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Abstract: In this paper, we propose an innovative approach for transforming 2D human pose
estimation into 3D models using Single Input–Single Output (SISO) Ultra-Wideband (UWB) radar
technology. This method addresses the significant challenge of reconstructing 3D human poses
from 1D radar signals, a task traditionally hindered by low spatial resolution and complex inverse
problems. The difficulty is further exacerbated by the ambiguity in 3D pose reconstruction, as
multiple 3D poses may correspond to similar 2D projections. Our solution, termed the Radar
PoseLifter network, leverages the micro-Doppler signatures inherent in 1D radar echoes to effectively
convert 2D pose information into 3D structures. The network is specifically designed to handle
the long-range dependencies present in sequences of 2D poses. It employs a fully convolutional
architecture, enhanced with a dilated temporal convolutions network, for efficient data processing.
We rigorously evaluated the Radar PoseLifter network using the HPSUR dataset, which includes a
diverse range of human movements. This dataset comprises data from five individuals with varying
physical characteristics, performing a variety of actions. Our experimental results demonstrate the
method’s robustness and accuracy in estimating complex human poses, highlighting its effectiveness.
This research contributes significantly to the advancement of human motion capture using radar
technology. It presents a viable solution for applications where precision and reliability in motion
capture are paramount. The study not only enhances the understanding of 3D pose estimation from
radar data but also opens new avenues for practical applications in various fields.

Keywords: 3D human pose estimation; Micro Doppler; Radar PoseLifter; dilated temporal convolu-
tions network; SISO UWB radar

1. Introduction

With the rapidly evolving field of urban wireless sensing, significant strides have
been made, particularly in complex cityscapes. These intelligent systems are designed
to interpret human behavior using pervasive wireless signals, playing a crucial role in
understanding the pedestrian dynamics essential for autonomous and semi-autonomous
vehicle operations. These advancements are not only pivotal in vehicular contexts but
also hold immense potential in healthcare applications, notably in aiding the disabled and
elderly [1].

Within the urban sensing domain, estimating human poses is critical for discerning
intentions and actions, an essential aspect of environmental perception in urban settings [2].
This area is becoming increasingly relevant in indoor, human-focused environments, where
the goal is to determine human postures through various sensor inputs. Human pose
capture, a cornerstone of human–computer interaction, has been challenging [3]. The
emphasis is primarily on identifying and classifying different body parts, such as ankles,
shoulders, and wrists. While camera-based systems have seen success in human pose
estimation [4–7], privacy concerns are a significant hurdle. The omnipresence of video
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surveillance can be intrusive, and the vulnerability of millions of wireless security cam-
eras to hacking globally is a concern. In response, wireless sensing systems emerge as a
privacy-preserving alternative, showing resilience against factors like clothing, background,
lighting, and occlusion [8].

WiFi-based human sensing presents a promising solution to privacy concerns. Com-
mercial WiFi devices, functioning as RF sensors in the 2.4 GHz and 5 GHz bands [9,10], offer
a less intrusive means of monitoring. By utilizing WiFi signals, this technology bypasses
the need for visual surveillance, thereby protecting individual privacy. In ref. [9], deep
learning techniques applied to WiFi signals have shown potential for end-to-end human
pose estimation. Following this, Wi-Mose [10] introduced a method to extract pose-related
features from WiFi signals, translating them into human poses.

Despite these advances, WiFi-based sensing systems have limitations, primarily due
to the coarse resolution offered by the bandwidths (20 MHz and 40 MHz) used in standard
WiFi protocols. This limitation hampers the ability to accurately capture fine-grained
human poses. Moreover, WiFi signals are prone to interference from environmental factors,
which can significantly affect the reliability of pose estimations in urban settings.

In light of these challenges, the focus has increasingly shifted towards radar-based
intelligent wireless sensing systems. Radar technology, with its ability to penetrate through
obstacles and low sensitivity to environmental variables, offers a robust alternative for
urban sensing. These systems can detect human pose, body shape, and activities even
through walls and in poorly lit settings. Skeletal estimation utilizing radar devices rep-
resents a burgeoning area of research. Radar-based devices can be broadly categorized
into two groups: high-frequency radars, such as millimeter-wave (mmWave) or terahertz
radars [1,3,11–17], and lower frequency radars, operating around a few GHz [18–24].
High-frequency radar signals, with their shorter wavelengths, provide greater precision
in posture capture but lack the ability to penetrate walls and furniture. Studies [1,12,13]
have leveraged mmWave radar’s reflection signals, combined with convolutional neural
networks, to estimate the positions of distinct joints in the human body. Chen et al. [11] inno-
vated a domain discriminator that filters user-specific characteristics from mmWave signals,
enabling robust skeleton reconstruction across different users with minimal training effort.
Dahnoun et al. [16] designed a novel neural network model for human posture estimation
based on point cloud data, comprising a part detector for initial keypoint positioning and
a spatial model that refines these estimates by learning joint relationships. Conversely,
low-frequency radar offers several benefits: it can penetrate walls and obstructions, func-
tion effectively in both daylight and darkness, and is inherently more privacy-preserving
due to its non-interpretability by humans. Pioneering work by MIT researchers [18–20]
introduced a neural network system that interprets radar signals for 2D human pose and
dynamic 3D human mesh estimation. Jin et al. [21] developed a novel through-wall 3D
pose reconstruction framework using UWB MIMO radar and 3D CNNs for concealed
target detection. Fang et al. [22] proposed a cross-modal CNN-based method for postural
reconstruction in Through the Wall Radar Imaging (TWRI). Then, they proposed a pose
estimation framework (Hourglass) and a semantic segmentation framework (UNet) to
serve as the teacher network to convert the RGB images into the pose keypoints and the
shape masks [23]. Choi et al. [24] introduced the 3D-TransPose algorithm for 3D human
pose estimation, leveraging an attention mechanism to focus on relevant time periods
in time-domain IR-UWB radar signals. Nevertheless, these approaches rely on MIMO
radar imaging, and the quality of radar imaging can be significantly impacted by the
changes in the surrounding environment and the relative distance between the human
target and the radar. Therefore, we use SISO UWB radar to capture human poses based on
the micro-Doppler signature, which is not susceptible to the human target and environment.
However, reconstructing fine-grained human skeletal spatial information from the 1D radar
echo with low spatial resolution is a severely ill-posed problem.

Numerous studies have demonstrated that the Micro-Doppler (MD) signatures are
resilient to variations in the human target and environment, offering subject-independent
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and environment-independent features. He et al. [25] propose a multiscale residual at-
tention network (MRA-Net) for joint activity recognition and person identification with
radar micro-Doppler signatures. Kim et al. [26] apply deep convolutional neural net-
works directly to a raw micro-Doppler spectrogram for both human detection and activity
classification problems. The frequency shifts in different body parts, as captured in MD
spectrograms, provide a comprehensive perception of human movements. The dynamic
motion of human body parts, such as the torso, arms, legs, hands, and feet, results in
distinct MD signatures that can be visually differentiated from one another.

To address these challenges, we formulate a two-step approach to realize 3D human
pose estimation. Initially, we employ the Swin Transformer (MDST) network to estimate
2D human poses based on micro-Doppler signatures. Subsequently, we introduce the
innovative Radar PoseLifter network, designed to elevate 2D human poses to 3D using
SISO UWB radar. In summary, our contributions can be succinctly summarized as follows.

(1) We propose the Radar PoseLifter network, a fully convolutional-based architecture
with dilated temporal convolutions for 3D human pose estimation based on SISO UWB
radar, which is simple and efficient, to lift 2D human joints to 3D poses.

(2) To learn inherently enforces long-range dependencies, and the external knowledge
information of the human target is injected into the Radar PoseLifter network. This addition
enhances the network’s capability to discern and accurately estimate intricate human poses.

(3) Numerous experiments are carried out to verify the effectiveness and robust-
ness of the proposed method, which is conducted across four distinct human motions,
demonstrating our approach’s broad applicability and reliability in accurately estimating
human poses.

The remainder of this paper is structured as follows: Section 2 outlines the theoretical
framework, encompassing the geometric modeling of human targets and radar systems, the
structural information inherent in human models, and the Micro Doppler characteristics
of human posture. Section 3 is dedicated to introducing the architecture of the proposed
radar poselifter network. Section 4 presents both quantitative and qualitative assessments
of the proposed method, utilizing the HPSUR dataset. Finally, a discussion and conclusion
are presented in Section 5 and Section 6, respectively.

2. Theory

The geometric relationship between the transmitting and receiving antennas of the
SISO UWB radar is shown in Figure 1. The geometric motion relationship between the
radar and moving human targets is shown in Figure 2. The coordinate system (U, V, W) is
the global coordinate system, Tx is the position of the radar transmitting antenna, and Rx is
the position of the radar receiving antenna, where Tx = (0, 0, 0)T and Rx = (u1, v1, w1)

T .
The reference coordinate system is (X, Y, Z) parallel to the global coordinate system, and
the origin of the coordinate is Tx. The target coordinate system is (x, y, z), and the origin is
O as is the reference coordinate system. The initial position vector of the origin O in the
global coordinate system is Ro = (Uo, Vo, Wo)

T and the initial azimuth angle and elevation
angle are defined as α, β, respectively. Furthermore, the radial unit vector extending from
the radar towards the target is defined as:

n = Ro/∥Ro∥ = (cos α cos β, sin α cos β, sin β)T (1)

Assume that the position of the left foot bone of the moving human target at the initial
time t = 0 is designed as J1, and the position vector in the global coordinate system is
ro = (Xo, Yo, Zo)

T. During the observed period, point J1 undergoes four simultaneous
movements characterized by their distinct kinematic properties.

(1) The skeleton translates with speed v in the radar coordinate system;
(2) The skeleton accelerates with acceleration a;
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(3) The skeleton vibrates sinusoidally with frequency fv and amplitude Dv. The
azimuth angle and pitch angle are αp, βp, respectively, and the unit vector of the vibration

direction is nv =
(
cos αp cos βp, sin αp cos βp, sin βp

)T ;
(4) The skeleton rotates in the reference coordinate system with an angular velocity of

ω = (ωX , ωV , ωZ)
T . At time t, the J1 skeleton point moves to the new position J′′1 .

Figure 1. Configuration of SISO UWB bistatic radar for human pose estimation showing the relative
positioning of the transmit and receive antennas, along with the azimuth and elevation angles to the
moving human target.

Figure 2. The geometric relationship between human motion model and radar.

Then, the distance from the radar transmitting antenna to joint J′′′1 at time t is:

Rtx(t) = TxJ1 = Ro + ro + J1 J′′1 + J′′1 J′′′1 + J′′′1 J′1
= R0 + r0 + V t + 1/2at2 + Rot(t) · O′ J′′1 + Dv sin(2π fvt) · nv

= R0 + r0 + V t + 1/2at2 + Rot(t) · r0 + Dv sin(2π fvt) · nv

(2)
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Then, the distance from the radar receiving antenna to joint J′′′1 at time t is:

RRx(t) = RxJ1 = Rx + Ro + ro + J1 J′′1 + J′′1 J′′′1 + J′′′1 J′1
= Rx + Ro + ro + V t + 1/2at2 + Rot(t) · O′ J′′1 + Dv sin(2π fvt) · nv

= Rx + R0 + r0 + V t + 1/2at2 + Rot(t) · r0 + Dv sin(2π fvt) · nv

(3)

The sum of the distances from the joint point J1 to the transmitting antenna and the
receiving antenna at moment t is:

R(t) = Rtx(t) + RRx(t) (4)

Then, the distance from the radar to the J′1 joint at moment t is:

R(t) = ∥R(t)∥ = ∥Rtx(t)∥+ ∥RR(t)∥

=
∥∥∥Ro + ro + V t + 1/2at2 + Rot(t) · ro + Dv sin(2π fvt) · nv

∥∥∥
+

∥∥∥Rx + R0 + r0 + V t + 1/2at2 + Rot(t) · r0 + Dv sin(2π fvt) · nv

∥∥∥
(5)

where ω′ = ω
∥ω∥ =

(
ω′

X , ω′
Y, ω′

Z
)T, Ω = ∥ω∥, ω̂ =

 0 −ωZ ωY
ωZ 0 −ωX
−ωY ωX 0

,

ω̂ =

 0 −ω′
Z ω′

Y
ω′

Z 0 −ω′
X

−ω′
Y ω′

X 0

; the rotation matrix Rot(t) can be expressed as:

Rot(t) = I + ω̂ sin(Ωt) + ω̂2(1 − cos(Ωt)) = exp(ω̂t) (6)

The baseband signal of the radar echo can be expressed as:

s(t) = ρ(x, y, z) exp
{

j2π f
R(t)

c

}
= ρ(x, y, z) exp{jΦ(R(t))} (7)

where Φ(R(t)) = 2π f R(t)
c

Derivation of the phase function Φ(R(t)) yields the Doppler frequency of the echo fd.

fd =
1

2π

dΦ(R(t))
dt

=
f
c

dR(t)
dt

=
f
c

d(Rtx(t) + RRx(t))
dt

=
2 f
c

VT · np′ +
2 f
c

(
aT · np′

)
t +

2 f
c

d
dt

(Rot(t) · r0)
T · np′ +

4 f
c

π fvDv cos(2π fvt) · nT
v · np′

(8)

Noting r = Rot(t) · r0, combining ω × r = ω̂ · r and d
dt(Rot(t)) = d

dt(exp(ω̂t)) = ω̂ ·
exp(ω̂t), the above equation can be expressed in the following form:

fd =
2 f
c

VT · np′ +
2 f
c

(
aT · np′

)
t +

2 f
c
(ω × r)T · np′ +

4 f
c

π fv′ Dv cos(2π fvt) · nT
v · np′ (9)

When n = R0/∥R0∥ is used as an approximation instead of np′ , the above equation
can be written in the following form:

fd =
2 f
c

VT · n +
2 f
c

(
aT · n

)
t +

2 f
c
(ω × r)T · n +

4 f
c

π fvDv cos(2π fvt) · nT
v · n (10)

The human left ankle joint’s micro-Doppler is:

fm−d =
2 f
c

(
aT · n

)
t +

2 f
c
(ω × r)T · n +

4 f
c

π fvDv cos(2π fvt) · nT
v · n (11)
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However, only the modulation characteristics of human motion frequency caused
by acceleration and vibration can be seen from the above formula. In order to better
understand the modulation characteristics of rotating motion on frequency, the relevant
parameters of the moving human target are set in the target coordinate system. Suppose
at time t = 0, the position vector of the joint point J1 of the human target in the target
coordinate system is r0 = (x0, y0, z0)

T and rotates in the target coordinate system with the
angular velocity ωl =

(
ωx, ωy, ωz

)T; (ϕ, θ, ψ) represents the initial Euler angles.The initial
rotation matrix is represented by Rinit:

Rinit =

 cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (12)

Noting ω′
l = Rinit ·ωl

∥ωl∥
=

(
ω′

x, ω′
y, ω′

z

)T
, Ωl = ∥ωl∥, ω̂l =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

,

ω̂l =

 0 −ω′
x ω′

y
ω′

z 0 −ω′
x

−ω′
y ω′

x 0

, the rotation matrix is still represented by Rot(t):

R(t) = ∥R(t)∥ = ∥Rtx(t)∥+ ∥RRx(t)∥
= ∥Ro + ro + V t + 1/2at2 + Rot(t) · Rinit · ro + Dv sin(2π fvt) · nv∥
+ ∥Rx + Ro + ro + V t + 1/2at2 + Rot(t) · Rinit · ro + Dv sin(2π fvt) · nv∥

(13)

Derivation of the phase function yields the Doppler frequency fd of the echo:

fd =
1

2π

dΦ(R(t))
dt

=
f
c

dR(t)
dt

=
f
c

d(Rtx(t) + RRx(t))
dt

=
2 f
c

VT · np′ +
2 f
c

(
aT · np′

)
t +

2 f
c

d
dt

(Rot(t) · Rinit · r0)
T

· np′ +
4 f
c

π fvDv cos(2π fvt) · nv
T · np′

(14)

Noting r = Rot(t) · R · r0, with n = R0/∥R0∥ to approximate instead of np′ , at this
time of human movement target joint of micro-Doppler fm−d as follows:

fm−d =
2 f
c

(
aT · n

)
t +

2 f
c
(
Ωlω

′
l × r

)T · n +
4 f π fvDv

c
cos(2π fvt) · nT

v · n

=
2 f
c

(
aT · n

)
t +

2 f
c
(Ωlω̂l · R ◦ t(t) · Rinit · r0)

T · n +
4 f π fvDv

c
cos(2π fvt) · nT

v · n

=
2 f
c

(
aT · n

)
t +

2 f
c

(
Ωl

[
ω̂2

l sin(Ωlt)− ω̂3
l cos(Ωlt) + ω̂l

(
I + ω̂2

l

)]
Rinit · r0

)T

· n +
4 f π fvDv

r
cos(2π fvt) · nT

v · n

(15)

The formula presented above indicates that when the target simultaneously exhibits
translation, acceleration, vibration, and rotation characteristics, the parameter fd will
undergo linear modulation. This modulation in frequency is directly proportional to the
acceleration of the target. It exhibits a periodic variation over time, with the cycle period
influenced by both the vibration and the rotation periods. Furthermore, the amplitude
of these changes depends on the vibration frequency, vibration amplitude, and rotational
angular velocity.

In this paper, the Boulic human body model, characterized by its 62 degrees of freedom
and 32 joints, is abstracted into 13 standardized rigid bodies and 17 nodal points for
simplification. The rigid bodies represent various parts of the human anatomy: the head,
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the shoulders (left and right), the arms (left and right), the forearms (left and right), the
thighs (left and right), the calves (left and right), and the torso (upper and lower parts). The
nodal points identified are the hips, the upper legs (right and left), the legs (right and left),
the feet (right and left), the spine, the head, the shoulders (right and left), the arms (right
and left), the forearms (right and left), and the left hand. This study models the interaction
between the foot and the ground as a rigid contact, with the contact point determined by
the geometry of the foot’s plantar surface and the foot’s orientation.

The diagram in Figure 3 offers a detailed proportional representation of the human
skeletal structure, indicating the relative orientations of each segment of the body. These
orientations are denoted by specific angles and are not fully independent, particularly
during the double support phase of movement, due to the interconnected nature of the
model, akin to a closed-loop system. The figure illustrates how the body’s proportions are
segmented in relation to overall height (denoted as ‘H’). According to the empirical data
captured, the segment from the top of the head down to the lower neck represents 18.2%
of a person’s total height. The shoulders are measured to be 25.9% of the height, while
the torso contributes to 28.8% of the height. In terms of limb proportions, the upper arms
are 18.8% of the height, the lower arms make up 14.5%, the thighs account for 24.5%, the
calves for 28.5%, and the hips for 19.1% of the total height. These measurements provide a
quantified overview of the human form, which is essential for the study of biomechanics
and related fields.

0.259H

0.182H

0.188H

0.145H

0.12H

0.288H

0.191H
0.245H

0.285H

H represents the height of the human target

Figure 3. Schematic representation of the proportional human skeletal structure.

In investigating the interactions between various human body segments during mo-
tion, body segment trajectories were analyzed using data from the Carnegie Mellon Univer-
sity Motion Capture (MOCAP) database for a human subject. Figure 3 provides structural
information on the targeted human body segments, while Figure 4 outlines the experi-
mental setup for the simulation. This setup features a human target, with a height of
approximately 175 cm, beginning a face-down fall at approximately 2 s into the simula-
tion, with the total duration of the data collection being approximately 5.5 s. Subsequent
processing of radar echo data from the moving human body facilitated the Micro-Doppler
(MD) spectrum extraction. As depicted in Figure 5, specific movements were executed by
the target between 2 and 4.5 s, after which the target remained stationary for the rest of the
observation period.

Figure 5 also clearly delineates the variations in Doppler frequency attributed to the
movement of different human body segments. In this depiction, the zero-frequency line is
indicative of the torso of the human body. The figure shows that, prior to 2 s and subsequent
to 4.5 s, the human target maintains a stationary stance. Conversely, the period between
2 and 4.5 s is characterized by changes in the Micro-Doppler (MD) frequency, reflecting
the movement dynamics of the human target’s various segments. It is observed that an
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increase in MD frequency corresponds to a greater amplitude of movement in the respective
body part.

Notably, the human body is an asymmetric, non-rigid structure with bilateral sym-
metry. Figure 6 demonstrates that the MD effects caused by this symmetrical structure
during human movement follow specific patterns. In the figure, the first and third rows
represent the left side of the human body, while the second and fourth rows depict the
right side. This arrangement facilitates a comparative analysis of the MD effects resulting
from micro-movements in the left and right structures of the moving human subject. For
instance, Figure 6c,g showcase the left and right arms, respectively, resembling a left–right
symmetrical structure. To maintain balance during most movements, the arms often exhibit
symmetrical or reverse symmetrical movements centered around the trunk.

Figure 4. Simulated experimental scene from MOCAP data.

Figure 5. The micro-Doppler spectrum of human motion.
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Figure 6. The micro-Doppler spectrum of individual human body parts for movement analysis.

It is also evident that the upper and lower arms, thighs, and calves on both sides
exhibit larger motion amplitudes during human movement, resulting in higher MD fre-
quencies. The human body’s inherent symmetrical structural characteristics are also mir-
rored in the corresponding MD spectra. By simulating the MD effect differences caused by
micro-motions of different human body parts during movement, we can more effectively
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demonstrate that MD spectra accurately reflect the characteristics inherent in various pos-
tural states of the human body. Thus, the MD features of moving human subjects can be
instrumental in addressing the challenge of human pose reconstruction.

3. Method and Approach

This section is dedicated to the estimation of human keypoint locations in three-dimensional
space utilizing a radar PoseLifter that operates on SISO UWB radar technology. The
approach involves taking a sequence of two-dimensional points, x ∈ R2n, derived from a
two-dimensional human pose estimation detector as input, to generate an output sequence
of three-dimensional space points y ∈ R3n. The primary aim is to devise a mapping
function f ∗ : R2n → R3n to minimize the prediction error across a dataset comprising N
poses.

f ∗ = min
f

1
N

N

∑
i=1

L( f (xi)− yi) (16)

where xi is obtained from the detector of 2D human pose estimates. The f ∗ is the architec-
ture of the radar-based human PoseLifter through the micro-Doppler spectrum.

3.1. Signal Preprocessing of Radar Human Posture Echo

Figure 7 shows the radar data preprocessing chain chart. The processing chain starts
from raw radar data, which then undergoes clutter suppression and noise reduction tech-
niques. These preprocessing steps are essential to enhance the signal-to-noise ratio and
mitigate the impact of unwanted interference. The signal processing pipeline initiates with
the application of Fast Fourier Transform (FFT) along the fast-time dimension to the raw
radar data, yielding a Range bin. Subsequently, FFT is employed along the slow-time di-
mension to derive multiple Range–Doppler maps, as shown in Figure 7, termed Range-FFT
and Doppler-FFT. The Range-FFT, processed along each chirp in the original data matrix,
facilitates the computation of target distance, while the Doppler-FFT, executed along each
distance unit, is instrumental in determining target velocities. Each element in the resulting
Range–Doppler maps, referred to as “Range Bin,” is represented in the frequency domain
and expressed in decibels. Following this, the summation of Range Bins along the range
axis for each Range–Doppler map is performed, yielding a vector comprising L Doppler
Bins. Subsequently, the concatenation of n consecutive frames forms a time-length n frames
micro-Doppler signature map (time-Doppler spectrogram).
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Figure 7. Radar data preprocessing chain chart.

Additionally, window functions are employed during signal processing to mitigate
spectral leakage and related issues. Our analysis transformed the radar signals of human
activities into the micro-Doppler spectrum using the HPSUR dataset, which comprises
over 311,963 frame radar signatures from four types of human activities. Figure 8 dis-
plays the micro-Doppler spectrum for these activities, where the intense yellow and red
zones indicate the Doppler frequency range associated with the human torso. Meanwhile,
the peripheral pale yellow regions represent the micro-Doppler signals produced by the
movement of human limbs.
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Our paper employed an FFT size of 512, a Frame Number of 500 frames, and a Ham-
ming window for radar signal processing. Notably, our use of ultra-wideband radar neces-
sitated a Pulse Repetition Frequency (PRF) of 960 frames per second, and we specifically
selected 500 frames for analysis. This choice equates to each micro-Doppler representation
encapsulating data spanning 0.52 s. The rationale behind this decision lies in the context
of human pose estimation, where we aim to estimate the coordinates of skeletal points
corresponding to a specific moment in time. Given that human movement cycles, such as
walking or other dynamic activities, typically exhibit periods of 2 to 5 s, our selection of
500 frames per micro-Doppler instance ensures better extraction of micro-Doppler features
from radar echoes, providing a comprehensive representation of the motion characteristics
associated with the human body at that particular moment in time. This parameterization
aligns with our objective of capturing meaningful and temporally relevant information for
accurate human pose estimation using radar signals. The mapped micro-Doppler spectrum
is used as input to the subsequent network to estimate human poses due to the distinct
features of micro-Doppler signals and leveraging insights from deep learning.
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Figure 8. The micro-Doppler spectrum of four different human activities of the HPSUR dataset.

3.2. 2D Key-Points Estimator

The Swin Transformer network, designated as the Micro-Doppler Swin Transformer
(MDST), is utilized to estimate 2D human keypoints by analyzing micro-Doppler signatures.
The MDST framework integrates both window-based and shift window-based multi-
head self-attention mechanisms, facilitating the comprehensive capture of micro-Doppler
signatures’ inner-frame and intra-frame dynamics for radar-based human pose estimation.
These signatures are initially encoded as paths and subsequently segmented into discrete
path blocks to improve the network’s ability to learn and accurately characterize micro-
Doppler signatures.
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Within this framework, each path is conceptualized as a ‘Token’, which forms the
foundational data structure for the transformer’s input. The MDST architecture is struc-
tured into four sequential stages, which collectively form the backbone of the human
pose estimation network. The initial stage, or ‘Stage 1’, amalgamates patch and position
embedding outputs while maintaining a consistent number of tokens (H/4, W/4) through
linear embedding. This is followed by ‘Stage 2’, which executes patch merging and fea-
ture transformation. This process is duplicated in ‘Stage 3’ and ‘Stage 4’, yielding output
resolutions of H/16 × H/16 and H/32 × H/32, respectively.

To ensure an equitable comparison with other vision Transformers under analogous
conditions, we adhere to the stage, block, and channel configurations of the original Swin
Transformer. This approach is applied to two distinct configurations of the MDPST and
MDCST, maintaining consistency with the established Swin Transformer structure while
exploring its application in micro-Doppler analysis.

• MDPST-T & MDCST-T (Tiny): C = 96, layer numbers = {2,2,6,2}, number heads = {3,6,12,24}.
• MDPST-B & MDCST-B (Base): C = 128, layer numbers ={2,2,18,2}, number heads ={4,8,16,32}.

where C denotes the number of channels in the hidden layers of the first stage and the layer
numbers refers to the count of blocks within each stage.

3.3. Radar-Based Human PoseLifter Network

The radar-based Human PoseLifter network is a fully convolutional architecture
with residual connections designed to process a sequence of 2D poses derived from a 2D
keypoint estimator. It leverages a Temporal Convolutional Network (TCN) to facilitate
parallelization across both batch and temporal dimensions, capitalizing on the limitations
of Recurrent Neural Networks (RNNs), which lack such temporal parallelization due
to their inherent sequential processing nature. The input layer concatenates the (x, y)
coordinates of J joints for each frame, initiating a temporal convolution with a kernel size
of W and yielding C output channels. Subsequently, four ResNet blocks, augmented by
skip connections, are employed. Each block conducts a 1D convolution with kernel size
W and dilation factor D = WB, followed by convolution, normalization, rectified linear
unit activation, and dropout, as delineated in Figure 9. The exponential expansion of the
receptive field by a factor of W is achieved within each block while maintaining a linear
growth in parameter count. Hyperparameters W and D are judiciously chosen to ensure
that the receptive field for any output frame delineates a tree structure encompassing all
input frames. Finally, a 1D fully convolutional network is deployed to comprehensively
forecast 3D poses for all frames in the input sequence, integrating temporal context.

During the training process, the external knowledge is injected into the PoseLifter
network to satisfy the human body’s skeletal structure. This incorporation of knowledge-
guided learning effectively imposes constraints on the joints’ long-range dependencies and
spatial arrangements. Consequently, a Mean Squared Error (MSE) loss function augmented
with a bone length ratio—termed as Bone Loss—is employed, which is MSE with weights
across different bone.

BoneLoss =
1
T

1
N

T

∑
t=1

N

∑
n=1

∥∥∥αnY(t)
n − Ŷ(t)

n

∥∥∥
2

(17)

where t is the batch size (T = 24) during training, N is the total number of joints (N = 17),
Y(t)

n donates the 3D ground truth coordinate of the n−joint, Ŷ(t)
n donates the 3D predicted

coordinate of the n−joints, and αn is weights across different bone.
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Figure 9. Schematic overview of the methodological framework for 3D human pose estimation.

4. Experimental Description and Results
4.1. Datasets, Annotation, and Evaluation Metrics

We evaluated our model using the HPSUR dataset, collaboratively captured with a
SISO UWB radar system and an N3 system, with specific radar parameters detailed in
Table 1. The dataset encompasses a comprehensive indoor environment, specifically a living
room with three rooms and two halls, featuring four distinct indoor movement scenarios,
as detailed in Table 2. We amassed 311,963 data frames, contributed by five subjects varying
in height and weight. Each subject executed four types of actions, as enumerated in Table 2
and Figure 10 , within a controlled visual environment. The dataset was partitioned into
training and testing subsets for our experimental design. The training set, comprising
data from three subjects, totaled 189,462 frames, while the testing set, encompassing the
remaining two subjects, consisted of 122,401 frames. Ground Truth (GT) for human pose
keypoints was acquired using the N3 system, which precisely captures 17 keypoints of the
human skeleton.

Table 1. Specification of SISO UWB radar system parameters.

Parameters Values

Frequency 2.7∼3.2 GHz
Bandwidth 500 MHz
Pulse width 4.4 × 10−4

Transmitted signal FMCW
Pulse repetition frequency (PRF) 1923

We employ the Mean Per Joint Position Error (MPJPE), Procrustes-aligned Mean Per
Joint Position Error (P-MPJPE), and Normalized Mean Per Joint Position Error (N-MPJPE)
metrics to evaluate the accuracy of our estimated human 2D poses against the GT under
the HPSUR dataset. The MPJPE is a fundamental metric for assessing the accuracy of 3D
human pose estimation. It is computed by measuring the Euclidean distance between
the predicted and true 3D joint positions and then averaging these distances across all
joints. MPJPE reflects the average error in joint positioning, encompassing both global
and local accuracy. The P-MPJPE is an enhanced variant of MPJPE that incorporates a
Procrustes analysis alignment step before error calculation. This process mitigates the
impact of global positional, rotational, or scaling inaccuracies, which primarily evaluates
the relative accuracy of predicted joint positions independent of global pose accuracy.
N-MPJPE is another variant of MPJPE and predicted that the pose undergoes a different
form of normalization (such as scaling to a fixed size or normalization according to a certain
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standard) before error calculation. This metric provides insights into the accuracy of pose
scaling and global positioning but does not account for rotational or translational errors.

Table 2. Detailed description of different human postures of HPSUR dataset.

ID Type of Posture Specific Description

1001 Walking Walk back and forth along the radar radially, walk back and forth along the radar diagonally at
45 degrees, and walk back and forth along the radar diagonally at 135 degress.

1002 punch forward
Walk radially along the radar and back and forth with fists, walk diagonally 45 degrees along the radar
and walk back and forth with fists, and walk diagonally 135 degrees along the radar and walk back and
forth with fists.

1003 Sit and stand Take the radar as the origin and make siting and standing posture at (0 m, 2 m), (0 m, 3 m), (−1 m, 2 m),
(1 m, 3 m).

1004 Fall Take the radar as the origin and perform falling motion at (0 m, 2 m), (0 m, 3 m), (−1 m, 2 m), (1 m, 3 m).

(a) 1001 (b) 1002 (c) 1003 (d) 1004

Figure 10. Illustration of data collection scenarios of HPSUR dataset.

4.2. Quantitative Results

Our method, based on direct regression from 2D joint coordinates, naturally depends
on the quality of the output of a 2D pose estimator, named the MDST network, which
achieves human pose estimation errors within 40mm, as shown in Table 3. The MD-CST-
T model shows a mean error of 37.49 mm and the least minimum error at 10.98 mm,
suggesting strong accuracy. The MD-CST-B is comparable, with a slightly lower mean
error of 36.37 mm and a minimum error of 10.11 mm. The MDPST-T and MDPST-B models
have mean errors of 37.82 mm and 37.62 mm, respectively, and demonstrate slightly higher
minimum errors of 12.45 mm and 12.18 mm. Therefore, the method adopted for 2D human
keypoint estimation is the MDCST-B network in this paper.

Table 4 present a comparative evaluation of radar-based human pose estimation
methods. The RadarFormer method outperforms others, with the smallest error at 33.5 mm,
while the RF-Pose has the highest error at 62.4 mm. Other methods, like RF-Pose 3D, mm-
Pose, and UWB-Pose, show varying degrees of accuracy with errors of 43.6 mm, 44.67 mm,
and 37.87 mm, respectively.

The last three rows of Table 4 show the results of the proposed method for lifting
2D human poses to 3D using micro-Doppler signatures based on Single Input–Single
Output (SISO) Ultra-Wideband (UWB) radar, with varying numbers of blocks. The results
indicate a decrease in MPJPE from 40.26 mm for a single block configuration to 38.62 mm
when utilizing two blocks. A marginal increase to 39.86 mm was observed with the
integration of four blocks. Additionally, the P-MPJPE, which may represent a variant of
the error measurement adjusted for certain conditions or normalized in some way, shows
a decreasing trend with more blocks initially, from 31.69 mm (one block) to 31.04 mm



Remote Sens. 2024, 16, 1295 15 of 21

(two blocks), but then slightly increases to 32.31 mm (four blocks). The N-MJPE, possibly a
normalized version of MPJPE, presents similar performance improvements with two blocks
(38.17 mm) over one block (39.70 mm) and a slight increase for the four-block configuration
(39.64 mm).

Table 3. Two-dimensional radar-based human pose estimation based on MDCST and MDPST models
(unit: mm).

Method Mean Variance Maximum Minimum

MDCST-T 37.49 6.32 70.63 10.98
MDCST-B 36.37 6.31 70.42 10.11
MDPST-T 37.82 5.82 68.71 12.45
MDPST-B 37.62 5.89 69.18 12.18

Table 4. Comparative evaluation of radar-based human pose estimation methods (unit: mm).

Method MPJPE P-MPJPE N-MPJP

RF-Pose [18] 62.4 - -
RF-Pose 3D [19] 43.6 - -

mm-Pose [1] 44.67 - -
UWB-Pose [21] 37.87 - -

RadarFormer [26] 33.5 - -
Ours (1 block) 40.26 31.69 39.70
Ours (2 blocks) 38.62 31.04 38.17
Ours (4 blocks) 39.86 32.31 39.64

Overall, our method demonstrates an improved performance over traditional methods
when using two blocks, which suggests that this configuration strikes a good balance
between complexity and accuracy in pose estimation using micro-Doppler signatures from
SISO UWB radar systems.

Table 5 presents a comparative analysis of the 3D human pose reconstruction accuracy
for four different postures, employing MPJPE, P-MPJPE, and N-MPJPE as the evaluation
metrics. The reconstruction performance is quantified in millimeters (mm) and is dissected
across three experimental configurations: 1 block, 2 blocks, and 4 blocks.

The results show that the introduction of additional blocks generally improves the
pose estimation accuracy. For instance, the 1001 posture demonstrates a progressive
decrease in MPJPE from 34.13 mm for 1 block to 33.95 mm for 4 blocks, indicating an
enhancement in the precision of pose reconstruction with increased complexity. Notably,
the 1004 posture exhibits the highest error reduction when the configuration is shifted
from 1 block to 4 blocks, with MPJPE decreasing from 77.77 mm to 77.31 mm, P-MPJPE
from 57.33 mm to 58.51 mm, and N-MPJPE from 77.17 mm to 76.52 mm. This suggests
a significant dependency of reconstruction accuracy on the complexity of the employed
blocks, especially for more challenging postures.

In contrast, the 1003 posture shows minimal variation in MPJPE, decreasing from
33.85 mm to 33.35 mm as the block configuration increases, indicating a lower sensitivity
to the number of blocks used. The P-MPJPE and N-MPJPE metrics follow a similar trend,
with modest improvements from 25.94 mm to 26.34 mm and from 33.64 mm to 33.37 mm,
respectively, for 1 block versus 4 blocks. These findings underscore the necessity of optimiz-
ing the block configuration according to the specific posture to achieve the most accurate
3D pose reconstruction.
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Table 5. Comparative analysis of 3D human pose reconstruction for four different postures (unit: mm).

Metrics (mm) Postures 1 Block 2 Blocks 4 Blocks

MPJPE

1001 34.13 32.75 33.95
1002 48.86 47.57 48.13
1003 33.85 32.19 33.35
1004 77.77 74.64 77.31

P-MPJPE

1001 28.15 27.59 29.07
1002 39.44 38.65 39.49
1003 25.94 25.21 26.34
1004 57.33 56.87 58.51

N-MPJPE

1001 33.89 32.65 34.07
1002 46.52 45.23 46.77
1003 33.64 32.12 33.37
1004 77.17 73.99 76.52

4.3. Quantitative Results

Figure 11 illustrates the visualization of the 3D human pose reconstruction process
derived from radar-based estimations. Each row corresponds to one of the four postures
investigated, labeled as 1001, 1002, 1003, and 1004, respectively. The first column displays
the micro-Doppler signatures, which encode the motion dynamics of the human subject.
These signatures exhibit distinct patterns characteristic of the different motion captured.

2D keypoints 3D GT 3D Prediction

1001

1002

1003

1004

Micro-Doppler

Figure 11. Comparative visualization of 3D human pose reconstruction from radar-derived 2D keypoints.

The second column represents 2D keypoints, extracted features from the micro-
Doppler data serving as the foundation for constructing the 3D pose. Although these
points are scattered in the 2D space, the underlying spatial relationships indicate the pose’s
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structural framework. Columns three and four present the ground truth (3D GT) and the
predicted 3D poses, respectively. The 3D GT models, depicted with red lines, serve as
benchmarks for evaluating the accuracy of the 3D pose predictions, shown with blue lines.
A visual inspection reveals a close resemblance between the predicted poses and their
corresponding ground truths, suggesting high accuracy in the pose estimation process.
However, the subtle discrepancies observed, particularly in the complex postures of 1002
and 1004, highlight the challenges inherent in radar-based human pose estimation.

The grid structure imposed on the 3D plots provides a reference for depth perception,
allowing a more apparent appreciation of the position and orientation of limbs in space.
This visual analysis validates the proposed method’s effectiveness and demonstrates the
potential of radar technology in capturing and reconstructing complex human movements
in three-dimensional space.

4.4. Ablation Study

Table 6 evaluates the contribution of various components within our proposed radar-
based pose estimation method. The ablation study is designed to quantify the impact
of individual components on the performance, measured in terms of MPJP, P-MPJP, and
N-MPJPE, with all values reported in millimeters (mm).

The results demonstrate that our complete method achieves an MPJPE of 38.62 mm,
P-MPJPE of 31.04 mm, and N-MPJPE of 38.17 mm. Removing batch normalization (w/o
batch norm) significantly degrades performance, increasing MPJPE to 101.69 mm, P-MPJPE
to 47.39 mm, and N-MPJPE to 60.67 mm. This underlines the batch normalization’s critical
role in model regularization and training stability. The exclusion of the residual connections
(w/o residual) also results in performance deterioration, with an increase in MPJPE and
N-MPJPE to 55.23 mm and 53.81 mm, respectively, emphasizing the importance of residuals
in learning complex functions and enabling deeper architectures.

A further combined removal of both batch normalization and residual connections
(w/o residual w/o batch norm) leads to the most pronounced decrease in pose estimation
accuracy, with MPJPE soaring to 94.91 mm, P-MPJPE to 78.28 mm, and N-MPJPE to
94.25 mm. Comparatively, the simplified versions of our method with only 1 block yield an
MPJPE of 40.26 mm, slightly higher than our full model with 2 blocks (ours), at 38.62 mm,
suggesting that a more complex model structure does not necessarily compromise efficiency.

Table 6. Assessment of component impact on pose estimation accuracy in the proposed method
(unit: mm).

MPJPE P-MPJPE N-MPJPE

Our method 38.62 31.04 38.17
w/o batch norm 101.69 47.39 60.67

w/o residual 55.23 44.18 53.81
w/o residual w/o batch norm 94.91 78.28 94.25

1 block 40.26 31.69 39.70
2 blocks (ours) 38.62 31.04 38.17

The results of this study highlight the critical importance of each component in realizing
the enhanced accuracy of the proposed approach. It is confirmed that the integrated effect of
batch normalization, residual connections, and an optimally determined number of blocks plays
a crucial role in the exceptional performance of our pose estimation framework.

Table 7 details the ablation study outcomes, elucidating the influence of distinct model
components on radar-based human pose estimation accuracy across four different postures.
The ‘Our method (2 blocks)’ is the baseline, with the overall MPJPE recorded at 38.62 mm.
Upon removal of batch normalization, a substantial increase in error is observed, with the
overall MPJPE surging to 101.69 mm, signifying the vital role of this component in the
model’s ability to generalize across different postures. The omission of residual connections
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results in an overall MPJPE of 55.23 mm, indicating their importance in capturing the
hierarchical structure of human poses. The combined absence of both batch normalization
and residual connections further exacerbates the error, inflating the overall MPJPE to
94.91 mm, which underscores the compounded benefits of these components.

Table 7. Model performance across varying postural archetypes using different architectural components
(unit: mm).

Metrics (mm) Motions Our (2 Blocks) w/o Batch Norm w/o Residual w/o Residual
w/o Batch Norm 1 Block 4 Blocks

MPJPE

Overall 38.62 101.69 55.23 94.91 40.26 39.86
1001 32.75 106.95 49.52 97.28 34.13 33.95
1002 47.57 102.59 68.88 112.38 48.86 48.13
1003 32.19 90.67 45.93 72.76 33.85 33.35
1004 74.64 123.39 94.99 147.82 77.77 77.31

P-MPJPE

Overall 31.04 47.39 44.18 78.28 31.69 32.31
1001 27.59 46.21 40.69 84.99 28.15 29.07
1002 38.65 61.06 53.74 98.46 39.44 39.49
1003 25.21 34.94 36.85 56.75 25.94 26.34

N-MPJPE

Overall 38.17 60.67 53.81 94.25 39.70 39.64
1001 32.65 59.66 47.75 96.88 33.89 34.07
1002 45.23 72.03 66.25 111.71 46.52 46.77
1003 32.12 45.87 45.18 72.31 33.64 33.37
1004 73.99 106.91 94.13 145.20 77.17 76.52

The performance variations across different posture are also notable. For instance, the
1004 posture exhibits the most significant increase in MPJPE when batch normalization is
removed, rising from 74.64 mm to 123.39 mm. This highlights the component’s criticality
in complex pose estimations. The impact of reducing the model to ‘1 block’ is relatively
less severe, with an overall MPJPE increase to 40.26 mm, whereas employing ‘4 blocks’
slightly improves the baseline to 39.86 mm. Similar trends in P-MPJPE and N-MPJPE
metrics are observed, with ‘Our method (2 blocks)’ consistently outperforming the con-
figurations where critical components are omitted. This indicates that the architecture of
our method is optimally balanced for the diversity of postures encountered in radar-based
pose estimation.

5. Discussion

The Radar PoseLifter network introduced in this paper embodies a novel approach that
marries the precision of micro-Doppler signatures with the computational prowess of fully
convolutional neural networks. The network’s ability to handle long-range dependencies
and its design tailored for dilated temporal convolutions set it apart from conventional pose
estimation techniques. When compared with WiFi-based sensing systems and traditional
camera surveillance, our method surmounts privacy concerns and overcomes limitations
of spatial resolution.

High-frequency radar systems, such as millimeter-wave (mmWave) and terahertz
radars, offer greater precision in capturing postures due to their shorter wavelengths. How-
ever, they lack the ability to penetrate walls and furniture, which is a critical drawback for
applications in urban environments where obstructions are common. The proposed method
overcomes this by using micro-Doppler signatures to accurately estimate human poses,
demonstrating improved performance in these challenging environments, as evidenced
by the comparative results with mm-Pose found in Table 4. In contrast, low-frequency
radar offers several benefits: it can penetrate walls and obstructions, function effectively
in both daylight and darkness, and is inherently more privacy-preserving due to its non-
interpretability by humans. Moreover, these methods depend on MIMO radar imaging,
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and the quality of the radar images can be greatly affected by environmental changes and
the varying distance between the radar and the human subject. Therefore, we employ
SISO UWB radar technology to detect human poses through micro-Doppler signatures,
which are less influenced by such environmental and subject-related variabilities. We also
conducted a comprehensive comparison between our proposed micro-Doppler method
and other existing approaches, including RF-Pose, RF-Pose 3D, and UWB-Pose, as illus-
trated in Table 4. This comparison effectively validates the efficacy of our method and
provides valuable insights and feasible strategies for research in human pose estimation
using micro-Doppler features, advancing radar-based sensing for complex human pose
estimation in diverse settings.

The implications of our research extend beyond academic interest and into practical
applications. For example, in the realm of smart homes and healthcare, our technology
could offer non-invasive monitoring of patients or elderly individuals, preserving their
privacy while providing critical data for their care. In urban environments, the precision
and reliability of our UWB radar-based pose estimation could enhance the safety and
efficiency of autonomous vehicle navigation by providing accurate pedestrian dynamics.

6. Conclusions

This paper has presented a novel Radar PoseLifter network, harnessing the capabilities
of SISO UWB radar technology with micro-Doppler signature to elevate 2D human pose
estimation to 3D reconstructions. This work overcomes traditional challenges in radar-
based human motion capture, such as low spatial resolution and the ambiguity of pose
reconstruction from 1D radar signals. The network’s employment of a fully convolutional
architecture with dilated temporal convolutions caters to the efficient processing of long-
range dependencies in pose sequences. Our empirical validation on the HPSUR dataset
illustrates the method’s efficacy in handling diverse human movements and its superiority
over existing techniques.

Notably, our approach demonstrates that a two-block configuration in the network
achieves an optimal balance between system complexity and estimation accuracy. The
ablation studies reinforce the importance of network components like batch normalization
and residual connections in minimizing pose estimation errors. Our method’s adaptability
makes it suitable for a variety of applications where accurate and reliable motion capture is
critical, such as autonomous vehicle guidance, urban planning, and healthcare monitoring,
while also maintaining privacy. The insights gained from this paper pave the way for
future enhancements in radar-based human pose estimation, with the potential for broader
application and integration into smart environments.
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