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Abstract: The operational Simplified Surface Energy Balance (SSEBop) model has been utilized to gen-
erate gridded evapotranspiration data from Landsat images. These estimates are primarily driven by
two sources of information: reference evapotranspiration and Landsat land surface temperature (LST)
values. Hence, SSEBop is limited by the availability of Landsat data. Here, in this proof-of-concept
paper, we utilize the Continuous Change Detection and Classification (CCDC) algorithm to generate
synthetic Landsat data, which are then used as input for SSEBop to generate evapotranspiration
estimates for six target areas in the continental United States, representing forests, shrublands, and
irrigated agriculture. These synthetic land cover data are then used to generate the LST data required
for SSEBop evapotranspiration estimates. The synthetic LST, evaporative fractions, and evapotranspi-
ration data from CCDC closely mirror the phenological cycles in the observed Landsat data. Across
the six sites, the median correlation in seasonal LST was 0.79, and the median correlation in seasonal
evapotranspiration was 0.8. The median root mean squared error (RMSE) values were 2.82 ◦C for
LST and 0.50 mm/day for actual evapotranspiration. CCDC predictions typically underestimate
the average evapotranspiration by less than 1 mm/day. The average performance of the CCDC
evaporative fractions, and corresponding evapotranspiration estimates, were much better than the
initial LST estimates and, therefore, promising. Future work could include bias correction to improve
CCDC’s ability to accurately reproduce synthetic Landsat data during the summer, allowing for more
accurate evapotranspiration estimates, and determining the ability of SSEBop to predict regional
evapotranspiration at seasonal timescales based on projected land cover change from CCDC.
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1. Introduction

Understanding spatial and temporal patterns in actual evapotranspiration (ETa)
through remotely sensed data products is of increasing importance for a variety of environ-
mental applications in the continental United States. First and foremost, satellite-derived
ETa data are an integral part of drought monitoring [1–3]. Furthermore, utilizing remotely
sensed ETa data in agricultural regions can help inform stakeholders managing evapo-
rative water loss, allowing them to optimize irrigation [4]. Gridded ETa data have been
used to monitor the hydrological balance in relation to forest fires [5]. Additionally, grid-
ded ETa datasets have been used to produce an evapotranspiration climatology for the
state of Indiana for analyzing the regional water budget and drought’s effects on cereal
production [6].
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To meet these increasing needs for spatial evapotranspiration data, a variety of gridded
evapotranspiration data products have been developed to utilize remote sensing data from
a variety of satellite platforms. These satellite-derived evapotranspiration models typically
use thermal data from satellites, such as GOES, as is the case for the Atmosphere–Land
Exchange Inverse (ALEXI) model [7], or Landsat for the operational Simplified Surface
Energy Balance (SSEBop) model [8]. Recently, ALEXI and SSEBop have been aggregated
together with several other remote-sensing-based evapotranspiration models to produce
the OpenET project, which provides evapotranspiration data for stakeholders in the western
United States [9]. Additionally, NASA has recently deployed ECOSTRESS onboard the
International Space Station to capture evapotranspiration data at 70 m spatial resolution
with a 1- to 5-day repeat time [10]. Landsat provides higher spatial resolution at 30 m but is
still limited by its 16-day repeat time.

Despite the clear need for quality ETa estimates, hydrological forecasters typically
rely on reference evapotranspiration (ET0) when making predictions. Several different
approaches have been successfully utilized to forecast ET0 for agricultural applications,
including probabilistic forecasting [11], numerical weather prediction [12,13], wavelet
regression models [14], and machine learning [15,16]. Additionally, ET0 forecasts can lead
to improved drought forecasts [17]. However, ET0 is typically modeled on large spatial
scales [18] that may not be useful for individual stakeholders. Furthermore, ET0 measures
potential atmospheric water demand, which varies greatly from ETa in water-stressed
environments. Hence, more localized forecasts of water losses through ETa are needed.
Here, we take the first step necessary for combining modeled ET0 with Landsat data to
provide ETa estimates at 30 m spatial resolution and sub-seasonal timescales.

This proof-of-concept paper uses synthetic Normalized Difference Vegetation Index
(NDVI) and thermal infrared Landsat data produced with the Continuous Change Detection
and Classification (CCDC) algorithm [19] to generate ETa estimates at a spatial resolution of
30 m on daily timestamps using the SSEBop algorithm. On a per-pixel basis, we use CCDC’s
harmonic fitting algorithm to calculate synthetic surface reflectance values and brightness
temperatures corresponding to Landsat overpasses at six target areas in the western United
States. These synthetic surface reflectance values and brightness temperatures are then
used to generate synthetic NDVI and land surface temperature (LST) data, which are
input into SSEBop to derive synthetic ETa estimates. The CCDC-derived ETa estimates
are validated against ETa estimates from Landsat data in six target areas, representing
croplands, forest, and shrublands in the western United States. The work presented in this
paper paves the way for using synthetic Landsat data to generate ETa estimates between
Landsat overpasses, thus allowing for daily ETa estimates from SSEBop and addressing the
limited temporal resolution offered by Landsat. Now that this paper validates the ability
of CCDC to generate accurate synthetic ETa estimates through SSEBop, future work can
focus on generating synthetic ETa estimates between Landsat overflies, with the goal of
extending CCDC into the future to generate sub-seasonal ETa forecasts.

2. Materials and Methods
2.1. Calculation of ETa Data from SSEBop

For this study, we used the most recent edition of SSEBop, which uses the Forcing and
Normalizing Operation (FANO) approach [20]. SSEBop was initially outlined by Senay
et al. [8] and uses the Surface Energy Balance Algorithm for Land [21] as its theoretical basis
to derive ETa by comparing the difference between hot and cold pixels in remotely sensed
surface temperatures [22]. The current FANO approach allows for the accurate derivation
of cold boundary (wet bulb) LST from Landsat data utilizing localized LST and NDVI
values [20]. From there, the evaporative fraction (ETf ) was calculated using Equation (1):

ETf = 1 − γs (Ts − Tc) (1)

where Ts is the observed satellite LST, Tc is the wet bulb surface temperature, and γs is
the surface psychrometric constant derived from ERA 5, or the fifth-generation ECMWF
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atmospheric reanalysis of the global climate [23]. The ETf is then multiplied by the alfalfa
reference evapotranspiration (ETr), as determined by gridMet [24], to obtain the actual
evapotranspiration (ETa; Equation (2)):

ETa = ETf × ETr (2)

The main advantage to SSEBop is that as a two-parameter model, it is easy to deploy
and less prone to uncertainties that could arise from a more complex model with additional
parameters. Additionally, an advantage of using this surface temperature gradient ap-
proach between hot and cold pixels in satellite images is that it does not require absolutely
accurate LST, but rather depends on the magnitude of the difference between hot and cold
pixels [22], as illustrated in Equation (1). Conversely, as a simple model, SSEBop does not
generate other components of the energy balance, such as the sensible and ground heat
fluxes. An additional drawback to SSEBop is the limited temporal resolution resulting from
Landsat’s 8- to 16-day repeat time and cloud cover [25]. Nonetheless, SSEBop has been
shown to provide accurate ETa estimates for irrigated crops in Brazil [26,27] and Egypt [28],
in addition to the continental United States [20,29,30].

Here, SSEBop was run on Landsat Collection 2 Level-2 [31], which corresponds to
six target areas in the western United States (discussed below). All Landsat scenes from
2019 for each of the six target areas were utilized to generate ETa estimates for comparison
to the synthetic ETa estimates produced in this study. Landsat scenes with greater than
70 percent cloud clover, as identified by the Landsat Level-2 QA pixel band, or that only
contained part of a target area, were excluded from this study. Additionally, this same
cloud mask was used to remove all corresponding cloud-contaminated pixels from the
synthetic datasets to avoid biasing the comparisons. These scenes were selected to provide
a good representation of water-limited areas in the western United States, where SSEBop is
widely used, while also providing a small enough sample size so that individual scenes
could be visualized and analyzed in detail.

2.2. Landsat and Synthetic CCDC Data

This study utilized Analysis Ready Data (ARD) from Landsat 8 [32]. Landsat ARD
incorporates several preprocessing techniques that standardize data across the Landsat
archive and allow for the scientific analysis of Landsat data. First, the ARD normalizes
top-of-atmosphere reflectance and brightness temperature values with respect to the cosine
of the zenith angle [33]. Additionally, atmospheric corrections for the ARD from Landsat 8
are implemented using the Landsat Surface Reflectance Code [34] and contain a QA band
that allows for the filtering of cloud-contaminated pixels [33]. Further, Landsat ARD data
follow the Committee on Earth Observation Satellites ARD surface reflectance Product
Family Specifications [35].

The initial input for the synthetic ETa was land cover data from the Land Change
Monitoring Assessment and Projection (LCMAP) project, which were derived from the
CCDC algorithm. LCMAP utilizes ARD [36] after cloud-contaminated pixels have been re-
moved using the Fmask algorithm [37,38]. To generate LCMAP data, CCDC fits a harmonic
model to each individual band in the Landsat ARD to generate per-pixel estimates [19].
The CCDC harmonic model (Equation (3)) can then be used to generate synthetic Landsat
images and predict surface reflectance for any given date [39].

Here, the harmonic models produced during the LCMAP Collection 1.2 run of CCDC
were used to generate synthetic Landsat data for six target areas (discussed below) on dates
corresponding to every Landsat flyover for each target area during 2019. On a per-pixel
basis, synthetic surface reflectance values and brightness temperatures were calculated
from CCDC using the full harmonic model shown in Equation (3) [39]:

ρ̂(i, x) f ull = a0,i + a1,icos( 2π
T x) + b1,isin( 2π

T x) + c1,ix + a2,icos( 4π
T x)+

b2,isin( 4π
T x) + a3,icos( 6π

T x) + b3,isin( 6π
T x)

(3)
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where,

x: Julian date
i: the ith Landsat band (i = 1, 2, 3, 4, 5, and 7)
T: number of days per year (T = 365.25)
a0,i: coefficient for overall value for the ith Landsat band
a1,i, b1,i: coefficients for intra-annual change for the ith Landsat band
c1,i: coefficient for inter-annual change (slope) for the ith Landsat band
a2,i, b2,i: coefficients for intra-annual bimodal change for the ith Landsat band
a3,i, b3,i: coefficients for intra-annual trimodal change for the ith Landsat band
ρ̂(i,x)full: predicted value for the ith Landsat band at Julian date x

Equation (3) was used to generate synthetic Landsat data in the thermal infrared,
near-infrared (NIR), green, and red bands, which are required for running SSEBop. These
pixel-level data were then assembled into raster stacks representing a time series of synthetic
data that correspond to the days of Landsat overpasses at each target area. The thermal
band was used to produce synthetic brightness temperatures, while the red and NIR bands
were used to produce NDVI: (NIR − Red)/(NIR + Red), and the green and NIR bands were
used to produce the Normalized Difference Water Index (NDWI): (Green − NIR)/(Green
+ NIR). A water mask was generated from the NDWI data for pixels with NDWI values
greater than 0.1. These synthetic datasets were then uploaded into Google Earth Engine for
integration into SSEBop model version 0.2.6 within Google Earth Engine [30]. Brightness
temperatures were converted to LST [22] and Tc using the FANO process [20]. SSEBop
was run on the resulting synthetic LST rasters with the NDWI and water masks used to
identify and model open water and wet areas to prevent those pixels from being included
in the Tc parameterization. Finally, the pixels of synthetic data that corresponded to cloud-
contaminated pixels in the Landsat data were masked out to allow for a direct one-to-one
comparison between the two datasets.

2.3. Site Selection and Study Areas

To determine how well synthetic data can be used to produce ETa estimates with
SSEBop, we selected six target areas in the western United States that represent economically
important land cover types of forests, irrigated croplands, and shrubland. The locations
of the six target areas and their associated ecoregions [40] are shown in Figure 1, and
the target areas themselves are depicted in Figure 2. For each target area, a 30-by-30 km
grid of 30 m synthetic data was generated for the thermal infrared, red, green, and NIR
bands required to generate the input rasters for SSEBop. For this proof-of-concept paper,
the small size of the target areas limited variations in land cover, allowing for a more
focused evaluation of Landsat and synthetic ETa estimates. Additionally, the target areas
were intentionally kept small to limit the computational resources needed for developing
multilayer synthetic datasets and to facilitate data transfers to Google Earth Engine for
SSEBop. For each target site, synthetic reflectance and thermal data were generated for
every day in 2019 that corresponded to Landsat flyover with less than 70% cloud cover. To
avoid uncertainties in the final year of the time series, the year 2019 was selected, because
LCMAP Collection 1.2 extends through 2020.

Individual target areas were selected in areas where SSEBop has been shown to per-
form well and validated against flux tower data [8,30], including the Central Valley of
California and the Colorado River Basin [29]. The land cover type in each target area was
determined using data from the USGS’s LCMAP database [41]. In the case of agricul-
tural areas, the United States Department of Agriculture’s (USDA) 2019 Crop Scape data
layer [42] was utilized to identify the crops growing in each target area. The first target
area is an almond plantation in the Central Valley of California (Kern County), just north-
west of Bakersville. In addition to almonds, small amounts of grapes, alfalfa, pistachios,
peanuts, and corn also fall within this Californian target area. The second target area is an
agricultural region in the lower Colorado River Basin, south of Phoenix, Arizona (Pinal
County), and it is composed mainly of alfalfa, cotton, and corn, surrounded by desert
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shrubland. The third target area is in the upper Colorado River basin in southwestern
Colorado (Dolores County), and it consists almost entirely of evergreen forests. The fourth
target area is northeast of Eugene, Oregon (Linn County), and it consists almost entirely of
evergreen forests. The fifth target area consists mostly of shrubland and a small amount of
evergreen forest in the Santa Anna Pueblo Forest, just north of Albuquerque, New Mexico
(Sandoval County), and it encompasses a small stretch of the Rio Grande River. The sixth
and final target area is in the southwestern corner of Idaho (Owyhee County) and consists
entirely of shrublands. The county-wide average temperatures and total precipitation for
2019 at each target area are presented in Table 1.
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(accessed on 23 February 2024).

Table 1. The county-wide mean temperatures for 2019, along with the mean annual temperature
for the 1901–2000 period and the 2019 total precipitation for the six target areas. The 1901–2000
mean precipitation is the average of the yearly total precipitation amounts for 1901–2000. Cli-
mate data were courtesy of NOAA National Centers for Environmental information, Climate at
a Glance: County Rankings, from: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-
glance/county/rankings (accessed on 6 March 2024).

Target Area County 2019 Mean
Temp

1901–2000
Mean Temp

2019 Total
Precip

1901–2000
Mean Precip

Arizona Pinal County 20.5 ◦C 19.8 ◦C 391.16 mm 318.01 mm
California Kern County 16.5 ◦C 15.8 ◦C 338.33 mm 229.87 mm
Colorado Dolores County 6.1 ◦C 5.4 ◦C 618.49 mm 593.09 mm
Oregon Linn County 9.4 ◦C 9.2 ◦C 1420.11 mm 1763.78 mm
Idaho Owyhee County 8.3 ◦C 8.2 ◦C 367.03 mm 319.02 mm

New Mexico Sandoval County 10.1 ◦C 9.6 ◦C 303.53 mm 340.11 mm

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/rankings
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/rankings
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Figure 2. Red, green, and blue composite Landsat images of the six target areas. The Arizona target
area (a) consists of irrigated croplands and desert. The California target area (b) consist mostly of
irrigated almond plantations. Both the Colorado (c) and Oregon (d) target areas are largely forested.
Then, both the Idaho (e) and New Mexico (f) target areas are shrubland.

3. Results
3.1. Land Surface Temperature

The first check on the synthetic data was an examination of how well they reproduce
LST in comparison to observed LST from Landsat. Target-area-wide spatial averages of
synthetic LST and observed LST are shown in Figure 3. The synthetic LSTs followed the
general annual cycle in surface temperatures observed for 2019 for the four southernmost
target areas in Arizona, California, Colorado, and New Mexico. However, the synthetic
LSTs underestimated the average maximum summer temperatures for each target area
and overestimated the average winter and spring surface temperatures in the Arizona and
Colorado target areas. This general estimation of summertime LST stems from the lasso
regression algorithm [43] used by CCDC that smooths under the summertime peaks in
the observed Landsat surface brightness temperatures used to generate the synthetic LST
estimates. Then, as expected, the synthetic LST did not capture temperature variations in
relation to weather. For the Idaho and Oregon target areas, the synthetic LST did not fully
capture the seasonal cycles observed in the Landsat data; however, this did not negatively
affect the ETf and ETa estimates (discussed below).

Per-pixel comparisons between the annual averages for the six target areas (Figure 4)
and their differences between their overall means (Table 2) showed that synthetic LST
generally underestimated the observed LST from Landsat data. This underestimate in
the synthetic LST was particularly evident in the California, New Mexico, and Oregon
target areas. The Arizona target area showed two clear signals for each of its land cover
types. The cropland in Arizona followed the typical trend of the synthetic LST data
underestimating the observed LST, whereas it overestimated LST in the surrounding desert
regions. Generally, for the Colorado target area, the synthetic LST closely matched the
observed LST. However, on the eastern edge of the forested Colorado target area are two
regions of dense forest, where the synthetic LST overestimated the observed LST, resulting
in the cluster of outliers shown in Figure 4. Idaho stood out as being the only target area
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where the synthetic LST overestimated the observed LST. However, because ETf estimation
depends on the difference between Ts and Tc (Equation (1)) and that exact LST, CCDC was
still able to produce reliable ETf estimates (discussed below). The root mean squared errors
(RMSE) between the CCDC and Landsat 2019 average LSTs are shown in Table 3.
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Figure 3. Target-area-wide averages of the Landsat (purple) and synthetic (cyan) land surface
temperature (LST) estimates for 2019. The yellow difference line represents the Landsat data minus
the synthetic data at each timestep. Note that the gaps in both the Landsat and synthetic data were
the result of applying the same Landsat cloud mask to both datasets.

Table 2. The differences between the 2019 target-area-wide averages in the synthetic Continuous
Change Detection and Classification (CCDC) data and the Landsat observations for the land surface
temperature (LST), evaporative fraction (ETf ), and actual evapotranspiration (ETa) at each target area.

2019 Target Area Wide Average Differences

Study Area LST (◦C) ETf ETa (mm/day)

Arizona −1.10 0.00 0.01
California −1.61 −0.02 −0.13
Colorado 0.11 −0.05 −0.30
Oregon −2.70 −0.05 −0.25
Idaho 9.87 −0.03 −0.18

New Mexico −2.16 −0.04 −0.32

Table 3. Root mean squared error (RMSE) between the synthetic Continuous Change Detection
and Classification (CCDC) data and Landsat observations for the 2019 averages of land surface
temperature (LST), evaporative fraction (ETf ), and actual evapotranspiration (ETa).

RMSE Error for the 2019 Averages

Study Area LST (◦C) ETf ETa mm/day

Arizona 3.18 0.09 0.68
California 2.32 0.10 0.60
Colorado 1.95 0.09 0.53
Oregon 3.07 0.08 0.39
Idaho 9.98 0.07 0.33

New Mexico 2.57 0.07 0.48
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Arizona −1.10 0.00 0.01 
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Colorado 0.11 −0.05 −0.30 
Oregon −2.70 −0.05 −0.25 
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Table 3. Root mean squared error (RMSE) between the synthetic Continuous Change Detection and 
Classification (CCDC) data and Landsat observations for the 2019 averages of land surface temper-
ature (LST), evaporative fraction (ETf), and actual evapotranspiration (ETa). 

RMSE Error for the 2019 Averages 
Study Area LST (°C) ETf ETa mm/day 

Arizona 3.18 0.09 0.68 
California 2.32 0.10 0.60 
Colorado 1.95 0.09 0.53 
Oregon 3.07 0.08 0.39 
Idaho 9.98 0.07 0.33 

New Mexico 2.57 0.07 0.48 

Figure 4. Heat plots of synthetic land surface temperature (LST), derived from Continuous Change
Detection and Classification (CCDC) and Landsat LST estimations for 2019, showing a per-pixel
comparison for each target area. The blue 1:1 line represents the hypothetical perfect fit between
observed LST and synthetic LST. Note the logarithmic scale, with purple indicating high pixel counts
and orange indicating low pixel counts. Linear regression results are indicated by the R2 values and
are significant at p < 0.001.

3.2. Evapotranspiration Fraction

The calculation of ETf (Equation (1)) normalizes the LST data into a unitless metric,
leading to a much closer match between the synthetic data and those of the observations
from Landsat, and minimizes the effects of weather. The synthetic ETf generally matched
the annual cycles across 2019 (Figure 5) and only slightly underestimated the ETf from
Landsat, particularly for the summer months. Even at the Idaho target area, where the
synthetic LST estimates did not closely match the observed LST, the synthetic ETf closely
matched the Landsat ETf observations. At the forested target area in Oregon, in addition
to underestimating the observed ETf there were also variations in the synthetic ETf that
were not apparent in the observed ETf as the result of noise in the synthetic LST data
(Figure 3). These underestimates in ETf appeared due to the steeper regression slope in
the inverse relationship between the synthetic LST and NDVI data than was apparent in
the observations, leading to an underestimation of Tc (Equation (1)) in the synthetic data
through the FANO approach [20].

Target-area-wide averages of ETf for 2019 (Figure 6) also showed that synthetic data
can produce reasonable ETf estimates and minimize the differences between annual aver-
ages of the synthetic data and Landsat observations (Table 2). As shown in Figure 6, the
synthetic ETf more closely matched the Landsat observations along the 1:1 line for the
New Mexico and California target areas than it did for LST. For the forested Oregon target
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area, the synthetic ETf underestimated the Landsat observations while closely matching
the observed ETf in the Colorado target area. In the Idaho target area, the bulk of the
observations followed the 1:1 line; however, there were a considerable number of outliers
where the synthetic ETf overestimated the Landsat observations. These outliers appeared
to be associated with the steep terrain surrounding the rivers in the Idaho target area. The
Arizona target area showed a good fit between the synthetic ETf and Landsat observations
for the croplands and an overestimation for the desert regions within the target area. Finally,
the magnitude of the RMSE between the synthetic ETf and observed ETf (Table 3) was
considerably smaller than that for the LST, indicating that the synthetic ETf estimates were
a much better match to the Landsat estimates than LST.
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Figure 5. Target-area-wide averages of the Landsat (purple) and synthetic (cyan) evaporative fraction
(ETf ) estimates for 2019. The yellow difference line represents the Landsat data minus the synthetic
data at each timestep. Note that the gaps in both the Landsat and synthetic data were the result of
applying the same Landsat cloud mask to both datasets.

3.3. Actual Evapotranspiration

Side-by-side comparisons of synthetic ETa and observed ETa estimates from Landsat
(Figure 7) showed that the synthetically derived data can accurately depict regions of high
and low ETa. However, as was the case with LST and ETf, the synthetic ETa typically
underestimated the observed ETa. The one exception to this general underestimation by
the synthetic ETa data occurred in the desert areas of the Arizona target area, where the syn-
thetic ETa overestimated the observed ETa (Figure 7 and Table 2), while still underestimating
ETa in the agricultural areas.



Remote Sens. 2024, 16, 1297 10 of 17Remote Sens. 2024, 16, 1297 10 of 18 
 

 

 
Figure 6. Heat plots of synthetic evaporative fraction (ETf), derived from Continuous Change De-
tection and Classification (CCDC) and Landsat ETf estimations for 2019, showing a per-pixel com-
parison for each target area. The blue 1:1 line represents the hypothetical perfect fit between ob-
served ETf and synthetic ETf. Note the logarithmic scale, with green indicating high pixel counts 
and brown indicating low pixel counts. Linear regression results are indicated by the R2 values and 
are significant at p < 0.001. 

3.3. Actual Evapotranspiration 
Side-by-side comparisons of synthetic ETa and observed ETa estimates from Landsat 

(Figure 7) showed that the synthetically derived data can accurately depict regions of high 
and low ETa. However, as was the case with LST and ETf, the synthetic ETa typically un-
derestimated the observed ETa. The one exception to this general underestimation by the 
synthetic ETa data occurred in the desert areas of the Arizona target area, where the syn-
thetic ETa overestimated the observed ETa (Figure 7 and Table 2), while still underestimat-
ing ETa in the agricultural areas. 
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are significant at p < 0.001.
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(bottom) data are from an overpass on 30 June 2019. The location of each target area is indicated by
the plus sign in the bottom left corner.
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Time series of target area averages (Figure 8) of synthetic and Landsat-derived ETa
showed that the synthetic ETa from CCDC accurately depicted seasonal cycles at all six
target areas. Additionally, because the ETf was multiplied by gridMet reference evap-
otranspiration (Equation (2)), the synthetic ETa depicted variations due to weather that
were present in the Landsat ETa estimates. However, the synthetic ETa generally under-
estimated the observed ETa during June, July, and August, with the greatest differences
in the Idaho and New Mexico target areas. The forested Colorado target area showed an
underestimation by the synthetic ETa in the winter months at the start of 2019, likely the
result of winter snow cover. The cropland target areas of California and Arizona showed
the closest matches between the synthetic ETa and Landsat observations. The synthetic ETa
for the forested Oregon target area closely matched the Landsat-derived ETa, unlike the
evaporative fraction, due to the ETr values from gridMet.
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Figure 8. Target-area-wide averages of the Landsat (purple) and synthetic (cyan) actual evapotran-
spiration (ETa) estimates for 2019. The yellow difference line represents the Landsat data minus the
synthetic data at each timestep. Note that the gaps in both the Landsat and synthetic data were the
result of applying the same Landsat cloud mask to both datasets.

At the annual timescale, the 2019 averages of synthetic ETa generally matched those of
the observed ETa (Figure 9); however, there was a slight underestimate by the synthetic ETa
(Table 2). The synthetic ETa data performed best for the agricultural regions in the California
and Arizona target areas. The synthetic ETa slightly underestimated the observed ETa for
the shrubland target areas of Idaho and New Mexico. The underestimation of synthetic
ETa was most apparent in the forested target area in Colorado and shrubland target area
in New Mexico (Table 2). Finally, the overestimation by the synthetic ETa in the Arizona
desert region can be seen in the lower left of the Arizona panel in Figure 9, based on the
data averaged across all of 2019.
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Figure 9. Heat plots of synthetic actual evapotranspiration (ETa), derived from Continuous Change
Detection and Classification (CCDC), and Landsat ETa estimations for 2019, showing a per-pixel
comparison for each target area. The blue 1:1 line represents the hypothetical perfect fit between
observed ETa and synthetic ETa. Note the logarithmic scale, with green indicating high pixel counts
and purple indicating low pixel counts. Linear regression results are indicated by the R2 values and
are significant at p < 0.001.

4. Discussion

Synthetic LST and NDVI values from CCDC led to reasonable synthetic ETa estimates
at all six target areas for the non-cloud-contaminated pixels. Although CCDC can produce
synthetic land cover data for cloud-contaminated pixels, the derived LST and ETa estimates
were unreliable. Clouds decreased both LST and ETa by blocking incoming solar radiation
and reducing net radiation. The CCDC algorithm does not account for the influence of
clouds on net radiation. Thus, we elected to mask out the cloud-contaminated pixels in
the synthetic datasets, as indicated by the data gaps in Figures 3, 5 and 8, to focus on the
reliable cloud-free data.

These synthetic ETa estimates were more accurate than their corresponding synthetic
LST estimates because SSEBop depends on the magnitude of the difference between the hot
and cold pixels in each target area to calculate the ETf (Equation (1)) and not the absolute
LST values. Additionally, Equation (1) normalized the synthetic LST data and Landsat LST
data into the ETf, which ranges from 0 to 1, and further minimized the differences between
the synthetic and Landsat data, as indicated by the decrease in RMSE between LST and
ETf (Table 3). The accurate synthetic ETf data then led to accurate synthetic ETa estimates
when multiplied by the reference evapotranspiration from gridMet (Equation (2)).

At sufficiently large temporal and spatial scales, differences between the average
synthetic ETa and average Landsat ETa estimates were less than 1 mm/day. Although
accurate at large spatial and temporal scales, these synthetic ETa estimates should not be
used for daily weather forecasting or at small spatial scales for individual agricultural
fields. The harmonic regression used by CCDC does not capture the variations in ETa
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that result from irrigation (Figure 10). At both the California and Arizona cropland target
areas, irrigation of individual fields shortly before the Landsat flyover resulted in lower
LST values, which led to an increase in ETa that was not depicted in the synthetic LST or
ETa data. Similarly, fields that were not recently irrigated exhibited higher LSTs and lower
ETa values than those predicted by the synthetic datasets from CCDC. However, these
spatial variations from irrigation can be averaged across the entire 900 km2 target area
(Figure 8) to produce phenologically accurate ETa estimates across the entire year (Figure 9).
Additionally, annual averages of the synthetic ETa data produced spatially consistent
ETa estimates (Figure 7). The spatial anomalies between the synthetic ETa estimates and
observed ETa were less apparent in the shrubland and forest land cover types than in
the croplands, as no irrigation occurred in shrubland and forest land. Additionally, the
accuracy of the synthetic ETa data had a seasonal component. Across all six target areas,
the synthetic ETa values most closely matched the Landsat ETa estimates during the spring
and fall, while peak ETa was underestimated during the summer months.
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Figure 10. Actual evapotranspiration (ETa) bias map showing the synthetic ETa estimates minus
the Landsat ETa estimates for 21 July 2019, showing the large amount of spatial variation due to
irrigation. The synthetic data underestimated ETa for fields that had recently been irrigated, and high
ETa in the Landsat data (blue) and overestimated ETa (red) in agricultural fields that had not been
irrigated recently.

Future work could focus on improving the harmonic CCDC model used for producing
synthetic LST and NDVI data to better match summertime Landsat observations before
eventually testing its ability to make sub-seasonal ETa forecasts. More accurate synthetic
LST and NDVI data may result in a regression line that more closely resembles that in the
observed data and allow for more accurate synthetic ETf estimates through FANO [20],
ultimately leading to more accurate synthetic ETa data. To improve the accuracy of the
synthetic summer and winter time LST and NDVI values, the synthetic harmonic regression
could be rerun with an improved fitting algorithm that better captures the seasonal peaks
and troughs in the Landsat data. Another modeling approach that could be applied to
improve the synthetic ETa data is to begin with the minimum and maximum values as fixed
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parameters, and then estimate the sub-annual changes as damped oscillations between
these extrema [44]. Rerunning the harmonic regression on a shorter timeframe, as opposed
to the LCMAP study period, may improve its ability to capture peak summertime values
and thus eliminate the underestimation of summer ETa. Another approach that could
improve CCDC’s ability to generate accurate synthetic data for SSEBop would be to run
the harmonic regression on Landsat-derived LST data [45] to generate synthetic LST, as
opposed to using the synthetic surface brightness temperatures to generate the synthetic
LST values required for SSEBop.

It is important to note that this research has identified several potential problems that
may arise when transitioning to an operations setting, in which a continuous stream of
ETa estimates is provided to end users. One large issue is related to systematic bias in Ts,
Tc, ETf, and/or ETa. In addition to potential improvements in the CCDC algorithm, as
discussed above, future research could also explore more detailed, long-period (1980s to
present) ETa estimates for a few key sites. A deeper historical record could enable more
detailed evaluation of the causes of biases. The other main issue that has been raised in
this paper is the potential for very large ETa errors when there is a mis-match between
the irrigation status of farmland. To potentially address this issue, future research could
explore the possibility of dynamically updating the CCDC data to more closely represent
current conditions.

The work presented here illustrates the ability of synthetic land cover data from CCDC
to generate accurate ETa estimates, paving the way for new approaches to generate near-
term ETa forecasts. Once the fitting algorithm has been improved, the harmonic regression
model can be used to generate synthetic land surface data to produce SSEBop-derived ETa
estimates between Landsat overpasses and validated against flux tower observations. An
immediate application of the improved synthetic ETa estimates would be to combine them
with real data to investigate irrigation practices in arid regions, because subtracting the
real data from the synthetic data clearly highlights irrigation patterns (Figure 10). Then,
to make sub-seasonal ETa predictions, the harmonic regression model could be combined
with meteorological imputes from the Parameter-elevation Regressions on Independent
Slopes Model (PRISM) [46] and extended six weeks into the future with a machine learning
approach. Combining the improved harmonic regression model for detecting land change
along with PRISM data through a machine learning approach may lead to high-quality
land cover predictions that could ultimately result in quality ETa forecasts when coupled
with SSEBop.

5. Conclusions

In conclusion, this study used CCDC data to generate synthetic Landsat data that were
then used to initialize SSEBop. The CCDC-derived synthetic ETa estimates were validated
against Landsat estimates at six target areas in the western United States, representing
forests, croplands, and shrubland land cover types. Synthetic ETf estimates provided much
closer matches to the Landsat data than those observed in LST because the ETf estimations
depend on the relative distributions in LST rather than the absolute magnitude in LST,
which substantially enhances performance. The synthetic ETa accurately depicted regions
of high and low evapotranspiration and seasonal variations in ETa. However, the synthetic
ETa typically underestimated peak summer ETa, while providing a much closer match
to the Landsat ETa estimates in fall and spring. Additionally, the synthetic ETa does not
reflect ETa variations due to changing irrigation practices from irrigation in agricultural
areas. Future work could focus improving the harmonic fitting algorithm to better capture
summertime ETa values and combine CCDC with meteorological data through machine
learning to provide enhanced projections of ETa. Using CCDC to generate ETa forecasts
may allow for enhanced drought prediction, allowing stakeholders and decision-makers
to make more informed water management decisions in the increasingly water-stressed
western United States.
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