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Abstract: Landslides recurrently cause severe damage and, in some cases, the full disruption of many
highways in mountainous areas, which can last from a few days to even months. Thus, there is a high
demand for monitoring tools and precipitation data to support highway alignment selections before
construction. In this study, we proposed a new system highway alignment selection method based
on coherent scatter InSAR (CSI) and ~1 km high-spatial-resolution precipitation (HSRP) analysis.
Prior to the CSI, we calculated and analyzed the feasibility of Sentinel-1A ascending and descending
data. To illustrate the performance of the CSI, CSI and SBAS–InSAR were both utilized to monitor
80 slow-moving landslides, which were identified by optical remote-sensing interpretation and field
investigation, along the Barkam–Kangting Highway Corridor (BKHC) in southwestern China, relying
on 56 Sentinel-1A descending images from September 2019 to September 2021. The results reveal that
CSI has clearer deformation signals and more measurement points (MPs) than SBAS-InSAR. And the
maximum cumulative displacements and rates of the landslides reach −75 mm and −64 mm/year
within the monitoring period (CSI results), respectively. Furthermore, the rates of the landslides
near the Jinchuan River are higher than those of the landslides far from the river. Subsequently, to
optimize the highway alignment selection, we analyzed the spatiotemporal evolution characteristics
of feature points on a typical landslide by combining the −1 km HSRP, which was calculated from the
30′ Climatic Research Unit (CRU) time-series datasets, with the climatology datasets of WorldClim
using delta spatial downscaling. The analysis shows that the sliding rates of landslides augment from
the back edge to the tongue because of fluvial erosion and that accelerated sliding is highly related to
the intense precipitation between April and September each year (ASP). Consequently, three solution
types were established in our method by setting thresholds for the deformation rates and ASPs of
every landslide. Afterward, the risk-optimal alignment selection of the BKHC was finalized according
to the solution types and consideration of the construction’s possible impacts. Ultimately, the major
problems and challenges for our method were discussed, and conclusions were given.

Keywords: mountainous areas; landslide monitoring; coherent scatter InSAR; SAR data feasibility;
high-spatial-resolution precipitation; highway alignment selection

1. Introduction

Throughout history, reliable road networks have been vital local assets, connecting
communities and unlocking economic growth [1,2]. Since China’s Belt and Road (B&R)

Remote Sens. 2024, 16, 1303. https://doi.org/10.3390/rs16071303 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16071303
https://doi.org/10.3390/rs16071303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0809-7682
https://doi.org/10.3390/rs16071303
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16071303?type=check_update&version=1


Remote Sens. 2024, 16, 1303 2 of 22

policy was proposed in 2013, the complexities of trade and cultural exchange have led
to a steady growth in highway volume, especially in mountainous areas of southwestern
China. Their good condition and safety have become paramount concerns to cater to
socioeconomic development. However, landslides in the highway corridor are the most
common hazardous and recurrently appearing natural disasters, which can be triggered by
intensive rainfall, earthquakes, fluvial erosion, geomorphological processes, and human
activities [3–13]. In general, the most direct solution to avoid landslides is risk-optimal
alignment selection, which highlights the value for effective monitoring and HSRP analysis.

Among the variety of remote-sensing techniques in the last decade, time-series interfer-
ometric synthetic aperture radar (TS–InSAR) has been widely applied to accurately quantify
ongoing landslide movements. It was developed to overcome temporal and geometrical
decorrelations and atmospheric delay anomalies by focusing on coherent radar targets
instead of the ensemble of image pixels [14–20]. According to the scattering mechanisms of
the ground target, there are two main categories: persistent scatter (PS) and distributed
scatter (DS). PS methods focus on point-like coherent targets, which have a highly stable
backscattering behavior, such as artificial reflectors, bare rocks, or manmade structures.
Only a single master image is selected; consequently, N − 1 interferograms are produced
from N single-look complex (SLC) SAR images after co-registering to the master in PS
methods. The PSInSARTM, IPTA, StaMPS/PSInSAR, SPINUA, STUN, SPN, and PSP algo-
rithms are representative PS methods [15–17,21–28]. Contrariwise, DS approaches utilize
distributed targets, such as bare soil and sparsely vegetated or desert lands, which contain
many small random scatters. In DS methods, M(N − 1 < M < N(N − 1)/2) multi-master in-
terferograms with short spatiotemporal baselines are generated. SBAS, QPS, and TCPInSAR
are the main DS algorithms [14,19,25–29]. To maximize the spatial sampling of deformation
signals over rural regions, multi-temporal InSAR (MTInSAR) and SqueeSARTM have been
proposed as next-generation time-series InSAR techniques [16–34]. Particularly, both PS
and DS targets are processed to obtain deformation signals in SqueeSARTM. The evolution
of the SqueeSARTM, including JSInSAR, CAESAR, PD–PSInSAR, GEOS–ATSA, and CSI,
has made TS–InSAR the fundamental tool in landslide monitoring [35–42]. Thus, hundreds
of InSAR-related papers for landslide studies have been published per year [1,5,6,8–52],
which accelerate the comprehensive development of space–air–ground landslide investiga-
tion systems. The most worthy of mention are the differences in CSI and SqueeSARTM: first,
CSI adopts the generalized likelihood ratio (GLR) test as an alternative to the Kolmogorov–
Smirnov (KS) test for statistically homogeneous pixel (SHP) identification if the number of
available SAR images is less than 20; second, CSI uses a phase-linking approach to estimate
the optimal interferometric phase values from the complex coherence matrix for each DS
target; third, both PS and DS scatters are combined to create the Delaunay triangular net-
work for phase unwrapping, and the deformation is estimated using standard time-series
analysis procedures; fourth, CSI significantly increases the spatial density of MPs and, thus,
makes phase unwrapping robust [42].

However, in mountainous areas, no matter which algorithm is utilized, geometric
distortions, such as foreshortening, layovers, and shadows, will lead to lower monitoring
resolution and precision of target landslides, even missing observations. Hence, besides
these algorithms, monitoring accuracy is mostly determined by the feasibility of SAR data
(FS). And sometimes, there is no need to utilize both ascending and descending SAR data
because tremendous data redundancy will reduce the TS–InSAR’s efficiency, especially in
wide ranges. Under this circumstance, some researchers have proposed methods to analyze
the geometric distortion of SAR data and calculate the FS based on DEM and satellite
orbital parameters [43–47].

According to statistics, landslides caused by rainfall account for approximately 70% of
the total number of landslides, and 95% of these occur in the rainy season. Thus, HSRP
data are essential for related phenomena that affect hydrology, vegetation cover, and
geohazards. Although meteorological observation networks are increasingly incorporating
data from a large number of weather stations and contributions from an increasing number
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of governments and researchers around the world, observation networks still suffer from
low station density and spatial resolution in mountainous regions [53]. Thus, several
interpolation methods, such as inverse distance weighting, kriging methods, and regression
analysis, are used to generate meteorological data for ungauged areas. However, the station
density decides the result accuracy of these methods [53–59]. In general, precipitation
data products are released by several climate research organizations, including general
circulation models (GCMs), the Climatic Research Unit (CRU), the Global Precipitation
Climatology Centre (GPCC), and Willmott and Matsuura (W&M) [60–62]. Particularly, CRU
products include the monthly mean precipitation, which is generated from data obtained
from observational stations but has a low spatial resolution (~55 km). Nevertheless, the
climate changes drastically per kilometer in the mountainous areas of southwestern China,
especially the precipitation, which induces landslide instability. In practice, the ~1 km
HSRP needs to be combined with the results of the TS–InSAR to optimize the highway
alignment selection. Consequently, it is necessary to spatially downscale and correct
CRU monthly mean precipitation products. Previous studies have proved that the delta
downscaling framework is suitable for monthly precipitation data downscaling using CRU
products [60,63–66].

Field investigation and optical remote-sensing interpretation are employed in the
conventional highway alignment selection method; sometimes, drilling wells are needed
too. The drawback of this method is the high human and economic costs. As a major traffic
connection to the Bangladesh–China–India–Myanmar International Economic Corridor
and the Silk Road Economic Belt in the Tibetan area of Sichuan Province, the alignment
selection problem of the BKHC is severe because of the complicated geological background,
strong tectonic movement, rock body rupture, as well as frequent geohazards. To solve the
problem of the conventional method, in this paper, we propose a new systematic highway
alignment selection method based on CSI and ~1 km monthly HSRP analysis.

First, the FSs of the Sentinel-1A ascending and descending data were calculated.
Consequently, based on 56 Sentinel-1A satellite images from September 2019 to September
2021 (before the design was finalized), both CSI and SBAS-InSAR were utilized in a typical
section of the BKHC (from Jinchuan to Danba), which has 80 slow-moving landslides
identified by optical remote-sensing interpretation and field investigation. The comparison
results of the two methods illustrate that CSI has better performance. Subsequently, three
solution types were established in our method by setting thresholds for deformation
rates (CSI results) and ASPMPs of every landslide. Finally, the risk-optimal alignment
selection of the BKHC was finalized according to the solution types and consideration of
the construction’s possible impacts.

2. Study Area and Data Sources
2.1. Study Area

As depicted in Figure 1, the BKHC goes from northeast to southwest, accompanied
by the G248 national highway. This corridor is located in the cascade zone between the
Qinghai–Tibet Plateau and Sichuan Basin, which goes through the tectonic erosion of the
high–middle mountain landform, tectonic erosion of the alpine landform, river erosion
and accumulation ladder landform, tectonic erosion of the alpine canyon landform, and
tectonic erosion of the alpine mountain–plateau landform. Topographically, the BKHC is
characterized by deep valleys and rugged mountains, with elevations ranging from 1800 m
to 5300 m. As depicted in Figure 2, more than 18 active faults intersect the route’s lines.
Strong tectonic movements have produced deep, narrow river valleys. Meanwhile, the
rainy period in this region usually lasts from April to September. The monthly precipitation
in this period far exceeds that in any other months. The complex geological, hydrological,
and geotechnical processes provide dynamic conditions, which promote the occurrence
of landslides.
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Figure 2. Faults in the study area.

Along this highway corridor, a typical section from Jinchuan to Danba lies on the river
scouring and accumulation ladder landform. Generally, such landforms consist of shorter
cliffs and steep slopes. With the river scouring and precipitation, the stability of the vertical
sliding surfaces and rock-layer structure becomes weak. Consequently, fully developed
landslides are distributed along this section. A 10 km buffer has been taken along this
section as the study area.

2.2. SAR Data Sources

A set of 56 descending Sentinel-1A images (from September 2019 to September 2021)
and corresponding precise orbit datasets (POD) are provided by the European Space
Agency (ESA) (Table 1). In addition, the 30 m resolution digital elevation model (DEM)
provided by the National Aeronautics and Space Administration (NASA) is employed to
estimate and remove the topographic phase. The coverage of the SAR images is shown in
Figure 1 with the blue-dashed box.

Table 1. Sentinel-1A datasets and primary image parameters.

Sensor Orbit Time Span Number of Images Heading Angle/(◦) Incidence
Angle/(◦)

Resolution (Range
× Azimuth) /m × m

Descending 201909~202109 56 −169.58 33.74 2.33 × 13.97

2.3. CRU and WorldClim Datasets

CRU TS v. 4.07 (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/, accessed
on 1 April 2023) and WorldClim v. 2.1 (https://worldclim.org/data/monthlywth.html,
accessed on 1 April 2023) are used for delta downscaling to obtain the monthly HSRP
(Figure 3) [65,66].

As previous studies have proven, CRU datasets exhibit better performance than
other similar gridded products. In addition, 323 weather stations across China were
employed by the CRU group to generate CRU time-series data (Figure 3) [63–66]. And
reference WorldClim datasets comprised monthly mean precipitations at 2 m, which were
generated based on 9000–60,000 weather stations located globally using the thin-plate
spline interpolation method. Remarkably, cross-validation correlations indicated that these
datasets exhibited good performance globally because of the introduction of the satellite-
derived covariates and distance to the nearest coastal covariates and reflected orographic
effects well.

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/
https://worldclim.org/data/monthlywth.html
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3. Methods

In this paper, we propose a new systematic highway alignment selection method to
finalize the landslide-hazard-avoiding highway alignment of the BKHC, which consists of
four steps, i.e., data selection (feasibility calculation of SAR data), CSI and monthly HSRP
analysis, and alignment selection (based on the locations, three solution types, and the
construction’s possible impacts, as depicted in Figure 4). Each of the four steps will be
illustrated in detail.
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3.1. Data Selection

The relationships between the line of sight (LOS) and slope displacements are sum-
marized in Figure 5 [67]. The slope orientations and features, which are reflected in the
DEM, determine the geometric distortion occurrence. The feasibility of the SAR data (FS) is
calculated based on the DEM (slope angles and aspects) and the satellite orbit parameters
(slant range) [68]. Generally, the shadow effect occurs when the beam cannot illuminate
a parcel of terrain because of a physical barrier. Likewise, the layover effect indicates the
pixels affected by distortion occurring when the front of the radar beam reaches the top of
a slope before it reaches its base. And both shadow and layover effects are more likely to
occur in far ranges and on slopes facing the same direction as the beam or in near ranges
for small incidence angles. Herein, we take the local incidence angle, which is, namely, the
angle between the incident radar beam and a line that is normal to that surface, as a basis
calculation factor.
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Figure 5. Relationship between the LOS and the downslope displacements for different slope
orientations (scenarios 1, 2, and 3 are facing the sensor and scenarios 4, 5, and 6 are facing away from
the sensor) and slopes (α and α’) (adapted with permission from Ref. [67]. 2016, Keren Dai).

Hence, the FS can be calculated using Equation (1) [68]; all the calculation factors must
be in radians. The slope and aspect can be derived using the DEM, and the Flat_area can be
extracted by classifying the slope. The Lay_Shad_mask needed a reclassification from the
original data, which was created by assigning a value equal to 0 for the pixels affected by
the layover and/or shadow and 1 for the others. The local incidence angle was calculated
using Equation (2), where RH denotes the height from the satellite to the center of the Earth,
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Rh denotes the geodetic height of the sub-satellite point on the Earth, L1 denotes the near
slant range, and Pr represents the resolution of the slant range.

FS = −sin((Slope (rad)× sin(Aspect (rad) + LOS azimuth angle (rad))
−Local incidence angle (rad)× Lay_Shad_mask × Flat_area

(1)

The local incidence angle was calculated using Equation (2)

Local incicence angle = arccos
(

RH − Rh
ipr + L1

)
(2)

where RH denotes the height from the satellite to the center of the Earth, Rh denotes the
geodetic height of the sub-satellite point on the Earth, L1 denotes the near slant range, and
Pr represents the resolution of the slant range.

The FS calculation results are classified into 4 classes according to the effects of the
terrain’s geometry (Table 2). The SAR data composition selection can be determined based
on these 4 classes [68].

Table 2. Feasibility of SAR data.

Value Type

FS ≤ 0 Shadow/Layover/Flat Area
0 ≤ FS ≤ 0.25 High Effect

0.25 ≤ FS ≤ 0.5 Moderate Effect
0.5 ≤ FS ≤ 1 Low Effect

3.2. CSI

As TS–InSAR methods, PS and DS algorithms have been widely used in landslide
monitoring. The PS algorithm focuses on the selection of PS targets, while the DS algorithm
identifies DS targets and their optimal phases. CSI combines these two targets for further
analysis using a standard PSI tool, which can reflect the details of landslide deformations
better with enough points [42].

3.2.1. PS Target Selection

As the first generation of the TS–InSAR, the PS algorithm is a mature algorithm that
integrates into a variety of commercial or open-source tools. In CSI, StaMPS is employed to
select PS points based on amplitude and phase information because of the close relationship
between the amplitude stability and phase stability when the coherence is high [42,69].
Hence, the amplitude dispersion index (ADI) can first be used to select PS targets and is
calculated using Equation (3) as follows:

ADIValue =
σA
µA

(3)

where σA and µA denote the mean and standard deviation of a series of amplitude values
for one pixel, respectively. When the ADIvalue of a certain pixel is under 0.4, it can be
considered as a PS target.

Subsequently, the deformation signal will be assumed to be spatially correlated for
each PS target, and the temporal coherence (γ) can be calculated using Equation (4) as
follows [69]:

γ =
1
N

∣∣∣∑N
i=1 ejφnoise,i

∣∣∣ (4)

where N and φnoise,i denote the number of images and the estimated residual phase noise of
ith SLC image, respectively. Certain PS targets will be kept with the original phase values
for further time-series analysis when the their γ values are high enough.
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3.2.2. DS Target Selection

DS target selection has two steps, including SHP identification and optimal phase
estimation, as follows:

(1) SHP identification

Generally, it is necessary to obtain sufficient and high-temporal-resolution SAR images
(at least 2 years of datasets with a 12~48–day revisiting cycle) to help with highway
alignment selection, especially in southwestern China, because of the spatiotemporal
discorrelation. Thus, a KS test can be used to identify the SHPs, which needs a large
number of samples [70]. The sample’s complex coherence matrix can be estimated using
Equation (5) as follows:

TKS(x) =
1
N ∑x′∈Λ

Y
(
x′
)
Y
(
x′
)H (5)

where N denotes the number of images, x′ represents the pixels in a fixed window
(Λ 25 × 25) centered on pixel x, Y(x′) is the normalized complex scattering vectors, and H
indicates a Hermitian transpose. Particularly, only if the number of SHPs with high weights
(ω(x, x′) > 0.5) in window Λ is larger than 20, pixel x can be selected as a DS target in
the CSI.

(2) Estimation of the optimal phase

For each pixel, the optimal phase series Ψ = [Ψ1, Ψ2, . . . , ΨN ]
T can be estimated accord-

ing to the previous section. Ψ1 is set as 0, and the maximum likelihood estimation (MLE) of
Ψ can be calculated using Equation (6) as follows:

ΨML = argmax
Ψ

{
ηH

(
−|T|−1oT

)
η
}

(6)

where η = [0, ejΨ1 , . . ., ejΨN ]T, and the symbol “o” denotes the mathematical operator of
the Hadamard product between two matrices obtained using Equation (5). Then, a phase-
linking approach can be utilized to solve this equation, which can be expressed as a closed
form in Equation (7) as follows [71]:

Ψ̂k
n = arg

{
∑N

m ̸=n

{
|T|−1

}
mn

{T}mnexp
(

jΨ̂k−1
m

)}
(7)

where k is the iteration step.
To evaluate the quality of the estimated optimal phases, the goodness-of-fit index (GF)

can be calculated using Equation (8) as follows:

GF =
2

N2 − N
Re∑N

m=1 ∑N
n=m+1 ejϕmn e−j(Ψm−Ψn) (8)

The GF, illustrated as the extension of the temporal coherence, ϕmn, is the phase value
of item (m, n) in the coherence matrix, and Ψm and Ψn are the estimated optimal phases.
Then, those DS targets with high GF values (higher than the predefined threshold) will be
selected as the final DS targets.

3.2.3. Combination of PS and DS Targets

PS and DS pixels can be connected to form a Delaunay triangulation network for
phase analysis after first dropping the common pixels. Subsequently, the phase is first
corrected for the spatially uncorrelated part of the look-angle error. The final time-series
deformation and rate can be retrieved after the 3D phase unwrapping and spatiotemporal
filtering [69,72]. All these procedures can be implemented in the StaMPS.
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3.3. HSRP Analysis

To obtain the monthly ~1 km HSRP datasets, delta downscaling is a well-suited
method, including four steps [53]. First, a climatology dataset is constructed for each month
based on 30′ CRU and WorldClim time-series data. Second, the 30′ anomaly time-series
data are derived for precipitation based on the 30′ CRU time-series data and the constructed
precipitation dataset, which can be expressed using Equation (9) as follows:

AnoPRE(yr, m) = PRE(yr, m)/CRUClim_PRE(m) (9)

where AnoPRE(yr, m) are the anomalies for the precipitation, PRE(yr, m) are the absolute
precipitation values, CRUClim_PRE(m) is the 30′ climatology for the precipitation, and
m and yr correspond to month (from January to December) and year, respectively. Third,
the bilinear interpolation method is employed for the 30′ anomaly grids at each time.
The 0.5′ spatial resolution datasets (~1 km) will be retrieved to match the WorldClim
data. Finally, the high-spatial-resolution anomaly time-series dataset is transformed to
an absolute climatic time-series dataset based on the WorldClim data using Equation (10)
as follows:

PRE
(
yr, m, 0.5′

)
= AnoPRE

(
yr, m, 0.5′

)
× WorldClim_PRE

(
m, 0.5′

)
(10)

where PRE(yr, m, 0.5′) are the absolute precipitation values at a 0.5′ spatial resolution
(~1 km HSRP), AnoPRE(yr, m, 0.5′) denotes anomalies at the 0.5′ spatial resolution for the
precipitation, and WorldClim_PRE(m, 0.5′) are climatology datasets from WorldClim at a
0.5′ spatial resolution for the precipitation.

3.4. Alignment Selection

As the final step of our method, all the accurate results above should be considered
comprehensively. The annual deformation rate is one of the most direct factors reflecting
the activities of landslides. Usually, when the rate’s absolute value is higher than 10 mm/yr,
the landslide is considered as an active event [73]. And when the rate’s absolute value is
higher than 30 mm/yr, the landslide is considered as a vigorous active event (The annual
deformation rate of every landslide’s geometric center point is selected in our method.).

As for the HSRP, because our study area is in a typical Tibetan Plateau monsoon
climate zone, which only has a low mean annual rainfall [42], the rainfall intensities in
the rainy season will decide the stability of landslides in such areas [74]. Hence, the total
precipitation from April to September of every landslide within the monitoring period
(ASPMP) was extracted as our judgment factor based on the ~1 km HSRP. Furthermore, for
highways at the local scale, the HSRP is close to a normal distribution, and the ASPMP’s
mean value (ASPMPM) for all the landslides within the monitoring period has a higher
reference price than any others in the statistics.

On these bases, we set three solution types in our method to decide the risk-optimal
alignment selection of the highway: A (|rate| > 30 mm/yr and ASPMP > ASPMPM; tunnel
and reinforce), B (10 mm/yr < |rate| ≤ 30 mm/yr and ASPMP > ASPMPM; pass around),
and C (|rate| ≤ 10 mm/yr and ASPMP < ASPMPM; remain and reinforce).

4. Results and Analysis

As depicted in Section 3, our proposed method was utilized to typically section the
BKHC (from Jinchuan to Danba), which has 80 slow-moving landslides identified by optical
remote-sensing interpretation and field investigation, based on 56 Sentinel-1A satellite
images from September 2019 to September 2021 (before the design was finalized). As a
result, the risk-optimal alignment selection of the BKHC was finalized.
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4.1. Results of the FS and Data Selection

As shown in Figure 6a,b, the FSs of the ascending and descending Sentinel-1A images
were calculated. Almost half of these landslides were located in the low-effect area in the
descending SAR data, while almost half of them were located in the shadow or high-effect
area in the ascending SAR data. Thus, we selected 56 descending images of Sentinel-1A
(2019–2021) as the only data source for the CSI. Figure 6c reveals that these landslides are
distributed in the river valley; consequently, these landslides have developed well because
of the river’s perennial scouring and dense rainfall.
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4.2. Results of CSI and HSRP

To illustrate the improved performance of the CSI, we employed SBAS-InSAR for the
same study area based on the same SAR data source [14]. Figure 7a,b shows the annual
rates along the LOS direction, as measured using SBAS-InSAR and CSI, respectively. The
CSI’s deformation signal and total number of MPs are clearer and higher than those of
the SBAS-InSAR, respectively. The maximum annual rate reaches −64 mm/yr within the
monitoring period.

The monthly ~1 km HSRP datasets can be retrieved using the method in Section 3.3;
Figure 7c shows an example of the HSRP in June 2020. On this basis, the HSRP and ASPMP
of every landslide can extracted one by one.
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4.3. Analysis of a Typical Landslide

To demonstrate the applicability of our method to every landslide, we selected the
largest landslide as a typical case. This landslide (102.876◦ E, 30.963◦ N) is located in Niela
Village in Danba County, which is next to the Jinchuan River. The low vegetation coverage
makes the interferograms have a high coherence. Meanwhile, the orientation and slope
angle satisfy the observations of the descending Sentinel-1A data.

As can be seen from Figure 8, this landslide is about 1150 m long and 1200 m wide,
which covers an area of up to 1,275,267 m2. CSI can obtain clearer deformation signals and
more MPs than SBAS-InSAR, and the maximum annual deformation’s LOS velocity reached
59 mm/yr. To further reveal the spatiotemporal evolution, the cumulative deformation
curve of three points (P1, P2, and P3) from the slope’s back edge to the tongue was combined
with the monthly HSRP. To avoid any misunderstanding, we inverted the result’s value to
reflect the slip down. As shown in Figure 9, the cumulative displacement in the period of
the monitoring reached almost 75 mm, and accelerated sliding is highly related to intense
rainfall events between April and September each year (the temporal window for our
ASPMP). Therefore, the gathered precipitation may have contributed to the formation of
gullies on the landslide body. Water from the gullies infiltrates deposits composed of silty
clay, gravelly soil, and cracks; consequently, a slip surface formed. With increasing water
content and slope weight, the slip accelerates significantly.
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Figure 9. The cumulative displacement curves of typical points and monthly HSRPs of the landslide.

Moreover, we draw a profile map of the landslide and extract a profile line from A1
to A2 in the annual deformation map (Figure 10). As seen in Figures 9 and 10, the slope
tongue’s rate of and accumulated deformation are the highest, those of the slope’s middle
part are the second highest, and those of the slope’s back edge are the lowest. According to
our field investigation, fluvial erosion by the Dajinchuan River is another triggering factor.
Especially in the flood season, the river water’s level may increase by nearly 5 m with
respect to its normal status, with the peak flux exceeding 650 m3/s. The hydrodynamic
pressure variations induced by the rapid river-water-level’s changes may lead to instability
and movement at the front edge of the landslide [42].
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Figure 10. Profile map of the landslide and the profile line along A1–A2.

In the first alignment design version, the recommended line’s mainline (K) and alter-
native line (B) are tunneled through the slope’s back edge and middle part, respectively.
The annual movement rate of the geometric center point on the landslide is approximately
36 mm/yr, which is higher than “30 mm/yr”, and the corresponding ASPMP (598.75 mm)
is higher than ASPMPM (598.57 mm). According to our method’s rule, we chose tunnel and
reinforce. And because construction along line B will intensify the deformation according
to the spatiotemporal evolution, the final design version selects the mainline (K).

4.4. Landslide-Hazard-Avoiding Alignment Selection

From the above selection case, the 79 remaining landslides can be reconsidered legit-
imately for the first alignment design version. As described in Table 3, 33 landslides in
total had a high impact (including the above case), 1 landslide had a moderate impact, and
3 landslides in total had a low impact (The other landslides far away from the line had no
impact and, therefore, are not mentioned in the table.). The annual rates and ASPMPs of the
landslides were extracted to obtain solutions for the alignment selection. As Table 3 shows,
13 type A, 16 type B, and 8 type C were selected for every landslide. And the corresponding
final alignment design version was applied for the BKHC construction.
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Table 3. The impacts of the landslides on the study area and the corresponding advice for the alignment design.

Number Longitude (◦) Latitude (◦) Length (m) Width (m) Area (m2) Rate
(mm/yr)

ASPMP
(mm) Impact Description Solution Type

1 101.861 30.863 460.0 240.0 110,955 −29 599.2 Line K and C go through the slope: high
impact B: Select line K and pass around

2 101.876 30.994 224.6 179.1 36,103 −21 604.65 Line K goes through the slope’s back edge:
high impact B: Pass around

3 101.872 31.007 117.0 226.8 19,792 −15 609.45 Line K goes through the slope’s front edge:
high impact B: Pass around

4 101.872 31.023 610.0 600.0 313,851 −36 601.55 Line K goes through the slope: high impact A: Tunnel and reinforce

5 101.871 31.013 265.2 247.4 55,614 −28 602.1 Line K goes through the slope’s front edge:
high impact B: Pass around

6 101.876 31.102 180.0 250.0 43,172 −32 616.8 Line B goes through the slope’s back edge:
high impact A: Tunnel and reinforce

7 102.024 31.260 243.0 196.8 30,926 −34 599.25 Lines K and B go through the slope’s back
edge: high impact

A: Select line K, tunnel, and
reinforce

8 101.907 31.152 415.6 193.1 76,215 10 581.75 Line B goes through the slope: high impact C: Remain and reinforce

9 101.871 30.905 531.5 300.6 109,892 −30 613.25 Line K goes through the slope’s back edge:
low impact A: Tunnel and reinforce

10 101.876 30.963 1149.9 1200.0 1,275,267 36 598.75 Lines K and B go through the slope: high
impact

A: Select line K, tunnel, and
reinforce

11 101.962 31.183 169.9 211.4 30,127 −5 579 Line B goes through the slope’s back edge:
high impact C: Remain and reinforce

12 101.980 31.189 209.3 107.7 16,909 −5 573.35 Line B goes through the slope: high impact C: Remain and reinforce
13 101.978 31.187 149.1 85.4 10,381 8 573.35 Line B goes through the slope: high impact C: Remain and reinforce

14 101.918 31.161 137.2 207.3 22,280 −10 581.8 Line K goes through the slope’s back edge:
low impact C: Remain and reinforce

15 101.889 31.145 1346.6 297.9 432,689 −30 598.75 Line B goes through the slope: high impact A: Tunnel and reinforce

16 102.063 31.647 1085.4 535.2 401,586 −39 598.75 Lines K and A go through the slope: high
impact

A: Select line K, tunnel, and
reinforce

17 102.075 31.519 318.2 149.6 42,757 −16 600.55 Line K goes through the slope’s front edge:
high impact B: Pass around

18 102.073 31.518 354.6 155.3 45,747 11 600.55 Line K goes through the slope: high impact B: Pass around

19 102.082 31.492 220.1 97.3 18,410 −17 598.65 Line K goes through the slope’s front edge:
low impact B: Pass around

20 102.081 31.490 236.1 101.9 20,605 6 581.6 Line K goes through the slope: high impact C: Remain and reinforce
21 101.864 31.042 344.6 230.8 66,631 12 598.65 Line B goes through the slope: high impact B: Pass around

22 101.867 31.032 263.7 296.9 41,838 −19 600.55 Line K goes through the slope’s back edge:
high impact B: Pass around
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Table 3. Cont.

Number Longitude (◦) Latitude (◦) Length (m) Width (m) Area (m2) Rate
(mm/yr)

ASPMP
(mm) Impact Description Solution Type

23 101.863 31.044 309.8 133.3 33,968 19 598.9 Line B goes through the slope: high impact B: Pass around
24 101.873 30.928 1209.7 630.2 628,053 30 599.85 Line B goes through the slope: high impact A: Tunnel and reinforce
25 101.879 30.943 460.6 287.9 107,688 −18 598.65 Line B goes through the slope: high impact A: Tunnel and reinforce
26 101.876 30.951 1458.0 681.7 773,964 18 598.8 Line B goes through the slope: high impact A: Tunnel and reinforce

27 101.876 30.975 527.4 437.0 178,659 −18 598.9 Line B goes through the slope’s back edge:
moderate impact A: Tunnel and reinforce

28 101.884 30.937 195.9 107.6 17,307 −20 618.95 Line K goes through the slope: high impact B: Pass around

29 101.879 30.982 110.6 67.2 7167 −18 611 Line K goes through the slope’s back edge:
high impact B: Pass around

30 101.872 30.997 169.2 94.1 11,256 −7 584.35 Line K goes through the slope’s back edge:
high impact C: Remain and reinforce

31 101.872 30.999 158.2 109.3 13,131 −17 610.15 Line K goes through the slope’s back edge:
high impact B: Pass around

32 101.870 31.012 116.3 90.5 8210 −24 609.45 Line K goes through the slope: high impact B: Pass around

33 101.881 31.112 212.5 170.3 25,372 13 616.25 Line K goes through the slope’s back edge:
high impact B: Pass around

34 101.920 31.155 124.9 68.6 6905 10 580.95 Line K goes through the slope: high impact C: Remain and reinforce

35 101.871 31.008 118.5 96.3 8192 −29 609.45 Line K goes through the slope’s front edge:
high impact B: Pass around

36 102.079 31.445 260.0 200.0 46,657 30 600.6 Line K goes through the slope: high impact A: Tunnel and reinforce
37 101.996 31.253 603.0 433.0 223,674 −36 598.6 Line K goes through the slope: high impact A: Tunnel and reinforce
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5. Discussion
5.1. Advantages

Because of the tremendous costs caused by design alterations, a risk-optimal highway
alignment selection is essential before the construction. Thus, monitoring and stability
analyses of landslides are vital through the whole alignment-design workflow. Compared
with traditional methods, the new systematic highway alignment selection approach we
proposed combines the CSI and ~1 km monthly HSRP analysis. It can give a more accurate
quantitative reference to help to finalize the alignment.

As the fundamental tool in landslide monitoring, TS–InSAR has to face spatiotemporal
decorrelations, atmospheric delay anomalies, geometric distortions, etc., especially in
the mountainous area in southwestern China [14–20]. Consequently, SqueeSARTM has
been widely employed to solve a part of these problems, in some period of time, as a
representative next-generation TS–InSAR technique. After reviewing the existing research
about SqueeSARTM, we found that it has evolved to series of algorithms [35–42], from which
we selected the CSI as the key step of our method to provide a much denser observation
network for performing more reliable phase unwrapping to obtain more accurate MPs.

However, no matter which algorithm is utilized, geometric distortion still restricts the
accuracy and effectiveness for monitoring from the root. In most studies or actual projects,
both the ascending and descending SAR images are used without any FS analysis. The
tremendous data redundancy reduces the TS–InSAR’s efficiency, especially in wide ranges.
Therefore, in our method, data selection is regarded as being the first key step based on FS
calculations, which can reduce the data downloading and processing times.

Rainfall is the most important factor inducing landslides, especially in the rainy season.
After obtaining enough deformation signals and accurate rates of landslides, the accuracy of
the precipitation data should be improved as well. In the mountainous area of southwestern
China, high-spatial-resolution precipitation data cannot be obtained because of the low
station density, even with the establishment of additional stations in recent years [53–59].
On reviewing the related research, we found that the station density decides the result
accuracy of conventional interpolation methods, including inverse distance weighting,
kriging methods, and regression analysis. Thus, delta spatial downscaling is used to obtain
the ~1 km HSRP at the local scale based on CRU time-series datasets and WorldClim
climatology datasets in our method. Compared with the data from the climate stations
far from the BKHC, the HSRP exhibits smaller deviations and is more accurate [60–66].
Moreover, our method extracted the ASPMP of every landslide and ASPMPM based on the
HSRP, which would result in a reasonable reference index for the alignment selection.

Herein, our method incorporated the advantages of these new techniques, attempted
to combine all the accurate results, and considered the locations and deformation rates
of landslides and ASPMPs as the major factors, while construction possibly impacts the
secondary factors. On these bases, the risk-optimal highway alignment can be finalized
reasonably and efficiently based on our three solution types.

5.2. Limitations and Further Directions

Regardless of the TS–InSAR method’s advantages that we incorporated, the computa-
tional expense of the CSI is still unacceptable for a normal computer. In our case study, we
used a computer with an i9-11900 CPU, a 128 GB RAM, and a 4 TB hard disk to conduct
the experiments. Hence, how to improve the computational efficiency and reduce the
consumption of the storage space have become critical problems to be solved. Moreover,
L-band images have more penetration and X-band images have a higher resolution than
C-band images, respectively. We only processed C-band SAR images, but the other two
types of band images were not tested. It is expected that our method can not only benefit
from them but also face computing and FS-analyzing challenges. In addition, the Generic
Atmospheric Correction Online Service’s (GACOS’s) atmospheric delay products were not
used in our method to improve the accuracy of the monitoring, which can provide a new
approach for the atmospheric correction of repeat-pass InSAR [75].
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As for the HSRP analysis, the data-downscaling method was employed for the 30′ CRU
and WorldClim time-series data in our method after reviewing previous studies [65,66].
However, on one hand, the averaged 30′ elevation was used for the original CRU data,
which weakened the representation of the precipitation on the actual land surface, especially
in the mountainous area. On the other hand, the weather stations used for the CRU
evaluation are located in valleys near counties or cities, which cannot reflect the real
conditions of wilderness areas. Meanwhile, as the reference climatology dataset, the
WorldClim dataset performed well. But a new and better reference climatology dataset
needs to be generated for southwestern China, and the collection of public and private
climate data can be a good solution.

There are many other environmental factors that affect landslide stability, such as
earthquakes, reservoir impoundments, fluvial erosion, and weathering. But in the final
step of our method, we only selected the ASPMP as the dominant environmental factor to
help to select the alignment. In practice, other factors should be considered comprehen-
sively to establish a judgement model. For instance, landslides are typical post-disasters of
earthquakes, especially in the eastern margin of the Qinghai–Tibetan Plateau. This region
is a very active seismic area in which three major earthquakes have been recorded since the
1930s, namely, the 1933 Mw 7.3 Diexi earthquake, the 1976 Mw 6.7 Songpan–Pingwu earth-
quake, and the 2008 Mw 7.9 Wenchuan earthquake. During these strong seismic activities,
the rock mass was damaged by the discordant deformation from different existing litholo-
gies. Hence, the locations of earthquake zones should be considered synthetically for better
highway alignment selections in future work. And the possible impacts of construction on
landslides need a quantitative analysis rather than just a qualitative deduction.

In the future, our research emphasis will focus on parallel computing, automatic
processing based on deep-learning models, more landslide-event-training samples, multi-
platform SAR images, higher-spatial-resolution DEMs, etc.

6. Conclusions

In this study, a section of the BKHC was taken as the study area, which has a severe
alignment design problem due to the complicated geological background, strong tectonic
movement, rock body rupture, as well as frequent geohazards. Hence, this paper proposed
a new systematic highway alignment selection method for a typical section of the BKHC,
which has 80 slow-moving landslides identified by optical remote-sensing interpretation
and field investigation, based on CSI and ~1 km monthly HSRP analysis.

Specifically, the FSs of Sentinel-1A ascending and descending images were first cal-
culated to select suitable SAR datasets according to the locations of identified landslides.
Consequently, 56 Sentinel-1A descending images from September 2019 to September 2021
were processed using CSI and SBAS-InSAR to obtain the time-series deformation and rates
of landslides and illustrate the strengths of the CSI. The results reveal that CSI has clearer
deformation signals and more MPs than SBAS-InSAR. And the maximum cumulative
displacements and rates of the landslides reach −75 mm and −64 mm/yr within the moni-
toring period (CSI results), respectively. To demonstrate the applicability of our method
to every landslide, we selected the largest landslide as a typical case. Through further
spatiotemporal evolution analysis of this case, we found that accelerated sliding is highly
related to intense rainfall events and that fluvial erosion impacts the slope’s stability peren-
nially. Under this circumstance, we utilized delta downscaling to obtain the ~1 km HSRP
based on CRU and WorldClim time-series data, and the ASPMPs of every landslide were
extracted afterward. Subsequently, three solution types were established in our method by
setting thresholds for deformation rates and ASPMPs. Finally, the risk-optimal alignment
selection of the BKHC was reasonably and efficiently finalized based on these solution
types and the construction’s possible impacts.

This proposed method expands the application range of the TS–InSAR in actual
transport engineering and reduces the time and economic and labor costs associated with
recurrent landslides. Though some limitations need to be resolved in the future, these
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research results offer a valuable consultation for the alignment selection of highways in
mountainous areas and, consequently, for landslide management.
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