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Abstract: Nearly 50 million km2 of global land experiences seasonal transitions from predominantly
frozen to thawed conditions, significantly impacting various ecosystems and hydrologic processes. In
this study, we assessed the capability to retrieve surface freeze–thaw (FT) conditions using Sentinel-1
synthetic aperture radar (SAR) data time series at two agro-forested study sites, St-Marthe and
St-Maurice, in southern Québec, Canada. In total, 18 plots were instrumented to monitor soil
temperature and derive soil freezing probabilities at 2 and 10 cm depths during 2020–21 and 2021–22.
Three change detection algorithms were tested: backscatter differences (∆σ) derived from thawed
reference (Delta), the freeze–thaw index (FTI), and a newly developed exponential freeze–thaw
algorithm (EFTA). Various probabilistic mixed models were compared to identify the model and
predictor variables that best predicted soil freezing probability. VH polarization backscatter signals
processed with the EFTA and used as predictors in a logistic model led to improved predictions of
soil freezing probability at 2 cm (Pseudo-R2 = 0.54) compared to other approaches. The EFTA could
effectively address the limitations of the Delta algorithm caused by backscatter fluctuations in the
shoulder seasons, resulting in more precise estimates of FT events. Furthermore, the inclusion of
crop types as plot-level effects within the probabilistic model also slightly improved the soil freezing
probability prediction at each monitored plot, with marginal and conditional R2 values of 0.59 and
0.61, respectively. The model accurately classified observed binary ‘frozen’ or ‘thawed’ states with
85.2% accuracy. Strong cross-level interactions were also observed between crop types and the EFTA
derived from VH backscatter, indicating that crop type modulated the backscatter response to soil
freezing. This study represents the first application of the EFTA and a probabilistic approach to detect
frozen soil conditions in agro-forested areas in southern Quebec, Canada.

Keywords: freeze–thaw probability; mixed models; exponential freeze–thaw algorithm (EFTA);
Sentinel 1 SAR; agro-forested areas

1. Introduction

Seasonal soil freezing is a widespread natural process that occurs in a significant
portion of land areas, spanning over more than half of the northern hemisphere [1,2]. Nearly
50 million km2 of land surfaces experience the seasonal transition from predominantly
frozen to thawed states every year [3,4]. The impact of frozen soils in cold regions can
be observed in various aspects of climate, hydrology, and terrestrial ecosystems. These
effects manifest in surface energy balance, seasonal runoff patterns, and the biogeochemical
cycling of elements on Earth, operating at diverse scales [5,6]. In farmlands, the repeated
freeze–thaw cycles in soils can significantly impact the availability of effective soil nutrients
and modify vital soil biochemical components, which in turn affect plant growth and
development in agricultural ecosystems [7,8]. The soil structure is highly sensitive to
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freezing and thawing events, wherein repeated freeze–thaw cycles lead to decreased
strength and size of aggregates, breaking up of soil into microscopic particles, and increased
soil erodibility during snow melting [9,10].

Earlier research has focused on the local scale or at individual sites to monitor near-
surface freeze–thaw (FT) state in soils [11,12]. Nevertheless, traditional approaches such
as in situ point measurements, geophysical methods, and numerical simulations are in-
adequate in capturing the temporal variations of freezing and thawing states near the
surface across extensive geographical areas [13,14]. Environmental conditions such as
hydrological and climate variables, soil properties, and vegetation cover can induce spatial
and temporal variability in the FT state of seasonally frozen ground at various scales [15,16].
The spatial-temporal variability of freeze–thaw processes significantly impact various
aspects of agriculture, including crop growth and germination, soil water distribution,
heat balance, soil moisture availability, and redistribution of organic matter [17]. Un-
derstanding the spatio-temporal patterns of freeze–thaw provides valuable insights into
hydrological processes, enabling effective water resource management and mitigation of
flood risks [18]. Additionally, freeze–thaw dynamics play a pivotal role in nutrient cycling,
carbon sequestration, and microbial activity, which are essential for the functioning of
ecosystems [19,20].

Remote sensing is a valuable method to capture the spatial variability of frozen ground
conditions related to environmental conditions. Detecting near-surface FT states can be car-
ried out with both active and passive microwave data. Several studies have demonstrated
that microwave remote sensing can estimate soil freezing/thawing states [21,22]. In addi-
tion, microwave observations can penetrate through cloud cover, rain, and dust to detect
freeze–thaw conditions. Passive microwave sensors, including the Soil Moisture Ocean
Salinity (SMOS) [23], the Soil Moisture Active Passive (SMAP) [24], the Scanning Multi-
channel Microwave Radiometer (SMMR) [25], and the Advanced Microwave Scanning
Radiometer Enhanced (AMSR-E) [26], have proven their capability to monitor seasonal
FT conditions of surface soil. While passive microwave remote sensing products provide
valuable insights into freeze–thaw dynamics at a large spatial scale, their ability to monitor
and assess such dynamics in agricultural fields is hindered by the presence of significant
spatial variability. This limitation stems from the coarse spatial resolution of these products
(>10 km), which makes them less suitable for accurately capturing fine-scale variations
in soil freeze–thaw within agricultural contexts. Hence, the coarse spatial resolution of
passive microwave remote sensing products poses challenges for precise monitoring of soil
freeze–thaw in agricultural fields [27].

Meanwhile, several space-borne synthetic aperture radar (SAR) sensors, such as Ad-
vanced SAR (ASAR) L-band [28] and Phrase Array L-band Synthetic Aperture Radar
(PALSAR) L-band [29] have been used to provide near-surface FT state detection. The-
oretical principles driving the use of active microwave sensors to discern soil FT states
rely on the intricate interplay between backscatter and soil surface properties, particu-
larly dielectric constants, and surface roughness, during FT processes. The radar signal
primarily responds to variations in the soil’s dielectric constant, which is influenced by
the presence of water and ice; higher levels of free liquid water correspond to elevated
dielectric constants [30]. This transition from water to ice alters the dielectric permittivity,
typically ranging from 2 to 3 for dry soil [31]. In croplands, the behavior of C-band radar
signals is strongly influenced by surface roughness and soil moisture, shaping microwave
scattering at the soil’s upper layers and impacting backscattering coefficients observed
by radar sensors [32,33]. However, when soil moisture levels exceed 35%, the impact of
surface roughness on backscattering signals diminishes [34]. Agricultural practices like
tillage directly affect surface roughness, influencing radar return. Smooth surfaces act as
specular reflectors, deflecting most radar energy and resulting in weak signals, while rough
surfaces scatter microwave energy, producing strong and diffuse signals [35]. Co- and
cross-polarized waves interact with the surface differently, yielding distinct backscatter
amplitudes to the sensor. Holah et al. [36], in an ASAR (Advanced Synthetic Aperture
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Radar) data analysis of soil surface parameters (surface roughness and soil moisture) over
bare fields, found HH and HV polarizations to exhibit greater sensitivity to soil roughness
compared to VV polarization. These findings underscore the importance of surface rough-
ness and radar polarization in interpreting radar data in agricultural fields. For instance,
Khaldoune et al. [37] established a threshold algorithm for frozen soil, employing linear
regression to differentiate between frozen and unfrozen fields based on HH backscattering
coefficients (σ◦). The study’s findings emphasized the effectiveness of the RADARSAT-1
sensor to map frozen soil in agricultural fields at the Bras d’Henri site in southern Quebec.
Rodionova [38] investigated the relationship between radar and in situ observations of
frozen soil state by analyzing the dual-polarization (VV + VH) signals of Sentinel-1 (S1)
C-band radar in Interferometric Wide Swath (IW) Mode. The study revealed a significant
relationship between the VV backscatter and soil temperature at a depth of 5 cm. The estab-
lishment of threshold values for the VV backscatter coefficient facilitated the generation of
maps capable of distinguishing between frozen and thawed soils.

Over the past few years, S1 C-band SAR products have proven particularly use-
ful for soil FT detection at local and regional scales due to their high spatial resolution
(10 m). Baghdadi et al. [33] retrieved land surface FT states using the C-band SAR data from
S1 by thresholding the SAR data by 3 dB, assuming that soil roughness is stable and crop
types have an insignificant effect. Fayad et al. [32] nonetheless found that the difference
between the acquired σ◦ and the mean of the previous three calculated maximum σ◦ values
mitigated the influence of roughness effects over agricultural areas and pastures. Previous
approaches for freeze–thaw retrieval relied on strict temperature references and a binary
method with predetermined thresholds for frozen conditions. However, this approach has
limitations, including sensitivity to temperature variations leading to misclassification, lack
of flexibility due to fixed thresholds that oversimplify freezing dynamics, and failure to
consider the non-binary nature of soil freezing. Furthermore, the effectiveness of fixed
thresholds in radar signal interpretation is limited by the potential influence of other soil
surface conditions, particularly in agricultural contexts, such as soil type, crop variety, and
residues, leading to shortcomings in their applicability across different regions.

While previous studies on frozen states have primarily employed a rigid classification
system, i.e., frozen versus thawed states, this work introduces the concept of soil freezing
probability, allowing us to use a probabilistic interpretation of soil FT states and study
their complex spatio-temporal dynamics in agro-forested landscapes. This complexity
arises from various factors that influence radar signals by altering surface roughness, such
as spatial variability in soil texture and changes in crop types, along with the intricate
interactions among these variables [34–36]. The aim of this study encompasses three ob-
jectives: First, we analyze the freeze–thaw variability using freezing probability derived
from in situ soil temperature at 2 and 10 cm at two study sites over the study periods of
2020–21 and 2021–22. Afterwards, we compare three change detection algorithms with
different S1 SAR polarizations to determine their ability to predict the near-surface (2 and
10 cm) soil freezing probability using generalized linear models (GLM). Finally, differ-
ent probabilistic mixed model structures are tested, taking into account the effect of site
conditions (crop residues, soil, and crop types) on the predictions.

2. Materials and Methods
2.1. Study Sites

Two agro-forested sites, St-Maurice (46.48◦N, 72.50◦W) and St-Marthe (45.41◦N,
74.30◦W) in southern Quebec (Figure 1), were equipped with soil temperature data loggers
in order to monitor soil temperature and identify FT states in fall of 2020 and 2021.
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Figure 1. Overview of the study sites with land cover map in 2020 (https://open.canada.ca/data/
en/dataset/ee1580ab-a23d-4f86-a09b-79763677eb47, accessed on 1 April 2024). (a) Geographical
depiction of the study area located in Canada. (b) The geographical location of study sites in the
agro-forested areas in southern Québec. (c) Study plot locations in St-Maurice (six in farmlands and
two in forest). (d) Study plot locations in St-Marthe (eight in agricultural lands and two in forest).
The map was created using ArcGIS version 10.3 software (Esri, Redlands, CA, USA).

Both sites exhibit a landscape blend of agriculture and forest, though each has distinct
characteristics. The St-Maurice site encompasses agricultural areas as well as a mixed
forest consisting of poplars (Populus × canadensis), red maples (Acer rubrum), white pines
(Pinus strobus), and balsam firs (Abies balsamea) [39]. Meanwhile, the St-Marthe site is
located between the St. Lawrence and Ottawa rivers west of Montreal Island. The site is
characterized by a diverse deciduous forest surrounded by agricultural fields. Within the
forested area, sugar maple (Acer saccharum) and red maple (Acer rubrum) trees dominate
the landscape, alongside a conifer plantation [39].

Considering the sensitivity of radar backscattering to surface roughness, we have
assessed key influencing factors, such as crop residues, crop types, and soil types, in
our predictive model for FT states. The soil type information for the St-Marthe and
St-Maurice sites was obtained from the Info-Sols database (https://dev.info-sols.ca/, ac-
cessed on 1 April 2024), developed by GéoMont for the Ministry of Agriculture, Fish-
eries, and Food of Quebec (MAPAQ). Crop type information for the study years 2020–21
and 2021–22 was gathered from the Annual Crop Inventory data provided by Agricul-
ture and Agri-Food Canada (AAFC). A comprehensive and current dataset on crop dis-
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tribution and acreage across various regions is accessible on AAFC’s online platform
(https://www.agr.gc.ca/atlas/apps/metrics/index-en.html?appid=aci-iac, accessed on 1
April 2024).

Table 1 provides a detailed description of the crops, soils, and crop residues for each
instrumented plot. These sites have a variety of crop and soil agricultural aspects. The
farmland plots in St-Maurice vary from finer types (silty clay) to coarser types (fine sand).
Meanwhile, in the agricultural plots of St-Marthe, clay (the finest type) and fine loamy
sand (coarser) were found. Throughout the entire study period, the cultivation of a diverse
range of crops is observed in the St-Maurice area, with soybean, corn, and potatoes being
commonly grown. On the other hand, in St-Marthe, the primary crops grown include corn,
soybeans, and peas. In both study sites, corn is the most extensively cultivated crop, while
soybeans are the second most widely cultivated crop (Table 1).

Table 1. Soil, crop type, and crop residue at each instrumented plot (plot size: 5 m × 5 m).

Plot
Soil Type Land Cover/Crop Type Residues

2020–21 2021–22 2020–21 2021–22

St
-M

au
ri

ce

A Fine sand Forest Forest Forest litter Forest litter
B Fine sand Forest Forest Forest litter Forest litter
C Silty clay Potato Corn Bare field Corn stalks
D Silty clay Potato Corn Bare field Corn stalks
E Loamy sand Potato Corn Bare field Corn stalks
F Silty clay Corn Soybean Corn stalks Soybean debris
G Silty clay Corn Soybean Corn stalks Soybean debris
H Silty clay Corn Soybean Corn stalks Soybean debris

St
-M

ar
th

e

A Loam Forest Forest Forest litter Forest litter
B Fine loamy sand Forest Forest Forest litter Forest litter
C Fine loamy sand Grassland Grassland Grass Grass
D Fine loamy sand Grassland Grassland Grass Grass
E Clay Potato Corn Grass Grass
F Clay Potato Corn Grass Grass

G Clay Soybean Ploughed Soybean
debris Bare field

H Clay Soybean Ploughed Soybean
debris Bare field

I Clay Corn Ploughed Corn stalks Scattered debris
J Clay Corn Ploughed Corn stalks Scattered debris

2.2. In-Situ Data

In situ soil temperature measurements were collected for two consecutive years, from
mid-October to the end of April, covering the periods of 2020–21 and 2021–22. Eight
and ten temperature plots were instrumented in St-Maurice and St-Marthe, respectively,
to monitor in situ FT states. At each plot, five soil pits equipped with two soil tem-
perature sensors at near-surface (2 cm) and 10 cm depths were installed along a cross
shape with 5 m between each soil pit. This specific sampling configuration was cho-
sen to ensure that the in-situ measurements align with the S1 pixel size of 10 m (See
Supplementary Material Figure S1). The vegetation covers and crop residue conditions of
the different agricultural plots at the end of the crop season and post-harvest are depicted in
Figure 2.

https://www.agr.gc.ca/atlas/apps/metrics/index-en.html?appid=aci-iac
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Figure 2. Field observations of crop residues at both sites during the study periods 2020–21 and
2021–22. (a,b) Grass presence in St-Marthe’s C plot over the study period. (c) Snow-covered grass in
St-Marthe’s E plot. (d) Snow-free grass in St-Marthe’s F plot. (e) Plowed soils in St-Marthe’s G plot.
(f) Plowed soils in St-Marthe’s H plot. (g) Corn stalks residues and scattered debris in St-Marthe’s I
plot. (h) Corn stalks residues and scattered debris in St-Marthe’s J plot. (i,j) Fields with bare lands
and corn stalks scattered throughout St-Maurice’s C, D, and E plots.

2.3. Deriving Soil Freezing Probability

We used the standard normal distribution (z), which is a continuous probability
distribution [40], to determine the probability of soil freezing at each instrumented plot.
This distribution enabled us to calculate the probability that the soil is frozen (T ≤ 0) given
the uncertainty of the sensors and the small-scale spatial heterogeneity within each plot
(Equation (1)).

P (T ≤ 0) = 1 − P
(

z <

(
T − µ

σ

))
(1)

where ‘P (T ≤ 0)’ represents the cumulative probability that the measured soil temperature
(T) is less than or equal to zero, which corresponds to the frozen state, µ represents the
mean of the distribution which is set to zero (freezing point), and σ indicates the standard
deviation. The quantity

(
T−µ

σ

)
is called a z score whose cumulative probability distribution

is ‘P’. To determine σ, the accuracy of both sensor types is reported as a two-sigma value of
±0.5 ◦C, resulting in a sigma value of 0.25 ◦C.

In our analysis, we assumed a normal distribution for the errors in the temperature
data. Temperature measurements in the soil were measured using DS1922L iButton sen-
sors and UA-001 HOBO pendant temperature sensors, with temperature resolutions of
0.0625 ◦C and 0.14 ◦C, respectively. The measured soil temperature (T) in Equation (1)
corresponds to the observed 3-hourly soil temperature.

For every instrumented plot, the probability of freezing was computed for each three-
hourly recorded temperature, at each logger. Subsequently, the frozen probability for
each plot was determined by averaging the freezing probabilities obtained at each of the
five temperature loggers inside the plot. The plot’s freezing probability was separately
calculated at the 2 cm and 10 cm soil depths.

2.4. Satellite Data Acquisition

The S1 satellite carries a dual-polarization (VV and VH) C-band SAR instrument that
operates at 5.405 GHz (corresponding wavelength 5.55 cm) with an active phased array
antenna. In this study, S1 Interferometric Wide Swath Mode (IW) imagery was used, using
both ascending and descending orbits during the time frame of early October to early
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June, covering the periods of 2020–21 and 2021–22. S1A/B Imagery Ingestion in Google
Earth Engine (GEE) [41] uses S1 Ground Range Detected (GRD) products, which have been
preprocessed operating the S1 Toolbox of the European Space Agency (ESA) to derive the
backscatter coefficients of each pixel. In the IW GRD collections, the incidence angle ranges
between 31◦ and 46◦ from near to far range for S1 over land [42]. To remove the remaining
noise and artifacts from the SAR images, we applied speckle filtering and angle corrections
procedures, as described next.

2.4.1. Speckle Filtering

The speckle noise in SAR images causes them to appear grainy and prevents target
recognition and texture analysis, and therefore speckle filtering is an essential part of SAR
image preprocessing. Many studies have suggested that the refined Lee filter has a high
potential for reducing speckles [43,44]; SAR data can be filtered using rectangular scanning
windows, with pixel spacing in azimuth greater than that in range. While a larger window
generally leads to more effective speckle reduction [45], it can also result in increased
smoothing and loss of fine details. A 7-by-7 filter window is commonly used for speckle
reduction in agricultural lands [46], as it provides a balance between reducing speckle noise
and preserving important features. In this work, we utilized the refined Lee filter with the
7-by-7 window size within the GEE platform.

2.4.2. Local Incidence Angle (LIA) Corrections

Radar backscatter is affected not only by the dielectric properties and roughness of the
surface but also by the geometry of the incident beam. The SAR incidence angle is defined
by the angle between the incident beam and the vertical to the local geodetic ground
surface [47]. Rough surfaces exhibit less of this effect than smooth surfaces. Since radar
backscatter depends greatly on incident angle, the need for correction should be determined
in accordance with the application. Previous research demonstrated the importance of
correcting the LIA to minimize radar backscatter dependence on the incidence angle. For
this study, the incidence angle of each plot was normalized independently using Schaufler’s
equation [48].

σ◦(40◦) = σ◦(θL)− β(θL − 40◦) (2)

Due to S1’s IW backscatter being acquired between 29 and 46 incidence angles, a
reference angle of 40 was chosen for reference. Backscatter is expressed in terms of σ◦

(sigma nought) for VV and VH polarizations. According to Equation (2), the σ◦ derived
from a given local incidence angle is corrected to the reference angle of 40◦ based on the
slope parameter (β), which is derived from a regression analysis between σ◦ and LIA (see
example in Supplementary Material Figure S2). The angle correction was implemented on
the dual-polarized S1 VV/VH images within the GEE platform.

2.5. FT Algorithms

Two existing change detection algorithms were first used to retrieve the FT state at
the studied plots. First, we used the FT Index (FTI) algorithm introduced by [49] which
involved comparing the radar signatures obtained during seasonal reference frozen states
and thawed states. The FTI is calculated from backscattering values scaled by reference
backscattering values for frozen and thawed states [24,50] (Equation (3)).

FTI =
σ(t)− σF
σT − σF

(3)

where σ(t) refers to the backscattering coefficient acquired at time t, and σF and σT are the
reference backscattering coefficient for frozen and thawed conditions, respectively. σF was
derived as the average of the three lowest backscatters the during the January–February
period, while σT was derived from the average of the three highest backscatters during
the early October to end of November and mid-April to early June periods. This period
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was chosen as it occurs after the onset of harvest activities in the fall and before significant
crop growing in the spring, thus minimizing the potential influence of crop harvesting and
growth on roughness changes and backscattering signals. The FTI algorithm was applied
for each plot over each study period for VV and VH polarizations.

Next, a simple difference (Delta) between the measured backscatter, σ(t), and the
prescribed thawed reference, σT , as defined before, was used as a predictor of soil freezing
(Equation (4)) [33].

∆(t) = σT − σ(t) (4)

The Delta approach demonstrated efficacy in identifying frozen states during winter
when backscatter remained consistently low throughout the winter season, in contrast to
thawed periods in fall and spring. However, a notable challenge emerged when confronted
with substantial drops in backscatter during thawed periods (this point will be discussed
in detail in the Discussion Section). In such instances, the Delta algorithm erroneously
categorized these thaw events as frozen states, contradicting in situ measurements that
indicated non-frozen conditions.

To overcome limitations identified in the Delta algorithm, particularly its reduced
performance during transitional fall and spring seasons, a new 'exponential freeze-thaw
algorithm' (EFTA) is introduced in this study. The proposed approach seeks to address the
inherent limitations of the Delta algorithm and mitigate the challenge of overestimating
frozen events during thawed periods. This is achieved by incorporating an exponential
decay function that decreases the influence of backscatter fluctuations during the expected
thawed periods in the shoulder seasons, while enhancing those during the expected frozen
period. The concept behind the formulation of the EFTA derives from findings obtained
from radar signal analysis research, especially studies on L-, C-, and X-band data [51,52],
which highlight the effect of soil surface roughness on radar signals. The algorithm selec-
tively incorporates quantitative aspects from these studies, but it does not directly model
the relationship between radar signals and surface roughness. The EFTA is represented by
the following equation:

EFTA =

[
e−K(1+(

σT
σ(t) ))

]
(∆(t)) (5)

where the expression
[

e−K(1+(
σT

σ(t) ))
]

denotes an exponential decay function, ensuring that

the outcome remains constrained within the range of 1 to 0. The binary parameter K
represents the expected thaw (K = 1) and frozen period (K = 0), which are, respectively,
defined by the most negative and positive differences between radar signals at time t and
at the preceding time (t − 1). The operationalization of this approach involves setting
K to zero within the range defined by the most negative backscatter difference observed
before February and the most positive backscatter difference observed after February.
Conversely, K is assigned a value of 1 for radar signals occurring before the most negative
backscatter differences in fall and after the most positive backscatter differences in spring,
signifying the anticipated thaw periods. An example of the approach used to identify the
soil freezing and thawing transitions in backscatter signals in the EFTA method is given in
Supplementary Material Figure S3.

The EFTA was applied on both VH backscatter (VHEFTA) and VV (VVEFTA) backscat-
tering signals. This facilitates identifying the greater sensitivity of either VV or VH polar-
izations to surface roughness in the context of freeze–thaw prediction, thereby evaluating
their effectiveness in delivering essential information for forecasting freeze and thaw states.
A greater positive value of EFTA corresponds to increased backscatter differences between
the thawed references and the given date of interest under freezing conditions, which
indicates a higher probability of freezing for the corresponding date.
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2.6. Probabilistic Statistical Analysis

A generalized linear model (GLM), a statistical probabilistic method, was used to
predict the freezing probability. To fit logistic regression models, the logit link function
was used in the GLM to predict the freezing probability from potential predictors. The
model was first applied to all instrumented plots across the two study sites and for the
two studied years. By fitting the GLM model on the combined dataset, we could first
evaluate the overall significance of the potential predictors and compare their effectiveness
in predicting freezing probability for the agricultural plots.

In GLMs, Pseudo-R2 fit statistics are calculated using maximum likelihood estimates.
Higher values of Pseudo-R2 indicate that the model explains more of the variance of the
observed data. The Akaike Information Criterion (AIC) was used as a model comparison
metric, allowing us to evaluate the relative quality of the different candidate statistical
models of soil freezing probability. The AIC takes into account both the goodness of fit and
the complexity of the model. The model with the lowest AIC value is considered the best
fit among the candidate models.

We then added plot-level potential predictors, including soil types, crop types, and
crop residues, to examine the effect of different plot conditions on soil freezing predictions
in agricultural plots. The six candidate models tested can be classified into three categories
based on their increasing complexity, starting with a global (i.e., on the combined datasets)
GLM model (model 1), a mixed GLM model with a random effect on plots (model 2), and
mixed models including plot-level predictors, cross-level interactions (interactions between
time-dependent VHEFTA and spatially variable plot conditions), and a plot random effect
(models 3 to 6).

1. Soil freezing probability ~ 1 + VHEFTA;
2. Soil freezing probability ~ 1 + VHEFTA + (1|Plot);
3. Soil freezing probability ~ 1 + VHEFTA × Soil types + (1|Plot);
4. Soil freezing probability ~ 1 + VHEFTA × Crop types + (1|Plot);
5. Soil freezing probability ~ 1 + VHEFTA × Soil types + VHEFTA × Crop types + (1|Plot);
6. Soil freezing probability ~ 1 + VHEFTA × Soil types + VHEFTA × Crop types + VHEFTA

× Crop residues + (1|Plot).

Within the framework of mixed models, we calculated marginal and conditional R2 to
discern the contributions of fixed and random effects. Marginal R2 in this context quantifies
the variance explained by fixed effects, while conditional R2 takes into account both fixed
and random effects, clarifying the proportions of variation attributed to each [44].

2.7. Model Calibration and Validation

Spatial and temporal cross-validation was used to evaluate the ability of the calibrated
models to transpose between years and between plots. For temporal validation, the chosen
model was calibrated on the first (2020–21) year and validated on the second year (2021–22).
Then, the procedure was repeated after inverting the calibration and validation years.

For spatial cross-validation, we utilized a leave-one-out cross-validation (LOOCV)
approach, incorporating data from both the 2020–21 and 2021–22 study years. This method
involved evaluating the model’s performance by systematically excluding the data of one
plot at a time from the calibration process, followed by testing the model on these excluded
data. With 14 plots and data spanning 2 consecutive years, this approach resulted in
28 unique folds (14 plots each evaluated across 2 years). Data from each plot, whether from
the first or second year of the study, were successively removed from the calibration dataset
and used as a test sample. This comprehensive strategy ensured a rigorous assessment of
the model’s performance across all agricultural plots.

The Brier score, mean absolute error (MAE), and R2 were employed to assess model
accuracy, prediction errors, and goodness of fit during cross-validation. The Brier score is
specifically used in the context of probabilities. A Brier score of 0 indicates perfect accuracy,
reflecting precise alignment between the model’s forecasts and observed data, while a score
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of 1 signifies perfect inaccuracy [53]. In this research, we conducted statistical analysis and
formulated our results using RStudio version 2022.07.2 Build 576, developed by RStudio,
PBC, ©2009–2022.

3. Results
3.1. Observed FT Spatiotemporal Variability

The near-surface (2 cm) soil freezing probability displays variability between the two
studied sites, monitored plots, and years (Figure 3). In both study sites, the observed
probability of soil freezing in forest plots (A and B) demonstrated significantly fewer
instances of freezing, despite experiencing a high frequency of FT transitions, compared
to agricultural plots. The agricultural plots in St-Maurice (Figure 3c,d) experienced a
prolonged duration of frozen conditions in comparison to St-Marthe (Figure 3a,b). While
there is spatial variation in freezing probability within both agricultural and forest plots,
temporal variations in freezing probability are also apparent during the two study periods at
both sites. Spatial heterogeneity in frozen probability was observed within both agricultural
and forest plots across the study site.
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Figure 3. Spatial and temporal variations in freezing probability at 2 cm depth along with correspond-
ing S1 overpasses for all study plots. (a,b) St-Marthe for 2020–21 and 2021–22. (c,d) St-Maurice for
2020–21 and 2021–22. A and B plots in each site located in forest (green rectangles). For St-Marthe’s J
and I and St-Maurice’s F, G, and H plots, the initiation of soil temperature monitoring started later,
resulting in an absence of freezing probability values.

In St-Marthe, the forest plots (A and B) displayed notable spatial heterogeneity, marked
by more frequent freeze–thaw transitions (Figure 3a,b). Meanwhile, the agricultural plots
located near the forest edges (C and D) in the same vicinity were less frozen and ex-
hibited less variability, with fewer freeze–thaw transitions. In these plots, only a few
isolated freezing events with a freezing probability exceeding 80% were observed dur-
ing the two study periods. This occurrence can be primarily attributed to the insulating
properties of snow cover, especially prevalent in areas near the forest edge. The dense
accumulation of snow in these plots forms a significant thermal layer, providing effective
insulation against soil freezing. However, during the second study period, as depicted in
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Figure 3d, these agricultural plots exhibited an increased frequency of freezing and thaw-
ing transitions (C, D, and E plots). This phenomenon can be attributed to the spatial and
temporal variability of snow depth, particularly the redistribution of snow, which affects
its insulating properties at these plots. For a detailed depiction of spatial and temporal
variations in freezing probability at 10 cm for all agro-forested plots at both sites, refer to
Supplementary Material Figure S4.

3.2. Comparisons of Predictors for Modelling Freezing Probability

We conducted a comparative analysis using the logistic linear model to assess the per-
formance of the EFTA, Delta, and FTI algorithms derived from VV and VH backscattering
in explaining soil freezing probabilities at 2 cm and 10 cm soil depth. The results of this
analysis are summarized in Table 2. In the context of modeling soil freezing probabilities,
the AIC scores reflect the complexity and fit of the models at different soil depths. At a
depth of 10 cm, where freezing probabilities trend towards thawing (indicated by proba-
bilities tending to 0), the model exhibits a lower AIC score, adequately fitting the model
due to more frequent thawing events. Thus, the variation in AIC scores between depths
underscores the importance of tailoring model complexity to the specific characteristics
and dynamics of soil freezing at different depths. According to the findings presented in
Table 2, the logistic model utilizing the EFTA derived from VH polarization demonstrated
better performance in predicting ground temperature observations at 2 cm, as indicated by
its higher Pseudo-R2 value of 0.54. Furthermore, the predictions generated by the EFTA
display a stronger ability to accurately predict frozen soil states across different soil depths
and polarizations, outperforming both the Delta and FTI algorithms. As a result, further
models were developed using the EFTA derived from VH backscattering.

Table 2. Statistical logistic model summary for the EFTA, Delta, and FTI at 2 and 10 cm.

Algorithms Soil Depth (cm) Polarization Pseudo-R2 AIC

EFTA

2 VH 0.54 199
VV 0.36 623

10 VH 0.49 115
VV 0.36 194

Delta

2 VH 0.32 706
VV 0.22 879

10 VH 0.27 333
VV 0.21 468

FTI

2 VH 0.31 714
VV 0.20 918

10 VH 0.22 445
VV 0.16 546

For the comparative analysis of EFTA and Delta algorithms, Figure 4 depicts multiple
plots illustrating the outcomes of both algorithms for the two study plots. As depicted in
the upper plots of Figure 4, the Delta freeze–thaw algorithm effectively identified frozen
states during winter when backscatter consistently remained low, distinguishing them from
thawed periods. However, a significant challenge arose when encountering substantial
drops in backscatter during the thawed periods in fall (early October to mid-October) and
spring (mid-May to mid-June). In most plots, we observed one or two consecutive sudden
drops in backscatter, particularly during mid-May to mid-June. Based on the time series
of daily precipitation and air temperature presented in Supplementary Material, Figure
S5, this phenomenon appears to be linked to a lack of rainfall over several weeks. This
was evident during early fall (early October to mid-October) and, more notably, at the
end of spring (mid-May to mid-June). The combination of no precipitation and rising air
temperatures during these periods led to increasingly dry soil conditions, which preceded
the sudden backscatter drops observed at the two study sites. In these instances, the Delta
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algorithm inaccurately identified these thawed events as frozen states, while the probability
of soil freezing indicates non-frozen conditions. This misidentification of thawed conditions,
observed across all plots, was attributed to the decrease in backscatter. Consequently, the
proposed EFTA, illustrated in the lower plots of Figure 4, overcomes this limitation and
brings a notable improvement in freeze–thaw state detection across all plots and years. This
enhancement is apparent in the coefficient of determination (R2) between the predicted and
observed probability of freezing at 2 cm.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 24 
 

 

the end of spring (mid-May to mid-June). The combination of no precipitation and rising 

air temperatures during these periods led to increasingly dry soil conditions, which pre-

ceded the sudden backscatter drops observed at the two study sites. In these instances, 

the Delta algorithm inaccurately identified these thawed events as frozen states, while the 

probability of soil freezing indicates non-frozen conditions. This misidentification of 

thawed conditions, observed across all plots, was attributed to the decrease in backscatter. 

Consequently, the proposed EFTA, illustrated in the lower plots of Figure 4, overcomes 

this limitation and brings a notable improvement in freeze–thaw state detection across all 

plots and years. This enhancement is apparent in the coefficient of determination (R2) be-

tween the predicted and observed probability of freezing at 2 cm. 

 

Figure 4. Comparison of observed 2 cm soil freezing probabilities (dark blue, right Y-axis) with that 

predicted by the Delta method (top row, in red) and EFTA (bottom row, in red). The S1 corrected 

VH polarization backscatter signal is also displayed in green. On the left Y-axis, values less than 0 

correspond to corrected VH backscatters (green curve), while values greater than 0 correspond to 

the predicted freezing probability (red curves). (a,b) St-Maurice’s H plot in 2020–21. (c,d) St-Mau-

rice’s H plot in 2021–22. (e,f) St-Marthe’s H plot in 2020–21. (g,h) St-Marthe’s H plot in 2021–22. (i,j) 

St-Marthe’s I plot in 2020–21. (k,l) St-Marthe’s I plot in 2021–22. The R2 values, derived from the 

correlation between the soil freezing probability at 2 cm depth and VHDelta (top plots) / and VHEFTA 

(bottom plots). A dashed line represents the overall trend between VHDelta and the date (top plots) 

or VHEFTA and the date (bottom plots). 

3.3. Spatially Variable Probabilistic Modelling of FT Detection 

Figure 5 illustrates examples of locally (at each plot) fitted logistic models, depicting 

the 2 cm depth observed freezing probability against VHEFTA. This representation aims to 

showcase the spatial and temporal variability of frozen soil between the plots. The fitted 

logistic regression model exhibited distinct Pseudo-R2 values for each agricultural or for-

est plot in each study period (Figure 5). Specifically, the H agricultural plot in St-Marthe 

(Figure 5a) displayed a higher goodness of fit in the first study year compared to the sec-

ond year. This plot, characterized by clay soil type and soybean residues, had Pseudo-R2 

values of 0.59 and 0.47 in the first (green curve) and second (sky blue curve) study years, 

respectively. In the agricultural plot I, the fitted logistic model showed a more robust cor-

relation in the second year, marked by a ploughed crop type and scattered debris (Pseudo-

R2: 0.57), compared to the first year of the study (Pseudo-R2: 0.48), as illustrated in Figure 

5b. The presence of soybean debris and scattered crop residues in the plots may affect 

surface roughness. This roughness variability, in turn, influences the interaction of VH 

polarization with the surface. 

Figure 4. Comparison of observed 2 cm soil freezing probabilities (dark blue, right Y-axis) with
that predicted by the Delta method (top row, in red) and EFTA (bottom row, in red). The S1
corrected VH polarization backscatter signal is also displayed in green. On the left Y-axis, val-
ues less than 0 correspond to corrected VH backscatters (green curve), while values greater than
0 correspond to the predicted freezing probability (red curves). (a,b) St-Maurice’s H plot in 2020–21.
(c,d) St-Maurice’s H plot in 2021–22. (e,f) St-Marthe’s H plot in 2020–21. (g,h) St-Marthe’s H plot in
2021–22. (i,j) St-Marthe’s I plot in 2020–21. (k,l) St-Marthe’s I plot in 2021–22. The R2 values, derived
from the correlation between the soil freezing probability at 2 cm depth and VHDelta (top plots)/and
VHEFTA (bottom plots). A dashed line represents the overall trend between VHDelta and the date (top
plots) or VHEFTA and the date (bottom plots).

3.3. Spatially Variable Probabilistic Modelling of FT Detection

Figure 5 illustrates examples of locally (at each plot) fitted logistic models, depicting
the 2 cm depth observed freezing probability against VHEFTA. This representation aims
to showcase the spatial and temporal variability of frozen soil between the plots. The
fitted logistic regression model exhibited distinct Pseudo-R2 values for each agricultural
or forest plot in each study period (Figure 5). Specifically, the H agricultural plot in St-
Marthe (Figure 5a) displayed a higher goodness of fit in the first study year compared
to the second year. This plot, characterized by clay soil type and soybean residues, had
Pseudo-R2 values of 0.59 and 0.47 in the first (green curve) and second (sky blue curve)
study years, respectively. In the agricultural plot I, the fitted logistic model showed a more
robust correlation in the second year, marked by a ploughed crop type and scattered debris
(Pseudo-R2: 0.57), compared to the first year of the study (Pseudo-R2: 0.48), as illustrated
in Figure 5b. The presence of soybean debris and scattered crop residues in the plots may
affect surface roughness. This roughness variability, in turn, influences the interaction of
VH polarization with the surface.
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Figure 5. Local fitted logistic models for observed freezing probability (2 cm) against VHEFTA in
St-Marthe (top) and St-Maurice (bottom). (a) St-Marthe’s H agricultural plot. (b) St-Marthe’s I
agricultural plot. (c) St-Marthe’s B forest plot. (d) St-Maurice’s F agricultural plot. (e) St-Maurice’s H
agricultural plot. (f) St-Maurice’s A forest plot. The top and bottom Pseudo-R2 (Pse-R2) values of
each plot are shown for 2020–21 and 2021–22.

Despite the consistent conditions observed across the two study years, the goodness
of fit of the logistic model exhibited variations between these years in plots F and H
at St-Maurice, as evidenced by the data presented in Table 2. The observed differences
in model performance may be explained by other possible conditions, such as changes
in other backscattering properties, changes in surface conditions, and variations in soil
moisture content. These factors highlight the complexity of the interactions influencing
radar signals and soil freezing dynamics within specific plots over time. The perfor-
mance of the fitted GLM in predicting soil freezing probabilities varied across the different
forest plots. Generally, the model exhibited lower efficacy in forest plots compared to
agricultural plots across the two study sites. Notably, in the second year of the study,
the highest correlation was observed in St-Marthe’s B forest plot, with Pseudo-R2 values
reaching 0.58.

The mixed modelling approach, as outlined in Section 2.6, accommodates spatial
variability. An analysis and comparison of the various candidate probabilistic models are
presented in Table 3. As indicated in Table 3, the more complex mixed models, accounting
for both fixed and random effects, explain relatively high variances in site-level predictors.
However, it is noteworthy that the full complex model (Model 6) exhibits a lower level of
performance compared to its fewer complex counterparts (Models 4 and 5).
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Table 3. Comparing probabilistic models of 2 cm depth soil freezing probability based on different
site-level predictors. Refer to Section 2.6 for model definitions.

Models
R2

Pseudo-R2 AIC
Marginal Conditional

1 0.54 241
2 0.56 0.57 239
3 0.55 0.58 231
4 0.59 0.61 232
5 0.59 0.60 252
6 0.59 0.60 271

The model results reveal that Model 4, a mixed model incorporating the interaction
between VHEFTA and crop types (‘Crop-Mixed’ model) with a random effect on plots,
displays a low AIC (231) and the highest marginal/conditional R2 values (0.59/0.61).
Hence, the Crop-Mixed model accounts for 61% of the variance of observed soil freezing
probability (conditional R2), of which 59% is attributed to fixed effects (marginal R2) and
only 2% to random (plot) effects.

This model provides the most precise and parsimonious model to predict freezing
probability, taking into account fixed (crop-type) and random (plot) spatial variability in
agricultural plots. Table 4 provides a comprehensive overview of predictor effects derived
from the Crop-Mixed model, showing their impact on soil freezing probabilities at the
plot level. Notably, the p values associated with each predictor highlight the significant
influence of EFTA derived from VH backscatter on model predictions.

Table 4. Predictor effects for the Crop-Mixed model. σ2 denotes the residual variance, τ00 is the
random effect variance at the plot level, and ICC is the intra-class correlation and represents the
proportion of total variance attributable to between-group variability, and N Plot denotes the number
of agricultural plots used in the analysis. The bold values in the 'p' column indicate statistically
significant effects.

Predictors Estimates CI p

(Intercept) 0.04 −0.06–0.14 0.441
VHEFTA 0.04 0.02–0.06 <0.001
Crop type
Grassland Reference
Maize −0.03 −0.14–0.08 0.593
Ploughed 0.09 −0.03–0.21 0.142
Potato −0.05 −0.17–0.07 0.398
Soybean 0.00 −0.12–0.12 0.989
Crop type and VHFFTA interactions
VHEFTA: Maize 0.04 0.02–0.07 0.001
VHEFTA: Ploughed 0.06 0.03–0.09 <0.001
VHEFTA: Potato 0.06 0.03–0.08 <0.001
VHEFTA: Soybean 0.06 0.03–0.09 <0.001

Random Effects
σ2 0.07
τ00 Plot 0.00
ICC 0.05
N Plot 14
Observations 1036
Marginal R2/Conditional R2 0.586/0.608

While the main effects of crop types on soil freezing were not individually significant,
the substantial interactions between crop types and VH backscatter signals underscore that
the type of crop present modulates the VH backscatter response to soil freezing. Specifically,
ploughed fields, as well as potato and soybean fields, exhibited the most pronounced
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modulating effects, with an interaction term estimate of 0.06. This was followed by maize
with an estimate of 0.04, and grassland fields which served as the reference category
with an estimate of 0. These findings indicate the presence of a ‘cross-over interaction’,
where the influence of VHEFTA on soil freezing probabilities is not uniform across all
crop types.

In Figure 6, cross-over interactions between different crop types and the relationship
with VHEFTA regarding the predicted soil freezing probability are depicted. The data
indicate that with rising VHEFTA values, there is a correspondingly increased probability of
soil freezing across all crop types, although this trend occurs at varying rates for each type.
For crop types such as ploughed fields, potatoes, and soybeans, the slopes indicate that
the effect of VHEFTA on soil freezing probability is relatively stable across these crop types.
However, the magnitude of the effect varies.
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predicted soil freezing probability.

3.4. Model Validation

The results of the temporal cross-validation for the Crop-Mixed soil freezing model are
presented in Table 5. The results indicated that the model performed more effectively when
calibrated with the first year’s data and validated against the data from the subsequent year
of the study. This effectiveness was evidenced by a robust squared correlation coefficient
(R2) value of 0.60, a low Mean Absolute Error (MAE) of 0.18, and a Brier score of 0.19,
which collectively indicate moderately high performance by the model.

Table 5. Temporal cross-validation of the Crop-Mixed soil freezing model. The R2, MAE, and the
Brier score are given for the validation period.

State R2 MAE Brier Score

Calibration 2020–21, validation 2021–22 0.60 0.18 0.19
Calibration 2021–22, validation 2020–21 0.56 0.18 0.17

The leave-one (plot)-out spatial cross validation (LOOCV) yielded a mean R2 score
of 0.79, along with small MAE and Brier scores of 0.14 and 0.17, respectively (Figure 7),
suggesting a good spatial transferability of the model. The lowest R2 observed was for
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St-Marthe’s C plot in 2020–21, indicating that the model’s predictions are comparatively
less precise for this plot than for others.
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Figure 7. Spatial cross-validation results of the Crop-Mixed soil freezing probability model with
28 single folds, showing 14 plots evaluated across two study years: 2020–21 (gray) and 2021–22
(white). The figure displays the Brier score, MAE, and R2 for each fold when individually excluded
from calibration and used for validation. The statistical metrics averages for the plots across the study
years 2020–21 and 2021–22 exhibited the following respective values: For 2020–21: R2 = 0.55, Brier
Score = 0.19, and MAE = 0.18; and for 2021–22: R2 = 0.60, Brier Score = 0.18, and MAE = 0.17.

When considering the average cross-validation R2 values from the first and second
years of the study, a higher R2 of 0.60 is observed for 2021–22 compared to an R2 of 0.55 for
2020–21. This implies that the model, when trained using all available data while excluding
the specific plot in the second year under consideration, more effectively identifies the
freeze–thaw predictions.

The comparison between predicted and observed 2 cm depth soil freezing probability
shows significant scatter, without any clear relationship with crop types (Figure 8a). The
good performance of the model is thus partly due to the clustering of values at low and high
probabilities, i.e., the model is able to discriminate between thawed and frozen conditions
but yields more uncertain predictions at intermediate probabilities. To evaluate the ability of
the model to classify the observed freezing probabilities into ‘frozen’ or ‘thawed’ conditions,
the predicted and observed freezing probabilities were converted into binary states of
frozen and thawed using a threshold of 0.5. The model accurately predicted the frozen
status with an overall accuracy of 85.2%, confirming that it successfully classified most
freezing and thawing events in agricultural plots across two sites over two study periods
(Figure 8b). The classification accuracy varied among crop types, with grassland plots
showing the highest classification accuracy (96%), followed by soybeans (86%), ploughed
fields (83%), maize (82%), and potatoes (80%). In plots C and D of St-Marthe, which are
grassland areas, a predominantly thawed state was observed, as depicted in Figure 3a,b.
This thawed state represented the majority class in these specific plots. Consequently, the
model demonstrated high classification accuracy, particularly in identifying this prevalent
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thawed condition. The ability of the model to accurately classify the more common thawed
states contributed significantly to its overall effectiveness in these grassland areas.
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Figure 8. Comparison of the soil freezing probability predicted by the Crop-Mixed model vs. observed
values. (a) Scatter plot of predicted vs. observed data; (b) frequency histogram showing the accuracy
(true positive/negative) and misclassification (false positive/negative) for the different crop types.
In the left plot, the red line depicts the best fit for the plotted points, while the gray line illustrates
the hypothetical scenario where predicted values perfectly align with observed ones. A smaller gap
between these lines signifies the higher model's performance.

4. Discussion
4.1. FT Spatial and Temporal Variability

By the analysis of spatial and temporal variations in soil freezing probability, derived
from soil temperature measurements at 2 cm depth, we have noted considerable variations
in freezing probability among the plots of study sites (Figure 3). This variability is evident
regardless of whether the plots are situated in agricultural or forested areas. The primary
likely factors contributing to this variability are the spatial and temporal variations in local
plot attributes, including variations in soil properties, vegetation cover, and snow depth
conditions across the study sites.

As compared to agricultural plots, forested areas in St-Marthe and St-Maurice exhibit
fewer freezing occurrences, which can be attributed to the substantial amount of forest
litter acting as an insulating barrier between the soil and the air [54]. This insulation effec-
tively reduces heat loss from the soil, thereby impeding rapid freezing. Additionally, the
attenuated winds in forested areas can further reduce sensible heat loss through turbulent
fluxes. Moreover, the presence of trees contributes to ground heating through longwave
radiation [55].

Ground-based measurements of snow depth in St-Maurice over two study periods
reveal that forest plots (plots A and B) typically display the highest snow depths. This
is largely due to the forest canopies’ ability to intercept snowfall, which leads to greater
accumulation in the forest. Additionally, the canopy cover provides protection against
direct sunlight and wind, mitigating snow sublimation. As shown in Figure 3c, the most
events of soil freezing in 2020–21 occurred in forest plot B in St-Maurice, with the lowest
recorded snow depths (see Supplementary Material Figure S6).

In contrast, agricultural plots demonstrated notable temporal variability in snow
depth, with the first study year showing relatively higher snow accumulation. This may
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explain the rather shorter duration of soil freezing experienced by the agricultural plots
in the first study period compared to the second year. Despite all agricultural plots in
St-Maurice being sufficiently far from forest edges, there was also spatial variability in
snow depth between plots.

Figure 3 illustrates that the agricultural plots in St-Maurice experienced extended
periods of soil freezing during the two study periods, compared to the relatively shorter
freezing durations observed in St-Marthe’s agricultural plots. Despite variations in spatial
and temporal snow cover, factors such as soil properties and climate conditions significantly
influenced the duration of soil freezing in St-Maurice compared to St-Marthe. Notably, the
soil composition differs between these locations, with predominantly clay soil in St-Marthe
and silty clay in St-Maurice. Clay, being a finer-textured soil, contrasts with the more coarse-
textured silty clay. According to Jagtar Bhatti et al. [56], fine-textured soils have a larger
mineral surface area and a more extensive network of fine pores. These characteristics
impede ice formation, primarily restricting it to larger pore spaces. Consequently, fine-
textured soils are more likely to experience super-cooling, remaining unfrozen or partially
unfrozen even under sub-zero temperatures. This phenomenon is less pronounced in
coarser-textured soils, such as the silty clay found in St-Maurice, which explains the longer
and more intense soil freezing observed there compared to St-Marthe. On the other hand,
the average daily air temperature during the two study periods for St-Marthe and St-
Maurice was 3.07 ◦C and 2.10 ◦C, respectively (see Supplementary Material Figure S5). The
data indicate that, during the two study periods, St-Maurice was approximately one ◦C
colder than St-Marthe. The higher latitude of St-Maurice compared to St-Marthe could be a
contributing factor to this temperature difference, which in turn may influence the extent
of soil freezing.

Regarding the variation in soil freezing occurrences among plots, complex interactions
among plot-level variables can play a considerable influence. For instance, the F plot in
St-Marthe during 2021–22 displayed prolonged soil freezing events compared to the F
plot in 2020–21, despite having identical site conditions (Figure 4). A key factor under
consideration is the variability in snow cover across the two study years. Freeze–thaw
events are highly dependent on both snow depth and soil temperature. Decker et al. [57]
observed that in snow-free plots, there was a significant negative correlation between the
average ambient temperature and the number of days the soil remained frozen at various
soil depths. This finding is particularly relevant to our study, given the absence of in
situ snow depth data for the plots. A plausible explanation for the more prolonged soil
freezing observed in the second year might be linked to the differences in average daily air
temperatures during the two periods. The 2020–21 study year had an average temperature
of 3.73 ◦C, while the subsequent 2021–22 year recorded a lower average temperature of
2.41 ◦C (see Supplementary Material Figure S5a). This relatively lower average temperature
in the second year likely led to more severe soil-freezing episodes.

4.2. Retrieving Ground Frozen State from VH Backscatter

When it comes to the S1 polarization ability to predict frozen soil, better model perfor-
mances were obtained when using VH backscatter signals within the EFTA logistic models
to predict 2 cm depth soil freezing probability. This can be explained by the increased
sensitivity of cross-polarized VH backscatter to surface characteristics (soil roughness, soil
types, ground vegetation density, soil state) [58]. Further, as compared to VV polarization,
VH backscattering correlates more strongly with soil water content [59]. Irrespective of
the algorithm employed, the model predictions exhibited a more suitable goodness of fit
for soil freezing at a depth of 2 cm. Due to the limited penetration depth of the C-band
backscattered SAR signal, its sensitivity to dielectric variations decreases with increasing
depth of the frozen soil, thereby making the prediction of frozen soil less reliable for deeper
layers compared to the near-surface [60]. Furthermore, the dielectric discontinuity between
soil and air results in distinct radar backscattering coefficients, making the signal partic-
ularly sensitive to soil freezing near the surface [61,62]. The improved performance of
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the probabilistic approach employing the suggested EFTA derived from VH radar data
(Pseudo-R2 = 0.54) indicates its enhanced capability to detect variations in backscatter
during frozen and thawed episodes (Table 2).

4.3. GLM Prediction and Influencing Variables on Radar Signals

In St-Marthe, during both study years, the locally fitted GLM results indicated that the
H plot showed improved model performance in the first year compared to the second one,
despite sharing similar soil types (Figure 5a). A plausible explanation for this phenomenon
is the presence of crop debris on the surface during fall, which contributes to a significant
impact on radar backscattering through two primary mechanisms. Firstly, it introduces
additional roughness to the soil surface, thereby influencing the scattering of radar waves.
Secondly, the debris assists in retaining soil moisture, thereby altering the soil dielectric
constant and modifying the interaction between the radar signal and the ground.

Generally, the different GLM model performances observed between agricultural plots
in the two study periods (Figure 5a,b,d,e) can largely be attributed to several intercon-
nected aspects. Firstly, the local variability in snow depth, influenced by microtopographic
variations, differing vegetation covers, and wind patterns across sites in St-Marthe and St-
Maurice [63], significantly impacts the ground’s thermal regime. These changes in ground
surface temperature within the plots result in alterations to the soil’s freezing and thawing
state. Secondly, even minor changes in soil moisture content can notably alter the soil’s
complex permittivity [64], a phenomenon that is particularly evident during fall and spring.
During the thawing period, spatial and temporal variations in wet soil across different plots
independently affect the VH radar. An increase in soil moisture correlates with a rise in the
backscattering coefficient. This complex interplay between local snow depth variability
and soil moisture dynamics is crucial for understanding the varied backscatter response
and, consequently, the differing model performances in agricultural plots across distinct
study periods.

The logistic model fitted to the forest plots indicated higher performance in cases
where the plots exhibited a relatively balanced distribution of frozen and thaw events
(Figure 5c: 2021–22). This balance contributed to more accurate predictions. Specifically,
the forest plot A in St-Maurice experienced only a limited number of frozen episodes
over the two study years. In such instances, the lower predictive performance for frozen
states is maintained, as the imbalanced dataset biases the model’s predictions toward
the dominant class, which is the thaw state. This highlights the significance of having a
sufficiently extensive and balanced training dataset for model calibration and validation.
Mixed models are well-suited for this purpose as they enable fitting the model on the
whole dataset, accounting for spatial variabilities through plot-level predictors, cross-level
interactions, and random effects.

4.4. Crop-Mixed Model and Predictor Effects

The results revealed that among the tested mixed models, the Crop-Mixed model,
incorporating the interplay between VHEFTA and crop type predictors, exhibited the most
favorable performance among the candidate models. Additionally, the Crop-Mixed model
brought to light discernible effects of predictors, including cross-level interactions between
VHEFTA and crop types which improved the prediction of soil freezing probability (Table 3).
Accordingly, the obtained conditional R2 of 0.61 emphasizes the collective effect of both
fixed and random effects in explaining the variability within the dependent variable.

The analysis revealed that while the inclusion of crop-type interactions improved the
model’s predictions, this improvement remains relatively small compared to the Model
2 results, which only considered random effects. A significant observation is the ab-
sence of random variability in the Crop-Mixed model, as indicated by a τ00 Plot value
of 0.00 (Table 4). This finding suggests that the incorporation of crop types effectively
explained the random variability, which was more pronounced in the model featuring only
random effects.



Remote Sens. 2024, 16, 1294 20 of 24

Comparatively, the analysis of Model 2, detailed in Table 3, provided insightful
results. There was minimal spatial variability between plots based on the closeness of the
conditional R2 (0.56) and marginal R2 values (0.57) in this model. This suggests that, while
random effects are indeed present, they do not significantly contribute to the variability in
soil freezing probability across different plots. This highlights the importance of cross-level
interaction in the Crop-Mixed model, where crop types modulate the backscatter response
to soil freezing. Accordingly, the results of cross-over interactions among different crop
types demonstrated varied relationships between VHEFTA and the predicted probability of
soil freezing. Specifically, ploughed fields, as well as potato and soybean fields, showed an
increased susceptibility to soil freezing across all VHEFTA values. Conversely, grasslands
typically exhibited a lower predicted probability of soil freezing in response to changes
in VHEFTA, compared to other crop types. These variations underscore the significant
influence of specific crop types on the prediction of soil freezing.

The temporal variability of the VHEFTA at the plot-level offers insight into the varying
results of temporal cross-validation. Despite the consistent soil types and similar crop types
across the agricultural plots, the differences in snow depth and air temperature across the
two study periods are notable. The presence of the relatively higher snow depth in agricul-
tural plots (see Supplementary Material Figure S6) and higher average air temperatures
during the first year (see Supplementary Material Figure S5) potentially account for the
improved performance of the Crop-Mixed model’s temporal cross-validation compared
to the second year (Table 5). Specifically, these conditions are possibly key drivers that
significantly influence the probability of soil freezing. Furthermore, the results of spatial
cross-validation for the Crop-Mixed model (Figure 7) emphasize the importance of ac-
counting for the spatial heterogeneity of snow cover in plots, as well as the complexities
of surface roughness in different agricultural plots, when developing predictive models
for soil freezing in farmlands. The observation of very limited soil freezing events for
St-Marthe’s C and D plots in the 2020–21 period and apparently no freezing events in
the 2021–22 period near the forest edge, as indicated in Figure 3a,b, can be scientifically
explained by the presence of high snow depth in these areas.

In this study, a novel freeze–thaw algorithm, the EFTA, was developed specifically for
agro-forested areas where seasonal freeze–thaw transitions are dominant. The developed
EFTA demonstrated significantly improved results compared to both Delta (Table 2 and
Figure 4) and FTI methods (Table 2). However, future research should consider certain
limitations, particularly the effects of high backscatter noise before the onset of the frozen
period and during the onset of snow melting in spring. To address these challenges, it
is advisable to experiment with identifying the potential frozen period by selecting the
most negative and positive backscatter differences before and after the frozen period, while
excluding months with a high probability of thawing (e.g., June and later). As a result,
the algorithm performance will improve in situations with significant backscatter noise.
Additionally, for study sites with limited frozen conditions, fine-tuning the K parameter
becomes essential to align the algorithm’s output with the specific conditions of the study
site, thereby enhancing its adaptability and robustness.

5. Conclusions

This study represents a new application of a probabilistic approach for identifying
locally frozen soil conditions in agro-forested environments in southern Québec, Canada,
using Sentinel-1 SAR observations. The utilization of the GLM proved to be a robust
statistical framework for analyzing soil freezing probability and conducting spatially vari-
able probabilistic modeling of freeze–thaw detection. Through the incorporation of mixed
models, this study significantly advanced our understanding of freeze–thaw dynamics and
enabled more precise and spatially explicit predictions within the study area. Notably, the
Crop-Mixed model demonstrated a superior ability to capture the variability of site-level
predictors for freezing probability, emphasizing the advantages of employing the VHEFTA
and the mixed model approach. These methods offer enhanced accuracy and explanatory
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power in predicting the probability of freezing in mixed agro-forested areas. In light of the
results, the newly developed EFTA has shown capability in detecting frozen and thawed
states in both agricultural and forested areas. The results underscore the importance of
a deeper comprehension of spatial and temporal dynamics in radar signal interactions
with surfaces, providing valuable insights for optimizing model calibration and validation
strategies of soil freezing retrieval models in contexts where surface conditions exhibit
seasonal variations.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs16071294/s1, Figure S1: Schematic representation of
the measurement configuration for soil temperature measurements (2 cm and 10 cm depths), aligned
with the Sentinel 1 pixel size of 10 m. The geometry of the configuration includes five soil pits (blue
points) arranged in a cross shape with a distance of 5 m between each pit; Figure S2: Correction of
local incidence angles in St-Maurice’s C plot with the corresponding linear equation. (a) VH backscat-
ter before correction in 2020–21. (b) The corrected VH backscatter in 2020–21. (c) VH backscatter
before correction in 2021–22. (d) The corrected VH backscatter in 2021–22; Figure S3: Examples of the
approach used to identify the soil freezing and thawing transitions in backscatter signals in the of the
EFTA method. The most negative backscatter differences (upward green triangles) before February
represents the most probable onset of the freezing period (delineated in light blue), while the most
positive difference (downward green triangles) after February represent the most probable onset of
soil thawing (delineated in light red). (a–d) correspond to St-Marthe’s I and J plots and St-Maurice’s
G and H plots, respectively, for the year 2020–21. (e–h) correspond to St-Marthe’s I and J plots
and St-Maurice’s G and H plots, respectively, for the year 2021–22; Figure S4: Spatial and temporal
variations in freezing probability (10 cm) along with corresponding the S1 overpass for all agro-forest
plots in St-Marthe. (a,b) FT variations based on freezing probability in St-Marthe’s plots over two
study periods (2020–21 and 2021–22). (c,d) FT variations based on freezing probability in St-Maurice’s
plots over two study periods (2020–21 and 2021–22). In each site, forest plots are represented by A
and B plots (green rectangle). For St-Marthe’s J and I and St-Maurice’s F, G, and H plots, the initiation
of soil temperature monitoring started later, resulting in an absence of freezing probability values;
Figure S5: Time series plot of daily precipitation and air temperature, October 2020 to June 2022,
for two study sites. (a) St-Marthe. (b) St-Maurice. Note: the average daily air temperatures for the
entire study period, as well as for the first and second years (October to June), were calculated for
both St-Marthe and St-Maurice; Figure S6: Average snow depth (meters) in agro-forested plots of
St-Maurice over two study years in 2020–21 and 2021–22. Plot classification: ‘A’ and ‘B’ as forest plots;
‘C’ to ‘H’ as agricultural plots. Measurement period: End of November to March each year. Method:
Using snow ruler, snow depth recorded at five points within a 5 m × 5 m square per plot, including a
central point. Calculation: Average of five measurements per plot, aggregated to represent overall
snow depth for each plot.
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