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Abstract: Air pollution has been standing as one of the most pressing global challenges. The changing
patterns of air pollutants at different spatial and temporal scales have been substantially studied all
over the world, which, however, were intricately disturbed by COVID-19 and subsequent containment
measures. Understanding fine-scale changing patterns of air pollutants at different stages over the
epidemic’s course is necessary for better identifying region-specific drivers of air pollution and
preparing for environmental decision making during future epidemics. Taking China as an example,
this study developed a multi-output LightGBM approach to estimate monthly concentrations of the
six major air pollutants (i.e., PM2.5, PM10, NO2, SO2, O3, and CO) in China and revealed distinct
spatiotemporal patterns for each pollutant over the epidemic’s course. The 5-year period of 2019–2023
was selected to observe changes in the concentrations of air pollutants from the pre-COVID-19 era to
the lifting of all containment measures. The performance of our model, assessed by cross-validation
R2, demonstrated high accuracy with values of 0.92 for PM2.5, 0.95 for PM10, 0.95 for O3, 0.90 for
NO2, 0.79 for SO2, and 0.82 for CO. Notably, there was an improvement in the concentrations of
particulate matter, particularly for PM2.5, although PM10 exhibited a rebound in northern regions.
The concentrations of SO2 and CO consistently declined across the country over the epidemic’s course
(p < 0.001 and p < 0.05, respectively), while O3 concentrations in southern regions experienced a
notable increase. Concentrations of air pollutants in the Beijing–Tianjin–Hebei region were effectively
controlled and mitigated. The findings of this study provide critical insights into changing trends of
air quality during public health emergencies, help guide the development of targeted interventions,
and inform policy making aimed at reducing disease burdens associated with air pollution.

Keywords: air pollutant; PM2.5; PM10; emerging hot spot analysis; multi-output LightGBM

1. Introduction

Air pollution has been standing as one of the most pressing global challenges, pre-
dominantly emanating from anthropogenic activities, such as chemical emissions from
industries, exhaust emissions from vehicles, and the combustion of fossil fuels [1,2]. Air
pollutants that are harmful to human health mainly include particulate matter with aerody-
namic diameter <2.5 µm (PM2.5) and <10 µm (PM10), nitrogen dioxide (NO2), sulfur dioxide
(SO2), ozone (O3), and carbon monoxide (CO) [3,4]. The formation and dispersion of air
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pollutants carry profound repercussions that extend across diverse domains, including
climate change, ecological well-being, and human health [5]. The changing patterns of air
pollutants at different spatial (e.g., country, province/state, city) and temporal (e.g., yearly,
seasonal, monthly) scales have been substantially studied all over the world, which, how-
ever, were intricately disturbed by the Coronavirus Disease 2019 (COVID-19) pandemic and
subsequent containment measures [6–9]. It was observed that the concentrations of NO2
and PM2.5 decreased by about 60% and 31% in 34 countries during the lockdown period,
with mixed trends for O3 [10]. Another study reported significant declines in NO2, SO2,
CO, PM2.5, and PM10 levels in twenty major cities across six continents [11]. Understanding
fine-scale changing patterns of air pollutants at different stages over the epidemic’s course
is necessary for better identifying region-specific drivers of air pollution and preparing for
environmental decision making during future epidemics [12,13].

Measures against COVID-19 have been implemented to different degrees across provin-
cial units and even cities during 2020–2022, for instance, in China [14,15]. Existing studies
have only focused on short-term changing patterns of air pollutant concentrations during
the implementation of COVID-19 containment measures, especially soon after the onset
of COVID-19 [16,17]. For example, one previous study on the basis of ground monitoring
data of air pollutants from 86% of the Chinese cities reported that the air quality index
decreased on average by approximately 11.0% from January 2019 to July 2020 [18]. Other
studies have been carried out in sparse areas. For example, one study conducted in the five
northern provinces/municipalities reported decreased NO2 and PM2.5 and increased O3
from January to March 2020 [19]; another study conducted in Shanghai reported a decline
in daily concentrations of PM2.5, PM10, and NO2 from March to June 2022 [20]. A full
picture of spatiotemporal patterns of all major air pollutants across the country remains
lacking. To devise comprehensive mitigation strategies for air pollution that can be applied
at all levels (from national to local), it is essential to understand the collective dynamics of
all major air pollutants.

To unveil spatiotemporal characteristics of air pollutants and evolutionary patterns
of pollutant distribution, this study aimed to estimate monthly concentrations of the six
major air pollutants (i.e., PM2.5, PM10, NO2, SO2, O3, and CO) in China and reveal distinct
spatiotemporal patterns for each pollutant over the course of the epidemic. A 5-year
period of 2019–2023 was selected to observe their changes from the pre-COVID-19 era
to the lifting of all containment measures. The findings of this study provide critical
insights into changing trends of air quality during public health emergencies, help guide
the development of targeted interventions, and inform policy making aimed at reducing
disease burdens associated with air pollution.

2. Methods
2.1. Datasets

The data used in this study included ground-based measurements of air pollutants,
satellite-derived data, and other auxiliary data (Table 1).

2.1.1. Ground-Based Measurements

The hourly concentrations of PM2.5, PM10, NO2, SO2, O3, and CO during 2019–2023
were obtained from approximately 2020 national air quality monitoring stations adminis-
tered by the China National Environmental Monitoring Center (Figure 1). They were then
averaged over days and further over months to calculate monthly mean concentrations of
air pollutants. The hourly in situ observations were conducted using either point analyzers
or open path analyzers from ambient air quality continuous automated monitoring sys-
tems. PM2.5 and PM10 were measured by the tapered element oscillating microbalance or
the β-attenuation method with a precision of ±1.5 or 0.1 µg/m3, respectively. NO2, SO2,
and O3 were measured by a differential optical absorption spectroscopy (DOAS) method
using open path analyzers or alternative methods (i.e., chemiluminescence, ultraviolet
fluorescence, and UV spectrophotometry, respectively) using point analyzers. CO was
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measured using the non-dispersive infrared absorption method or the gas filter correlation
infrared absorption method with point analyzers. The concentrations of four gaseous
pollutants (NO2, SO2, O3, and CO) were measured with a mean relative error of less than
5%. All monitors underwent standard calibration once a week and precision tests every
three months.

Table 1. Summary of the datasets.

Variable Content Unit Spatial
Resolution

Temporal
Resolution Data Source

Ground-based measurements

PM2.5 Ground-monitored PM2.5 concentration µg/m3

In situ Hourly China Environmental
Monitoring Center

PM10 Ground-monitored PM10 concentration µg/m3

O3 Ground-monitored O3 concentration µg/m3

NO2 Ground-monitored NO2 concentration µg/m3

SO2 Ground-monitored SO2 concentration µg/m3

CO Ground-monitored CO concentration mg/m3

Satellite-derived data

AOD Aerosol optical depth – 1 km × 1 km Daily
Moderate-resolution
Imaging Spectroradiometer
(MODIS)

AAI Absorbing aerosol index –

3.5 km × 7 km Daily Tropospheric Monitoring
Instrument (TROPOMI)

TROPOMI CO CO column number density mol/m2

TROPOMI
NO2

Tropospheric NO2 column number
density mol/m2

TROPOMI O3 O3 column number density mol/m2

Auxiliary data

TEM Temperature at 2 m K

0.1◦ × 0.1◦

Monthly

European Centre for
Medium-Range Weather
Forecasts Reanalysis
version 5 (ERA5)

DT Dewpoint temperature at 2 m K

WU U-component of wind at 10 m m/s

WV V-component of wind at 10 m m/s

SP Surface pressure hPa

ET Total evaporation mm

PRE Total precipitation mm

BLH Boundary layer height m

0.25◦ × 0.25◦
RH Relative humidity %

UVB Downward UV radiation at the surface J/m2

SSR Surface net solar radiation J/m2

STRD Surface net thermal radiation J/m2

EI Emission inventory kt CO2/cell 0.1◦ × 0.1◦ Annual Global Infrastructure
Emissions Detector (GID)

NTL Nighttime light nW/sr/cm2 500 m × 500 m Monthly Visible Infrared Imaging
Radiometer (VIIRS)

POP Population counts – 1 km × 1 km Annual LandScan Global
Population Data

NDVI Normalized difference vegetation index – 1 km × 1 km Monthly Moderate-resolution
Imaging Spectroradiometer
(MODIS)LUC Land use cover – 1 km × 1 km Annual

DEM Surface elevation m 90 m × 90 m – Shuttle Radar Topography
Mission (SRTM)
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Figure 1. Spatial distribution of national automatic air quality monitoring stations in China.

Variations in the number of ground monitoring stations across cities may cause missing
values in the original monitoring data of air quality, attributed to factors such as calibration
of monitoring instruments, daily maintenance, and issues like communication failures
or power outages. In this study, preprocessing involved the elimination of missing data
and the evaluation of outliers using the Laida criterion, which excluded records falling
outside the range of (µ − 3σ, µ + 3σ), where µ and σ denote means and standard deviation,
respectively. Per the “China Ambient Air Quality Standard” (GB 3095-2012) [21], daily
mean values were calculated from effective hourly data [22]. Data on a given day were
considered invalid if recorded for less than 20 h. Similarly, data for calculating monthly
mean values were considered invalid if recorded for less than 27 days in a month (or less
than 25 days in February), resulting in 92,284 valid data records.

2.1.2. Satellite-Derived Data

The data products of the moderate resolution imaging spectroradiometer (MODIS),
equipped on the National Aeronautics and Space Administration’s (NASA) Terra/Aqua
satellites, and of the tropospheric monitoring instrument (TROPOMI), equipped on the
European Space Agency’s (ESA) Sentinel-5P satellite, were used in this study. Specifi-
cally, the MODIS-derived multi-angle implementation of atmospheric correction (MAIAC)
aerosol optical depth (AOD) data (product number MCD19A2) offers a spatial resolution of
1 km × 1 km and a temporal resolution of 1 day. The MAIAC uses time series analysis and
image processing methods for atmospheric correction and aerosol inversion in regions with
dark vegetation coverage and bright surfaces (e.g., deserts), thereby enhancing the effective
observation range [23]. MAIAC offers quality assurance bands that signify retrieval quality,
encompassing a cloud mask, a land/water/snow mask, and an adjacency mask indicating
proximity to cloud or snow. MAIAC AOD at 550 nm was utilized, excluding pixels affected
by cloud contamination or snow cover. Monthly AOD was derived by computing the
average of all valid values for each image element over the month. The TROPOMI enables
effective observation of trace gas components worldwide [24], where the offline Level 3
products included the absorbing aerosol index (AAI) and column number densities of
O3, CO, and NO2 with a spatial resolution of approximately 3.5 km × 7 km. The raw
data were aggregated to monthly averages and resampled to 10 km × 10 km grids, where
observations were available for the largest number of pixels. For the few pixels without
values, we employed a time linear interpolation method to interpolate based on the closest
date before and after [25–27].
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2.1.3. Auxiliary Data

The auxiliary data used in this study included meteorological, land surface, and
socioeconomic data. The meteorological data were from the fifth generation European
center for medium-range weather forecasts atmospheric reanalysis of the global climate
(ERA5), produced by the Copernicus climate change service, which included 2m tem-
perature (TEM), 2m dewpoint temperature (DT), 10m u-component of wind (WU), 10m
v-component of wind (WV), surface pressure (SP), total evaporation (ET), total precipitation
(PRE), boundary layer height (BLH), relative humidity (RH), downward UV radiation at
the surface (UVB), surface net solar radiation (SSR), and surface net thermal radiation
(STRD) [28,29]. Land surface data included the normalized difference vegetation index
(NDVI) from the MOD13A3 product, the digital elevation model (DEM) from the shuttle
radar topography mission (STRM) digital elevation dataset, and land use cover (LUC) data
from the MCD12Q1 product. Socioeconomic data included population from the annual
LandScan Population Data Global 1 km, emission inventory (EI) from the Global Infras-
tructure emissions Detector (GID) with a spatial resolution of 0.1◦ × 0.1◦ and covering
1990–2022, and nighttime light (NTL) data from the visible infrared imaging radiometer
suite (VIIRS). All auxiliary data were converted into 10 km × 10 km grids using a bilinear
interpolation method, to be consistent with the satellite-derived data, except for LUC data,
which were resampled using a majority resampling method [30].

2.2. Extraction of Spatial and Temporal Features

Given the pronounced variability in the distribution of air pollutants over space and
time, considerable fluctuations in their concentrations occurred. Incorporating latitude and
longitude coordinates as spatial locations has been proved to be untenable for decision-
making tree models, as it ostensibly encodes geographical information and thus predisposes
the issue of threshold segmentation during feature fitting [31].

To address this issue, this study embraced a geocoding method to delineate relative
spatial positions and capture regional variations. Specifically, we computed the distances
from each grid to the centroid and four corner points of the rectangular grid (i.e., D1, D2,
D3, D4, D5) [32]. We utilized a haversine method to transform latitudes and longitudes
into spherical distances.

DIS = 2 × r × asin(

√
sin2

(
φ2 − φ1

2

)
+ cos(φ1)cos(φ2)sin2

(
γ2 − γ1

2

)
) (1)

where r denotes Earth’s mean radius (≈ 6371 km) and γ and φ denote the longitude and
latitude of a given point on the sphere, respectively.

To represent temporal information, the day of the year and month are commonly used
metrics, which, however, do not adequately convey the ongoing progression and seasonal
patterns inherent in temporal data. To address this issue, in this study, we converted
months into cartesian coordinates (tx and ty) [33], which involved normalizing the time
period to the range from 0 to 2π and transforming it into polar coordinates as follows:

[
tx
ty

]
=

cos
(

2π Month
T

)
sin

(
2π Month

T

) (2)

where T is equal to 12.

2.3. Algorithm Description

In this study, we combined a multi-output regressor with a LightGBM framework to
develop a multi-output LightGBM model, which was capable of estimating concentrations
of the six air pollutants by employing ground-based measurements, satellite-derived data,
auxiliary data, and spatial and temporal features. Subsequently, we analyzed predictive
results from the model using an emerging hot spot analysis to evaluate the patterns of
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hot and cold spots of diverse air pollutants in different regions, revealing their latest
spatiotemporal patterns and trends of dynamic changes (Figure 2).
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Figure 2. Flowchart of the modeling and analysis process for this study. LightGBM, light gradient
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monitoring instrument.

A multi-output regression algorithm was integrated with a LightGBM framework to
develop a multi-output LightGBM model, which is capable of predicting concentrations
of the six air pollutants that are highly correlated with multiple predictors. LightGBM is
an open-source framework that implements the Gradient-Boosted Decision Tree (GBDT)
algorithm [34]. Regarding runtime efficiency, it outperforms the well-known traditional
machine learning models, such as Extreme Gradient Boosting (XGBoost) and Extremely
Randomized Trees (ERTs). This is owing to several key optimizations, including gradient-
based one-side sampling, exclusive feature bundling, the histogram-based algorithm, and
the leaf-wise tree growth strategy with depth restriction. These optimizations together
reduce the complexity of the model and the risk of overfitting, thereby enhancing the
model’s efficiency. Also, the efficient algorithmic structure of LightGBM could significantly
mitigate the challenge of processing large volumes of environmental data efficiently [35,36].

The multi-output regression algorithm is a machine learning task approach aimed at
predicting multiple output tasks for each input sample [37]. It assigns a set of specialized
regressors to each target, thereby extending regressors that do not inherently support
regression with multiple objectives. Each target can be accurately represented by a regressor
and, therefore, accessed through its corresponding model, which provides a straightforward
strategy for extending single-output regression models to support multiple objectives. The
six air pollutants originate from certain shared sources and exhibit chemical or physical
connections under identical meteorological conditions. Consequently, constructing multiple
single-output models for individual pollutants involves using similar predictors and model
structures, which leads to duplicated efforts. In contrast, employing a multi-output model
to simultaneously estimate concentrations of these pollutants can leverage their correlations
more effectively, thereby enhancing efficiency [38]. To compare the benefits of adopting the
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multi-output regression algorithm versus a single-output regression approach, we trained
a separate single-output LightGBM model for each pollutant using the same samples.

2.4. Model Evaluation

Three distinct 10-fold cross-validation (CV) methods, i.e., sample-based, site-based,
and time-based, were used to comprehensively evaluate the performance of our multi-
output LightGBM model [39,40]. The sample-based CV randomly partitions the target
dataset into ten subsets and, alternately, uses nine for model training and one for model
testing (i.e., repeated ten times to ensure that each subset was used for testing), which
facilitates a comprehensive evaluation of generalization capabilities of the model across
various subsets. The site-based CV considers monitoring sites while partitioning the target
dataset and ensures that both training and test sets include data from different locations,
which enhances the model’s ability to predict across the study area. The time-based CV
considers the time of data collection while partitioning the target dataset and ensures that
both training and test sets include data collected in different periods, which improves the
model’s ability to generalize over time.

We employed several evaluation metrics to comprehensively assess the performance of
our model, including the coefficient of determination (R2), root-mean-square error (RMSE),
and mean absolute error (MAE). R2 gauges the ability to explain the total variance, with a
value closer to 1 indicating superior performance. The RMSE and MAE quantify prediction
errors, with the RMSE exhibiting a greater sensitivity to large errors. The calculation
methods of these metrics are as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (3)

RMSE =

√
1
n
× ∑n

i=1(yi − ŷi)
2 (4)

MAE =
1
n
× ∑n

i=1|yi − ŷi| (5)

where yi denotes the observed concentrations from monitoring stations; yi denotes the
mean concentration; ŷi denotes the predicted concentration; and n denotes the number of
samples.

In addition, during the model fitting, the importance of each feature, including satellite
derived (AAI, TROPOMI CO, TROPOMI NO2, TROPOMI O3, AOD), auxiliary (TEM, RH,
PRE, ET, BLH, DT, SP, WU, WV, UVB, SSR, STRD, EI, NTL, POP, NDVI, LUC, DEM), and
other generated features (D1, D2, D3, D4, D5, tx, ty), was calculated and normalized to
show relative contributions of predictors and enhance the interpretability of our model.

2.5. Trend Analysis

To assess spatial clustering and temporal variations of air pollutants over the 5-year
period, an emerging hot spot analysis was used to identify spatiotemporal patterns of con-
centrations of air pollutants over different periods. It considers both spatial and temporal
dimensions by forming a space–time cube from successive layers of data from different
time cross-sections to evaluate whether observed clusters or outliers are statistically signifi-
cant [41]. Specifically, a combination of two statistical methods was used: the Getis–Ord Gi*
statistic identifies the location and size of spatial clusters of concentrations, and then the
Mann–Kendall trend test detects temporal trends of concentrations at each location [42–44].
In the Getis–Ord Gi*, specific parameters were set for neighborhood distance and time
steps to detect statistically significant spatial clusters, with both hot (high concentrations)
and cold spots (low concentrations) identified and the corresponding z-scores and p-values
generated. In this study, the neighborhood distance was set as 10 km (~0.1◦) and the time
step was set as 1 month. In the Mann–Kendall trend test, temporal trends of hot and cold
spots were evaluated and all locations were classified into the seventeen spatiotemporal
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patterns: eight (changing) patterns (i.e., new, continuous, intensifying, persistent, diminish-
ing, dispersed, oscillating, and historical) of hot and cold spots separately, as well as the
category “non-significance” [41]. To avoid complicated interpretation, the patterns existing
in <1% of the study area were not shown in the results.

3. Results
3.1. Spatial and Temporal Distribution of Air Pollutants

Different spatiotemporal patterns of PM2.5, PM10, NO2, SO2, O3, and CO were ob-
served during 2019–2023 (Figure 3). PM2.5 and PM10 consistently exhibited higher levels,
especially in the Taklimakan Desert, North China Plain, Beijing–Tianjin–Hebei (BTH) re-
gion, and Yangtze River Delta (YRD) in the east. In contrast to the widespread and high
concentrations of particulate matter, NO2, SO2, and CO levels were higher in coastal areas,
particularly around the BTH region. O3 exhibited a different changing pattern, with notable
increases observed in the west, north, northwest, and coastal regions, indicating that O3
has a broader impact area compared to the other pollutants.
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Figure 3. Spatial distribution of annual mean concentration of PM2.5 (a), PM10 (b), NO2 (c), SO2 (d),
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The trend of mean concentrations of pollutants over the past 60 months demonstrated
a clear seasonal pattern (Figure 4). Monthly and annual data all over China were generated
by directly averaging the estimated monthly concentrations at each grid. PM2.5, NO2, SO2,
and CO levels reached peaks in the spring and winter, likely due to increased emissions
from heating-related coal and fossil fuel use. While PM10 is generally consistent with this
trend, it is worth noting that it peaked twice each year, likely due to dust storms that are
common in spring, leading to elevated levels post-winter. O3 displays the opposite trend,
with lower levels in winter and higher levels in summer. From 2019 to 2023, the annual
mean concentrations of PM2.5, PM10, NO2, and O3 demonstrated a consistent pattern
characterized by an initial decrease followed by a subsequent increase (Table 2). Both PM2.5
and PM10 experienced a resurgence in 2022, while O3 underwent a rapid increase following
a modest decline from 2019 to 2020. The NO2 level fluctuated continuously, whereas SO2
and CO levels were either stable or declining.
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Figure 4. Monthly mean concentrations of the six major air pollutants (a) and their interannual
differences (b) in China from 2019 to 2023. The unit is mg/m3 for CO and µg/m3 for other air
pollutants.

Table 2. Annual mean concentrations of the six major air pollutants from 2019 to 2023. The unit is
mg/m3 for CO and µg/m3 for other air pollutants.

Year PM2.5 PM10 NO2 SO2 O3 CO

2019 29.7 ± 11.4 50.1 ± 24.6 12.2 ± 5.6 11.7 ± 2.0 70.5 ± 10.6 0.58 ± 0.17
2020 29.7 ± 11.0 49.0 ± 23.8 11.6 ± 5.0 11.7 ± 1.9 69.6 ± 10.6 0.58 ± 0.15
2021 28.4 ± 9.4 48.5 ± 22.5 11.7 ± 5.1 11.3 ± 1.9 70.4 ± 11.2 0.55 ± 0.15
2022 27.4 ± 9.5 47.7 ± 26.3 11.4 ± 4.5 10.6 ± 1.9 72.7 ± 11.0 0.51 ± 0.13
2023 28.7 ± 9.4 51.5 ± 25.5 11.9 ± 4.7 10.5 ± 1.9 73.1 ± 10.9 0.51 ± 0.14

3.2. Spatiotemporal Patterns of Air Pollutants

Spatial clustering patterns of individual air pollutants in China from January 2019 to
December 2023 were predominantly oscillating hot or cold spots, with some areas featuring
persistent or intensifying spots and a few areas featuring diminishing spots (Figure 5).
Among them, SO2 and CO exhibited a statistically significant downward trend nationwide
(p < 0.05 for SO2, and p < 0.001 for CO), while the remaining four pollutants display
increasing and/or decreasing trends only in specific areas.
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While PM2.5 and PM10 shared similar spatial patterns, with persistent and sometimes
increasing cold spots in the western region (near the Tibetan Plateau) and persistent
hot spots in the northwest, PM10 showed intensifying hot spots in the outer regions of
the Taklimakan Desert and the North China Plain. This is likely attributed to the long-
distance transport of sand and dust caused by the desert’s monsoon climate. In contrast,
PM2.5 showed improvements with an oscillating cold spot in the North China Plain and a
diminishing hot spot in the BTH region, indicating the effectiveness of control measures
for air pollution. However, the temporal trends for PM2.5 and PM10 diverged, with PM2.5
trending downward, especially on the southeast coast, and PM10 trending upward in the
north and northwest.

NO2 and CO shared similar spatial patterns, with oscillating cold spots becoming
more pronounced towards the northwest and persistent hot spots in the southeast. Some
hot spots gradually vanished in the BTH region. In terms of temporal trends, NO2 showed
a downward trend in the northwest where the area of cold spots increased. CO exhibited a
declining trend in most areas of the country (p < 0.05). SO2 predominantly exhibited oscil-
lating, persistent, and intensifying cold spots in the southeast, with oscillating, diminishing
hot spots, and a few persistent hot spots in the northwest. Such spatial distribution, with
increasing cold spots and disappearing hot spots, indicated a decrease in the concentrations
of air pollutants, which is consistent with the significant downward trend nationwide
(p < 0.001). The spatial distribution of O3 was mainly oscillating cold spots, with a signifi-
cant hot spot near the Himalayas on the southern edge of the Qinghai–Tibet Plateau, and a
decreasingly persistent cold spot in southern China.

3.3. Model Performance
3.3.1. Feature Importance of Predictor Variables

All predictor variables contributed roughly equally to the six air pollutants (Figure 6).
The majority of variables contributed more than 2%, with AAI being the most important
feature (5.5%). Other key predictors were also vital, including TROPOMI NO2, O3, CO,
and MAIAC AOD, with each accounting for around 4%. Meteorological factors exerted
substantial influences and contributed over 40% in total. Among auxiliary data, population,
nighttime light, and emissions inventory held relatively high importance, whereas the im-
portance of LUC was minor, possibly because NDVI conveys part of land cover information
already. Other generated features, denoting relative spatial positions, contributed about
18.5% to the total importance. Conversely, temporal information was less critical, poten-
tially due to the limited values of months, making it less distinguishable when converted
to polar coordinates. This phenomenon aligns with the highly consistent results between
site-based and sample-based CV, whereas time-based CV yielded relatively inferior results.
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3.3.2. Predictive Accuracy of CV Results

In assessing model performance through three distinct 10-fold CV approaches, PM2.5,
PM10, NO2, and O3 achieved a fairly good degree of fitting, and the results for SO2 and
CO were also commendable (Figure 7). Overall, our multi-output LightGBM demonstrated
satisfactory results in training and fitting the concentrations of the six major air pollutants.

The R2 from the sample-based CV was 0.92 for PM2.5, 0.95 for PM10, 0.95 for O3, 0.90
for NO2, 0.79 for SO2, and 0.82 for CO. The RMSE was 6.1 µg/m3 for PM2.5, 9.0 µg/m3 for
PM10, 3.8 µg/m3 for NO2, 2.7 µg/m3 for SO2, 5.3 µg/m3 for O3, and 0.11 mg/m3 for CO
(Table 3). These values suggest the model’s ability to explain the variance in the observed
data, reflecting its high predictive capability, reliability, and valuable contribution to the
estimation of air pollutant concentrations.

Table 3. Accuracy of 10-fold cross-validation (CV) for different air pollutants across China. The units
of the RMSE and MAE are mg/m3 for CO and µg/m3 for other air pollutants. CV, cross-validation;
MAE, mean absolute error; RMSE, root-mean-square error.

Sample-Based CV Site-Based CV Time-Based CV

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

PM2.5 0.92 6.11 3.09 0.90 6.91 3.66 0.82 9.17 5.27
PM10 0.95 9.01 5.54 0.91 11.52 6.61 0.77 18.69 10.53
NO2 0.90 3.79 2.80 0.90 3.96 2.95 0.85 4.75 3.56
SO2 0.79 2.67 1.65 0.77 2.83 1.78 0.70 3.23 2.01
O3 0.95 5.27 3.84 0.93 5.85 4.35 0.89 7.34 5.65
CO 0.82 0.11 0.08 0.79 0.12 0.09 0.73 0.14 0.10

From the results of site-based CV, the predictive performance of the model for various
pollutants remained consistent and robust spatially. The R2, RMSE, and MAE values
aligned closely with the results of the sample-based CV, showing good adaptability to
the differences between monitoring stations and the overall accuracy of the model at the
site level.

At the temporal level, the model maintains high predictive performance across various
indicators over an extended period. Although the R2 and RMSE indicators may be slightly
lower than those of the other two CV methods, the predictive ability of the model remains
comparatively robust at different years despite occasional deviations.
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Figure 7. Density scatter plots of 10-fold cross-validation (CV) results of our multi-output LightGBM
model. Solid lines denote the best-fit lines derived from linear regression, and dashed lines denote
the 1:1 line. The provided information includes the sample size (N), coefficient of determination (R2),
root-mean-square error (RMSE), and mean absolute error (MAE). The units of the RMSE and MAE
are mg/m3 for CO and µg/m3 for other air pollutants.

3.3.3. Spatial and Temporal Robustness of the Results

The site-based CV accuracies of the model for the estimation of air pollutant concentra-
tions at different locations of ground-based monitoring sites showed the robustness of the
model across regions (Figure 8). Notably, stations in the southeast coastal region, including
the BTH and YRD, demonstrated stable R2 (around 0.90), coupled with commendable
RMSE performance. In contrast, sites in the western and northern regions exhibited notably
lower accuracy, reflecting the impact of sparse and uneven distributions of the monitoring
network on model performance. For instance, in the Tibetan Plateau, the model predicted
a modest R2 value for particulate matters, possibly below 0.70. However, the inherently
good air quality of the region could make the RMSE perform well, where small errors could
lead to relatively large fluctuations. This pattern was supported by high concentrations
of O3 and CO with high precision in the Qinghai–Tibet Plateau. In the Taklimakan Desert
region of northwest China, despite a substantial RMSE in PM2.5 and PM10 estimates, R2

remained relatively robust considering its extremely high concentrations of air pollutants.
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The considerable disparities in the levels of air pollutants between these adjacent areas,
influenced by topography and climate, explained the observed variations.
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Additional insights into the model performance across different years were from the
stability of the predictive capacity for the six air pollutants, indicated by R2 and the RMSE,
which remained relatively stable in each year, demonstrating the model’s robust temporal
flexibility (Figure 9). A slight decline in R2 was observed from 0.84 in 2019 to 0.75 in 2023,
while a continuous decrease in the RMSE from 3.19 to 2.03 µg/m3 and a notable reduction
in outliers and high-value points suggest a narrowing range due to a decline in the annual
mean concentrations of SO2. Notably, the model exhibited a specific instance of reduced
accuracy in fitting PM2.5 in 2021 (R2 = 0.81, RMSE = 8.9 µg/m3) compared to other years
(R2 = 0.93–0.96, RMSE = 4.0–5.2 µg/m3). Such discrepancies may be attributed to a sudden
decrease in the annual mean concentration of PM2.5 for that year, indicating that the model
is less resilient to such anomalous rapid changes.
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Figure 9. Density scatter plots of yearly sample-based cross-validation (CV) results across China
from 2019 to 2023. Solid lines denote the best-fit lines derived from linear regression, and dashed
lines denote the 1:1 line. The provided information includes the sample size (N), coefficient of
determination (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The units of the
RMSE and MAE are mg/m3 for CO and µg/m3 for other air pollutants. The pollutants from left to
right are PM2.5 (a), PM10 (b), NO2 (c), SO2 (d), O3 (e), and CO (f). Shown from top to bottom are the
years 2019–2023 in order.

3.3.4. Comparisons of Multi-Output and Single-Output Models

The accuracy of multi-output and single-output LightGBM models was comparable
(Table 4). However, in terms of efficiency, the multi-output LightGBM considerably out-
performed the single-output LightGBM. Although LightGBM has been recognized for its
efficient and fast computing, the total time spent on the single-output model, particularly
in reading the predictors (satellite-derived data), was six times that of the multi-output
model. Such discrepancy arose as the six single-output models redundantly read the same
input data multiple times. Moreover, in practical applications, employing six single-output
models entailed six rounds of optimal parameter searching and feature filtering, rendering



Remote Sens. 2024, 16, 1298 18 of 22

single-output models more time-consuming than multi-output models, especially in the
context of 10-fold CV.

Table 4. Comparisons of the accuracy of 10-fold cross-validation (CV) for multi-output and single-
output LightGBM.

Sample-Based CV Site-Based CV Time-Based CV

R2 RMSE R2 RMSE R2 RMSE

PM2.5
Multi-output 0.92 6.11 0.90 6.91 0.82 9.17
Single-output 0.92 6.05 0.90 6.85 0.77 10.24

PM10
Multi-output 0.95 9.01 0.91 11.52 0.77 18.69
Single-output 0.94 9.15 0.91 11.56 0.76 19.13

NO2
Multi-output 0.90 3.79 0.90 3.96 0.85 4.75
Single-output 0.90 3.94 0.89 3.97 0.85 4.80

SO2
Multi-output 0.79 2.67 0.77 2.83 0.70 3.23
Single-output 0.78 2.75 0.77 2.83 0.69 3.25

O3
Multi-output 0.95 5.27 0.93 5.85 0.89 7.34
Single-output 0.95 5.28 0.93 5.81 0.89 7.48

CO
Multi-output 0.82 0.11 0.79 0.12 0.73 0.14
Single-output 0.81 0.11 0.79 0.12 0.74 0.14

4. Discussion

This study developed a multi-output LightGBM model to estimate the monthly mean
concentrations of PM2.5, PM10, NO2, SO2, O3, and CO simultaneously based on ground-
based measurements of air pollutants, satellite-derived data, and other auxiliary data.
During 2019–2023, the levels of SO2 and CO decreased steadily, while PM2.5, PM10, NO2,
and O3 experienced declines and then rebounds, with the annual mean concentrations of
PM10 (mainly in the north and northwest) and O3 (mainly in the southwest and south)
in 2023 exceeding those in 2019. The levels of PM2.5, NO2, and CO in the BTH region
significantly declined, with diminishing clusters of high concentrations and increasing
clusters of low concentrations. This study advances environmental research and provides
new approaches and important evidence for future air quality research and management.

In general, the 10-fold CV performance of our model demonstrates high accuracy and
robustness for multiple air pollutants, offering reliable data support for spatiotemporal
analysis of concentrations of air pollutants. Comparatively, the accuracy of the model
is better for PM2.5, PM10, NO2, and O3 than SO2 and CO, possibly due to their complex
nature, lower concentrations, and smaller spatial variations. The fitted lines on the basis of
the data points in 10-fold CV figures had a slope of <1 and a small positive intercept for all
six air pollutants, which implies that the model tended to slightly underestimate the actual
concentrations of air pollutants to a larger degree in regions with higher concentrations.
Therefore, the predictive capability of the model in regions with a high level of air pollutants
deserves more effort to improve [45,46].

Our study reveals a complex interplay between COVID-19 containment measures
and air pollution levels. The initial declines in PM2.5, PM10, O3, and NO2 concentrations
coincide with the onset of lockdown measures, possibly reflecting a direct impact of
reduced economic activities and travel restrictions on air quality. The swift rebound of
PM10 and O3 levels after the lift of lockdown measures may be due to a rapid resumption
of industrial activities and urban traffic [47]. The steady decreases in SO2 and CO levels
may possibly be due to the effectiveness of sustained control initiatives for air pollution
that continued during the pandemic [48,49]. The significant improvement in air quality in
the BTH region, with the decreased clusters of high concentrations and increased clusters
of low concentrations for PM2.5, NO2, and CO, may suggest that pandemic control policies
and shifts in industrial operations had a lasting positive effect on regional air quality. Some
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nuanced spatial patterns, such as the increases of PM10 in the north and northwest and of
O3 in the southwest and south of China, raise questions about regional disparities in the
environmental impact of the pandemic. These variations may reflect differences in local
policy responses, the nature of industrial activities, and the persistence of pre-pandemic
pollution sources [50].

It is crucial to consider the broader context of the pandemic. It acted as an unplanned
experiment in global emission reductions, offering insights into the potential of concerted
actions for air quality improvement. The clear seasonal variations in the levels of air
pollutants, particularly the peaks in spring and winter, underscore the influences of both
anthropogenic activities and natural events on air quality. Such understanding is vital for
formulating strategies to maintain the improvement of air quality over the course of future
public health emergencies [12].

This study has some limitations. First, spatiotemporal patterns observed in this study
may vary by spatial and temporal scales at which the concentrations of air pollutants were
modeled. Thus, modeling at different spatial scales may provide more comprehensive
perspectives of examining spatiotemporal patterns of air pollutants [51,52]. Second, consid-
ering the precision of the sensors and relevant techniques, caution should be exercised in
interpreting the findings, as they may be influenced by potential estimation biases arising
from in situ sensors for air pollutant monitoring. Third, varying parameters selected during
the modeling, such as spatial neighborhood size and time step in the space–time cube,
might lead to variations in patterns of air pollutants. However, this is also considered an
inherent challenge due to the modifiable areal unit problem [53–56]. Future studies could
choose higher temporal resolutions (e.g., daily) to examine the impact of abrupt events on
the concentrations of air pollutants to assess longer-term effects of different governance and
emission control measures, conduct in-depth investigations on the associations between
air pollutants and public health emergencies, and better understand the impact of human
activities on air quality [57,58]. Last but not least, like many other previous studies, this
study paid more attention to the accuracy rather than the degree of simplicity of the model.
The following rule usually applies: the simpler the model, the better and the greater the
universality of the model. Future efforts are warranted towards simplifying the model
without compromising its accuracy.

5. Conclusions

This study developed a multi-output LightGBM model to estimate monthly mean
concentrations of the six common air pollutants and examine their spatiotemporal patterns
in China from 2019 to 2023. The findings indicate that our newly developed model could ac-
curately estimate various air pollutants. Significant declines in SO2 and CO were observed
across the country, with the other four air pollutants showing increasing and/or decreasing
trends in specific areas. Air pollutant levels in the BTH region were apparently mitigated,
as shown by the diminishing clusters of high concentrations and increasing clusters of
low concentrations. Our findings enhance the comprehension regarding spatiotemporal
disparities in air pollutant changes and offer valuable insights into the dynamics and
evolution of these variations over the course of public health emergencies.
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