100% in September. When the second largest proportions were merged
with the largest proportions at phenological stages, the statistical results showed that over 80%
of pixels had 0–40% clear observations in the bare soil stages, and this percentage would climb
over 90% in the range of 20–60% in the growing stage. The variation of COF in the bare soil
stage and the similarity of COF in the growing stage of 2023 when compared to the 2018 TOA
products indicated that the effects of the three cloud-mask algorithms operating in separate
years were diverse for different phenological stages of paddy rice. For the transplanting stage
commonly used in previous studies, the combination of the largest and the second largest
proportion of COF were positioned in the range of 20–60% by QA60 and S2cloudless in 2018,
compared with the range of 0–40% by these algorithms in 2021. This meant there were some
variations between the two algorithms’ cloud removal performance in 2018 and 2021, while
CloudScore demonstrated good stability between these years as its combined proportions (the
largest and the second largest) were steady within the range of 20–60%.

5.2. Combination of Cloud-Mask Algorithm and Machine-Learning Algorithms Used for
Rice Mapping

To thoroughly assess the GEE-embedded algorithms used for rice mapping in the cloud-
prone area, four cloud-mask algorithms and four machine-learning algorithms were integrated.
Although all of the machine-learning algorithms fall into the category of supervised clas-
sification methods, different performances were observed when the four classifiers were
used to classify the dataset that had been cloud-masked by the same algorithm. For the
accuracy assessment, S2cloudless combined with RF showed overwhelming dominance
in OA and PA/UA of paddy rice than other combinations (Table 7). In the comparisons
of Jaccard similarity, S2cloudless_GTB, and S2cloudless_RF, as well as S2cloudless_RF and
CloudScore_RF were the first two combinations with high similarity in the datasets of 2018
and 2021 (Figure 8). However, no algorithm combination can achieve consistently high accu-
racy in the comparisons of statistical data in TOA products. The combination of RF and four
cloud-mask algorithms showed an overall larger R2 than other algorithm combinations in the
comparison of statistical data over SR products. Thus, it can be seen that S2cloudless_RF and
CloudScore_RF demonstrated an overall advantage over other algorithm combinations.
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Combined with the analysis of COF in Section 5.1, it needs to be pointed out that paddy
rice mapping of remote sensing based on its phenological stages may be different from that
based on calendar month because the cloud-free observations varied between the two time
scales depending on the cloud-mask algorithms. The clear observation used for mapping
rice could be dramatically changed when the time scale switched from calendar month
to rice phenological stages. For example, the largest proportion of COF by CloudScore
changed from 61.06% in the range of 0–20% in March to 84.53% in the range of 40–60% in
the bare soil stage of 2018. Another issue that should not be ignored is that the authenticity
of cloud-mask algorithms and their combination with classifiers should receive attention,
even though COF could be used as a crucial metric for assessing cloud-mask algorithms
and have a direct impact on the accuracy of rice mapping. For example, the transplanting
stage was recognized as a critical stage in mapping rice, and QA60 had a larger proportion
of COF in the range of 40–60% than S2cloudless and CloudScore during this phenological
stage in 2018. However, QA60-classifier combinations do not have the best accuracy in rice
mapping. For example, in the 2018 TOA products, the largest OA was 90.15% in QA60_RF,
compared with 92.06% in S2cloudless_RF. In the visual inspection of the cloud removal of
QA60, it was found that some cloud pixels would be retained for the mapping. Meanwhile,
QA60 had a slightly higher proportion of COF in the range of 20–40% than S2cloudless
(57.52% vs. 46.89%, 61.28% vs. 58.43%, 70.21% vs. 61.59%) in the three stages (bare soil stage,
transplanting stage, and growing stage) of 2021 TOA products, but both OA and paddy
rice’s PA of S2cloudless-classifier combinations were larger than that of QA60-classifier
combinations. Admittedly, the COF of other phenological stages may also have an impact on
the mapping accuracy, the reliability of various cloud-mask algorithms and the robustness
of their combinations of classifiers are of greater significance in rice mapping.

5.3. Limitations and Implications of the Study

Remote sensing mapping of paddy rice is susceptible to cloud-contaminated pixels in
rice cropping areas, and the study of cloud-mask algorithms has been a popular topic in this
field. Due to the widespread use of Sentinel-2 imagery in many different fields, a few cloud-
mask algorithms, such as ATCOR [28], Fmask [55–57], MAJA [56,57], Sen2Cor [56,57], etc.,
have been quickly developed in various frameworks and tested in a variety of environments.
It is inconvenient to use these processors because they run in separate contexts and require
cross-platform operations for rice mapping. In contrast to the earlier research on the mecha-
nism of the cloud-mask algorithm (they used standard imagery dataset to test cloud-mask
algorithms across different software platforms), one of the goals of this study was intended
to evaluate the GEE-embedded cloud-mask algorithms for rice mapping. As a result, the
mapping process can be conducted on the GEE platform, reducing the complex process of
data conversion caused by cross-platform. Moreover, a survey of the literature revealed
that the data preparation step in most rice mapping research employing Sentinel-2 data was
highly dependent on the QA60 band for recognizing clouds and cloud shadows [15]. Then,
they mapped paddy rice with various machine-learning algorithms based on QA60-masked
images. In our study, after comparing four GEE-embedded cloud-mask algorithms, we
analyzed the appropriateness of four popular machine-learning algorithms for cloud-masked
Sentinel-2 imagery in mapping paddy rice. The second aim of the study was to suggest an
appropriate strategy for the combinations of cloud-mask algorithms and machine-learning
algorithms for rice mapping in subtropical areas on the GEE platform. This is a completely
distinct concept from earlier research that used global reference datasets to assess cloud-mask
algorithms, such as Cloud Masking Intercomparison eXercise (CMIX) [26]. For further re-
search, integrating multiple cloud-mask algorithms into a cloud platform and developing
crop-specific cloud-mask mapping schemes is of great essence in crop mapping.

6. Conclusions

Mapping paddy rice with optical remotely sensing imagery in cloud-prone regions
faces a lot of challenges. In this study, we compared and evaluated four GEE-embedded
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cloud-mask algorithms in Sentinel-2 imagery and integrated them with four commonly
used machine-learning algorithms for rice mapping in a traditional rice cropping area of
southern China. Generally, S2cloudless showed the best performance in cloud removal with
the largest OA of 97.06%, and the cloud-mask algorithms performed better in SR products
than TOA products of Sentinel-2 imagery. The combinations of S2cloudless and RF showed
a dominant performance in OA and PA/UA of paddy rice compared to other combinations.
Although clear observations in the key phenological stages are crucial for rice mapping,
the authenticity of cloud-mask algorithms and their integration with classifiers should
receive more attention. The strategy proposed in this study for mapping paddy rice can
be extended into other cloudy regions to provide precise agricultural information for the
sustainable development of agricultural practices.
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Appendix A

Figure A1. Rice distribution results based on 2018 TOA data.
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Figure A2. Rice distribution results based on 2021 TOA data.

Figure A3. Rice distribution results based on 2021 SR data.
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