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Abstract: Small-scale low-altitude unmanned aerial vehicles (UAVs) equipped with perception
capability for military targets will become increasingly essential for strategic reconnaissance and
stationary patrols in the future. To respond to challenges such as complex terrain and weather
variations, as well as the deception and camouflage of military targets, this paper proposes a hybrid
detection model that combines Convolutional Neural Network (CNN) and Transformer architecture
in a decoupled manner. The proposed detector consists of the C-branch and the T-branch. In the
C-branch, Multi-gradient Path Network (MgpNet) is introduced, inspired by the multi-gradient flow
strategy, excelling in capturing the local feature information of an image. In the T-branch, RPFormer, a
Region–Pixel two-stage attention mechanism, is proposed to aggregate the global feature information
of the whole image. A feature fusion strategy is proposed to merge the feature layers of the two
branches, further improving the detection accuracy. Furthermore, to better simulate real UAVs’
reconnaissance environments, we construct a dataset of military targets in complex environments
captured from an oblique perspective to evaluate the proposed detector. In ablation experiments,
different fusion methods are validated, and the results demonstrate the effectiveness of the proposed
fusion strategy. In comparative experiments, the proposed detector outperforms most advanced
general detectors.

Keywords: unmanned aerial vehicle (UAV); object detection; military targets; feature fusion strategy;
hybrid detection model

1. Introduction

In recent years, the evolution of military technology and the emergence of diverse
threats [1] have posed significant challenges to conventional security measures. In re-
sponse to these challenges, deep learning, a potent artificial intelligence technology, has
gained prominence in the national defense and security field [2]. It plays a pivotal role in
tasks including critical target tracking [3], scene matching for autonomous navigation in
restricted conditions [4], and threat identification [5]. Given maneuverability and rapid
deployment capabilities [6], small-scale and low-altitude unmanned aerial vehicles (UAVs)
are frequently employed in site protection, targeted patrols, and strategic reconnaissance
missions [1] to ensure swift responses to potential threats.

When identifying threat targets, conventional manual methods are inefficient, demand-
ing a great deal of human resources and time investments. Furthermore, the outcomes
frequently face issues of subjectivity and arbitrariness. Some handcrafted image processing
methods, such as histogram of oriented gradient [7] (HOG) and Deformable Part Model [8]
(DPM), have demonstrated drawbacks, including poor robustness and sensitivity to scale
variations. Sumari [9] employed Support Vector Machine (SVM) to recognize aerial military
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targets. They utilized SVM to learn the knowledge of 11 features, including the wing,
engine, fuselage, and tail of military airplanes, achieving good accuracy on their datasets.

In contrast, object detection techniques offer a promising solution for accurately
locating and classifying specific targets, thus alleviating the aforementioned limitations.
Du [10] proposed a lightweight military target detector. They employed the coordinate
attention module to design the backbone, reducing the parameters and computation.
Additionally, the authors proposed power parameter loss by combining EIOU and focal loss,
further enhancing detection accuracy and convergence speed. Jafarzadeh [11] implemented
YOLO based on automated detection of tanks. They constructed a tank dataset and
utilized data augmentation to address the scarcity of targets. They achieved satisfactory
results in real-time military tank detection. Jacob [12] introduced CNN for classifying
military vehicles in Synthetic Aperture Radar (SAR) images. Through transfer training on
a VGG16-pretrained model, they achieved classification accuracy of 98. Yu [13] presented a
military target detector based on YOLOv3. By introducing deformable convolution and
dual-attention mechanisms, the authors designed ResNet50-D network, which effectively
improved the accuracy and speed for military target detection, providing better technical
support for battlefield situation analysis.

Deploying detection algorithms on UAVs will significantly enhance the accuracy and
efficiency of threat identification. However, detecting targets for low-altitude UAVs faces
several challenges. Firstly, in scouting operations, UAVs may fly at diverse attitudes and
angles, leading to drastic changes in the scale and background of the targets. Additionally,
unlike remote sensing images captured from a top-down perspective at high altitudes,
UAVs often monitor targets with a large oblique perspective for camouflage and conceal-
ment. Furthermore, potential threat targets are stealthy, disguised, and versatile, which
further complicates recognition. Based on these challenges, the ideal dataset should meet
two key requirements:

• The dataset is supposed to encompass a wide range of terrain and weather conditions,
including both ground and water domains;

• The UAV’s viewpoint has a large oblique perspective and altitude variations to match
real scouting mission scenarios.

The performance of detectors heavily relies on thorough extraction of image informa-
tion. RGB images exhibit a strong two-dimensional local structure [14] because neighboring
pixels in adjacent regions are highly correlated. This property allows humans to compre-
hend high-level concepts even from a tiny portion of an image. CNN excels in capturing
local feature information by effectively modeling pixel relationships within a defined kernel
size. Moreover, the local receptive field and weight-sharing properties of the convolution
kernel enable it to enjoy shift, rotation, and scale invariance. These inductive biases have
enabled CNN-based detectors to achieve good performance over recent decades. Two-stage
detector Faster R-CNN [15] first generated a vast number of predefined anchors and then
regressed the positions of positive ones to obtain detection results. One-stage detectors
such as the YOLO series [16–21] and SSD [22] leverage a single CNN to facilitate end-to-end
detection and directly generate detection results. However, CNN-based detectors pay little
attention to global information modeling.

By contrast, Transformer, characterized by a global self-attention mechanism, can
establish long-range dependencies between remote pixels in an image. It provides better
generalization and larger model capacity compared to CNN, but it necessitates pretraining
on large datasets before transfer training on custom datasets. ViT [23] introduced the
Transformer architecture to computer vision, achieving results comparable to CNN in
classification tasks. DETR [24] was a pioneer in applying an encoder–decoder Transformer
architecture in detection tasks. However, a global attention mechanism requires more
computing resources and longer training time. In order to improve the efficiency of the
Transformer block, subsequent works attempted to reduce the computational scope of self-
attention, such as Deformable DETR [25], Swin Transformer [26], CSWin Transformer [27],
and PVT [28]. Nonetheless, the weight matrix derived by self-attention between tokens,



Remote Sens. 2024, 16, 1288 3 of 24

which describes the relevance of different areas in an image, is unable to model relationships
between pixels within one token scope, implying a deficiency in extracting local information.

CNN and Transformer both have strengths and weaknesses. CNN is proficient in local
perception but lacks global modeling capability, while Transformer excels in establishing
long-range dependencies and gathering global information but lacks ability regarding
extraction of localized features. Many studies have explored hybrid structures. CvT [14]
proposed convolutional projection to replace the linear aspect in each Transformer block. It
abandoned position embedding due to a built-in local context structure of convolutions,
enabling the simplification of the process. BoTNet [29] achieved remarkable results in
object detection tasks by replacing the convolution layer with a multi-head self-attention
block in the final three bottlenecks of ResNet [30]. However, these works were only
preliminary attempts for hybrid models as they merely sequentially coupled convolution
and Transformer modules in turn without fully leveraging their respective strengths.

For the above design ideas and application scenarios, this article explores how to
combine the feature modeling process of CNN and Transformer in a decoupled manner,
aiming to leverage the merits of both and improve the performance of UAV object detection
from a large oblique perspective. Our contributions are as follows:

1. A hybrid detection model that combines CNN and Transformer architectures is pro-
posed for detecting military targets on ground and at sea. The detector incorporates T-
branch Region–Pixel two-stage Transformer (RPFormer) and C-branch Multi-gradient
Path Network (MgpNet) in a decoupled manner.

2. RPFormer, an efficient Transformer architecture consisting of Region-stage and Pixel-
stage attention mechanisms, is proposed to gather the global information of an entire
image. Additionally, MgpNet, based on Elan [21] block and inspired by the multi-
gradient flow strategy [31], is introduced using local feature extraction.

3. A feature fusion strategy for hybrid models in channel dimensions is proposed. It
fuses feature maps through three steps: Cross-Concatenation Interaction, Global
Context Embedding, and Cross-Channel Interaction.

4. An object detection dataset regarding military background is constructed. The dataset
consists of air-to-ground and air-to-sea scenarios and includes common combat units
in a real scenario. All the images are captured from a large oblique perspective from
10 to 45 degrees at low altitude.

2. Related Work
2.1. CNN-Based Detectors

Benefiting from end-to-end paradigms to directly acquire target positions, one-stage
detectors frequently exhibit superior inference speed. YOLO [16] divided one image
into multiple grids, and each grid was responsible for predicting objects whose ground
truth centroids fell within it. Based on YOLO, a series of improved algorithms have been
proposed, such as SSD [22], YOLOv3 [18], and YOLOv7 [21]. SSD utilized multi-level
feature maps to better deal with multi-scale issues of targets. RetinaNet [32] introduced
focal loss, which effectively alleviated the imbalance problem of positive and negative
samples. Two-stage detectors such as Fast R-CNN [33] and Faster-RCNN [15] operated
in two steps. Firstly, anchor generation generated dense predefined candidate boxes on
input images. This process may adopt methods like Region Proposal Network. Subse-
quently, each candidate box went through classification and position regression. While
it showed excellent accuracy, it suffered from relatively slower inference speed. Building
upon generalized CNN-based detectors, many efforts have been proposed for practical
UAV detection tasks. Wang [34] proposed an improved YOLO detector for maritime ship
detection. They improved the accuracy of the detector by introducing convolutional kernels
of different shapes for tiny objects. Xiong [35] presented an enhanced YOLOv5 model for
accurate litchi fruit recognition. The model incorporated Bi-directional Feature Pyramid
Network for feature fusion and utilized Slicing Aided Hyper Inference for tiny target detec-
tion. The experimental results demonstrated higher AP compared to the original method.



Remote Sens. 2024, 16, 1288 4 of 24

Hou [36] introduced YOLOX-Pro for efficient landslide detection, especially in intricate
mixed scenarios. By integrating VariFocal loss, they tackled sample distribution challenges,
and the model demonstrated heightened capabilities in detecting landslides in complex
environments. However, CNN-based detectors exhibit limitations in capturing global
context due to their inherent local attention characteristics. A UAV-based object detection
model necessitates consideration of not only the target attributes but also the contextual
background environment for achieving enhanced and reliable detection outcomes.

2.2. Transformer-Based Detectors

Transformer has gained popularity in the vision field due to excellent parallelization
and global attention mechanisms. In detection tasks, Transformer can be implemented in
two ways. One is adopting a complete encoder–decoder architecture: after preprocessing
steps like patch embedding and position encoding, image tokens traverse cascaded en-
coders for feature extraction. The decoders receive Key, Value, and Query tensors and then
conduct self-attention computations. Key and Value derive from the encoder, while Query
is the semantic and location information carrier of the objects from initialization generation.
DETR [24], as the pioneering work, viewed the detection task as a set prediction problem,
eliminating tedious preprocessing and postprocessing steps like anchor generation and
non-maximum suppression. It employed a bipartite matching strategy to produce detection
results. However, the global attention mechanism results in slow convergence. Addition-
ally, the limited resolution of feature maps faces challenges in scenarios with sharp scale
variations. Subsequent works improved DETR from different aspects, such as Deformable
DETR [25], Up-DETR [37], and DAB-DETR [38]. For instance, Deformable DETR proposed
a deformable attention module. Each pixel paid attention to only a set of sampled points
within its own neighborhood. The positions of these sampled points were learnable rather
than fixed, enabling a locally sparse and efficient attention mechanism.

Another paradigm is designing an efficient Transformer encoder to replace the back-
bone of existing detection baselines like Mask-RCNN [39]. Transformer encoders, such as
Pyramid Vision Transformer [28], served as generic backbones for feature extraction. How-
ever, a global attention mechanism means longer training time. To alleviate the problem,
researchers introduced sparse attention to limited attention calculations in a local scope.
Swin Transformer [26] divided the feature map into non-overlapping windows, limiting the
attention computation scope. Shifted Windows Multi-Head Self-Attention was proposed to
enable information interactions. CSWin Transformer [27] and CrossFormer [40] modified
the window shape to axial strips and dilated windows, respectively. Zhao [41] designed
Res-SwinTransformer with a Local Contrast Attention Network named RSLCANet for
infrared small-target detection in aerial remote sensing. With fewer parameters, RSLCANet
was suitable for practical deployment in applications like car navigation, crop monitoring,
and infrared warning. In UAV object detection, accurately perceiving the location of targets
is crucial. Transformers rely on position embeddings to introduce relative positions, while
CNNs inherently excel at handling positional information in images. Therefore, integrating
CNNs into detectors is necessary, particularly for small targets.

2.3. Hybrid Detectors

The CNN–Transformer hybrid detector is designed to thoroughly exploit the strengths
of both components, while how to efficiently integrate CNN and Transformer feature extrac-
tion modules is crucial for enhancing detector performance. In most hybrid detectors, CNN
and Transformer modules are alternately employed and tightly integrated into a single
network in a coupled manner. The Transformer module as the backbone initially performs
global correlation modeling from the input image, and, subsequently, its output is used
as the input for the CNN-based neck to conduct feature integration and scale adjustment.
Lu [42] proposed a hybrid model for UAV image detection. It utilizes CSWinFormer as the
backbone network to extract features, followed by a CNN-based neck network. A slicing-
based inference method is introduced to enhance small-object detection accuracy. Ye [43]
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introduced a hybrid detector for low-altitude UAVs. They proposed an attention-enhanced
Transformer block as the backbone to extract global information, and a CNN-based bot-
tleneck is utilized to control the computation load. Zhao proposed YOLO-Vit [44] for
UAV-based infrared vehicle detection, tackling issues like complex backgrounds and small
targets causing high false alarms. They combined YOLOv7 with MobileViT for efficient
feature extraction and designed C3-PANet neural network with the CARAFE upsampling
method to enhance recognition accuracy. Ren proposed HAM-Transformer [45] Net for
improving small-object detection in complex scenes of remote sensing images using UAVs.
The approach combined a convolutional network with an adaptive multi-scaled Trans-
former, effectively extracting detailed features and hierarchical information. All of these
hybrid detectors achieve good results, but they have not fully utilized the advantages of
the fusion model.

Compared to the aforementioned series form, the parallel hybrid model, in which both
the CNN and Transformer operate independently as separate branches, with each being
responsible for extracting features from the input image, is a strategy worth considering.
The parallel form is a decoupled design paradigm, facilitating the selection of the same
depth and size feature maps to create a comprehensive representation according to the
task requirements. This pattern follows the design philosophy of high cohesion and low
coupling. Deng [46] introduced CTNet, aiming to enhance the classification capabilities of
high-resolution remote sensing scenes. CTNet combined a CNN and Vision Transformer
in parallel form, optimized using a joint loss function to enhance intraclass aggregation.
This method demonstrated outstanding performance in classification tasks. We introduce
the parallel paradigm into the detection task and redesign the Transformer branch. Fur-
thermore, we propose a feature fusion module to eliminate the feature gap between the
two branches.

3. Method

In this section, we first systematically introduce the overall architecture of the proposed
detection model, as illustrated in Figure 1. Proposed hybrid detection model combines CNN
and Transformer architecture in parallel form, which consists of C-branch and T-branch.
We will then provide a detailed description of associated technologies:

• In Section 3.1, the core block Region-Pixel two-stage attention mechanism in RPformer
is illustrated in Figure 2. RPformer, an efficient Transformer Network as depicted in
Figure 3, is proposed as T-branch to gather information in global scope;

• In Section 3.2, the core block of MgpNet, efficient layer aggregation network’s (Elan)
block details, is illustrated in Figure 4. Inspired by multi-gradient flow strategy [31], as
shown in Figure 5, a Multi-gradient Path Network (MgpNet), as depicted in Figure 6,
is introduced as C-branch for extracting local information;

• In Section 3.3, a feature fusion strategy for the hybrid model is designed as depicted
in Figure 7. The fusion module combines feature maps of the same scale through
three steps in turn: Cross-Concatenation Interaction, Global Context Embedding,
and Cross-Channel Interaction.

3.1. Region–Pixel Two-Stage Attention Mechanism

Self-attention mechanism in Transformer makes it establish relationships among dis-
tant pixels, allowing for greater model capacity. However, it incurs larger computational
load and slower convergence. The challenge lies in how to efficiently calculate attention
between pixels. To tackle this issue, many handcrafted sparse attention patterns, such
as limiting attention in local windows [26], axial stripes [27], and dilated windows [40],
have been proposed to reduce computational loads of global attention mechanism. How-
ever, these approaches artificially design the attention scopes so Queries pay attention
to Key–Value pairs only in these manually specified regions. On the one hand, the fixed
shape and size of the region result in all Queries attending to the same set of Key–Value
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pairs; it is easy to cause the model to fall into suboptimal solutions, and, on the other hand,
too many artificial settings make the model less robust.

Figure 1. Framework of the proposed CNN–Transformer hybrid detection model.

In the original global attention mechanism, the weight matrix obtained by multiplying
Q and K is an approximate sparse matrix after softmax operation, which indicates that
there are some distant regions with weak correlations. There is no necessity to expend extra
computational resources for these regions. Consequently, we aim at improving attention
process so that pixels in certain regions focus only on those highly correlated with them.
This should be a dynamic process that is determined by the specific data distribution rather
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than being manually configured. Proposed Region–Pixel two-stage attention mechanism
helps to search the most relevant Key–Value pairs in an objective and data-driven pattern.

3.1.1. Region–Pixel Transformer Block

The core idea of proposed block is how to eliminate irrelevant Key–Value pairs and
identify specific regions that each given region should focus on. As depicted in Figure 2,
the Region–Pixel Transformer (RPFormer) comprises Region-stage attention and Pixel-
stage attention. The former stage is tasked with identifying regions with the highest
relevance, while the latter stage calculates self-attention within these identified regions.
For illustrative purposes, we set the number of heads to one, and the same principle applies
to the multi-head form.

• Region-stage attention

In the Region-stage attention, cosine similarity is employed to measure the correlation
between feature vectors in two distinct regions. Moreover, we utilize convolutional projec-
tion instead of linear projection to obtain Query and Key–Value pairs, effectively reducing
the computational load in this relevant region choice step. The details are provided below.

After downsampled module patch embedding or merging, feature map X ∈ RC×H×W

is divided into N2 regions by reshaping X to Xr ∈ RN2× HW
N2 ×C. These regions are non-

overlapping, and each one contains the same number of feature vectors.
Next, specific methods are utilized to generate the Query tensor (Q) and Key–Value

pair tensor (K and V) from the partitioned feature map Xr for computing self-attention.
The initial Transformer [47] module adopts linear projection transformation:

Q = Xr · WQ

K = Xr · WK

V = Xr · WV

(1)

The weight matrices WQ, WK, and WV represent the linear transformations for Q, K,
and V, respectively. However, CvT [14] introduced regular convolutional projection first
to replace linear transformation and achieved additional modeling of local spatial context.
Therefore, we employ Separable Convolution [48] with kernel size 3 to replace regular
convolution, aiming to further minimize the computational burden and achieve additional
local spatial context:

Q = Pointwise · conv
(

Batchnorm
(

Depthwise · conv
(
X′

r
)))

K = Pointwise · conv
(

Batchnorm
(

Depthwise · conv
(
X′

r
)))

V = Pointwise · conv
(

Batchnorm
(

Depthwise · conv
(
X′

r
))) (2)

Separable Convolution consists of depthwise separable convolution and spatial sepa-
rable convolution as in Equation (2). The BatchNorm Layer [49] is ultilized to accelerate
the training process and improve the model’s generalization.

Then measure the correlation between two regions. Assume there are feature vectors
a1, a2, . . . , an in region A and b1, b2, . . . , bn in region B . Correlation between feature vectors
in two regions can be measured as follows:

cossim(ai, bj) =
aT

i bj

∥ai∥2∥bj∥2
(3)

When value is close to zero, it indicates that the correlation between ai and bj is weak.
The region correlation is collectively described by all vectors in each region:
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cossim(A, B) = cossim((a1, a2,···, an), (b1, b2,···, bn)

= cossim((a1), (b1, b2,···, bn)) + · · ·+ cossim((an), (b1, b2,··· ,, bn))

=

(
aT

1 b1

∥a1∥2∥b1∥2
+ · · ·+

aT
1 bn

∥a1∥2∥bn∥2

)
+ · · ·+

(
aT

n b1

∥an∥2∥b1∥2
+ · · ·+ aT

n bn

∥an∥2∥bn∥2

)
= (â1 + · · ·+ ân)

T
(

b̂1 + · · ·+ b̂n

)
(4)

where ∥ · ∥ is l2 norm and âi is unit vector. To parallelize the computation, channel normal-

ization is employed to obtain normalized feature map Q
′

and K
′ ∈ RN2× HW

N2 ×C, followed
by summation over the region to derive Region-level Query Q

′
sum and Key K

′
sum ∈ RN2×C.

Then, a region-level weight matrix W ∈ RN2×N2
is constructed by matrix multiplication

between Q
′
sum and the transposed K

′
sum:

W = Q
′
sum(K

′
sum)

T (5)

W is a square matrix designed to quantify correlation among N2 regions. For ith
row in W, it quantifies the correlation between the region ith and the other N2 regions,
including itself W[i, i] = 1. We set a hyperparameter to retain K elements with the largest
value in each row besides W[i, i] since the angle between it and itself is always 0 degrees.
I ∈ RN2×K records the indices of these regions:

I = KIndex(W) (6)

The ith row in I contains K most relevant region’s indices for the ith region.

• Pixel-stage attention

In the Pixel-stage attention step, we calculate the attention between the Query and the
Key–Value pairs in the K regions preserved in the Region-stage attention step. However,
the index numbers differ in each row. To optimize model’s parallelization, we aggregate
the Key–Value pair’s tensors:

Kr = ftorch.gather(K, I)

Vr = ftorch.gather(V, I)
(7)

where Kr, Vr ∈ RK HW
N2 ×C are gathered tensor. We can then calculate attention via gathered

Key–Value pairs:
O = Sel f Attention(Q, Kr, Vr) (8)

The calculation formula for spatial attention is as follows:

Sel f Attention(Q, Kr, Vr) = so f tmax(
QKT

r√
C

)Vr (9)

√
C is the scalar factor to avoid gradient vanishing [47]. The final output of the feature

map O ∈ R
HW
N2 ×C. For example, Figure 2 shows attention result between the Query in the

last region and the Key–Value pairs in 2nd, 5th, and 6th regions. The Key–Value pairs’
indices are obtained in Region-stage attention step.
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Figure 2. Region–Pixel two-stage attention mechanism of RPFormer block. The top and bottom parts
are Region-stage attention and Pixel-stage attention steps, respectively. The red stars in Region-stage
attention step represent the areas with the highest relevance to be retained. The arrows indicate
transferring the indices of these areas to Pixel-stage attention step for sparse attention calculation.

3.1.2. Structure

The proposed Region–Pixel Transformer is employed as the T-branch. It is a hierar-
chical structure consisting of four stages as depicted in Figure 3a. In the first stage, patch
embedding is used as downsampling module to reduce spatial resolution while increasing
the number of channels. In other three stages, the downsampling module is replaced with
patch merging operation. Each stage is composed of Ni consecutive blocks as illustrated
in Figure 3b. Each block includes a depth-wise convolution for implicit relative position
encoding, followed by a Region–Pixel two-stage attention module and a 2-layer multilayer
perceptron (MLP) module. LayerNorm [50] and residual connection [30] techniques are
employed. After carefully assessing the tradeoff between model complexity and efficiency,
we set the depth in each stage, denoted by the number of Region–Pixel Transformer blocks
as [4, 4, 18, 4]. The expansion ratio for MLP is 4. The channel width and head dimension
are set to 64 and 32; the region size and K are defined as 7 and 3.
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Figure 3. (a) The overall architecture of the RPFormer; (b) details of a RPFormer block.

3.2. Multi-Gradient Path Network

Many classic networks, such as DarkNet [18] and ResNet [30], have been designed with
a strong emphasis on feed-forward propagation, which refers to the direction of data flow.
The objective is to extract features with specific attributes through feature selection, thereby
enhancing the expressiveness of the network as the sensitivity of convolutional layers
varies at different stages. Shallow convolutional layers have relatively small receptive fields
but high resolution and strong localization. They excel at capturing detailed information,
such as specific directional textures, colors, and certain shape templates. In contrast, deep
layers have larger receptive fields and lower resolution, allowing them to capture high-level
semantic information but making it challenging to detect small objects.

Nonetheless, the conventional practice in training CNNs typically employs the back-
ward propagation algorithm. This algorithm initiates the gradient flow from the loss
function and propagates it backward along the computational graph. This process enables
the guidance of gradient information for weight updates in a gradient descent manner,
ultimately facilitating the convergence of the network. So, rather than solely emphasizing
feed-forward propagation, our approach is more concerned with gradient flow combina-
tion analysis.

The proposed Multi-gradient Path Network (MgpNet) was inspired by gradient path
design strategy [31]. Referring to efficient layer aggregation network’s (Elan) block [21],
we introduced the MgpNet with the aim of enhancing the network’s capacity for more
gradient flow combinations during the training process.

3.2.1. Elan Block

Firstly, we analyze the structure of the Elan block. Subsequently, we study the block
from viewpoint of Gradient Source and Gradient Timestamp when the gradient flows
through the Elan block. The former focuses on the static perspective, evaluating the
quantity of gradient flows at a specific moment. The latter takes a dynamic standpoint,
assessing ways of gradient flow combinations at each moment.

Elan block details are shown in Figure 4. Short branch in Elan block acts as cross-stage
connection, utilizing a 1 × 1 convolution to reduce the number of channels while keeping
the feature map size unchanged:

Xshort = fCBS(ks=1×1)(Xinput) (10)
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fCBS represents the non-linear transformation function, which combines the operations
of Convolutional layer, Sigmoid-Weighted Linear Unit (SiLU) layer, and Batch Normal-
ization (BN) layer. In the main branch, a 1 × 1 convolution is applied before cascading k
convolutional modules; each one consists of m 3 × 3 convolutional layers:

Xmain = fCBS(ks=1×1)(Xinput)

Xk = FConvMoudule(Xk−1)

= f 1
CBS(ks=3×3)(. . . ( f m

CBS(ks=3×3)(Xk−1)))

(11)

The incorporation of multiple branches enriches the gradient flow. Eventually, there
will be k + 2 branches of feature maps concatenated together.

Xout = [Xshort; Xmain; XI; . . . ; Xk] (12)

Figure 4. The efficient layer aggregation network’s (Elan) block details.

When updating parameters in gradient descent manner, the gradient flows between
layers in the block as shown in Figure 5. For the last convolutional layer in ConvModulei,
the Gradient Source consists of the shortcut branch and its predecessor ConvModulei+1:

ẇi =

{
f (wi, gshortcut, gi+1), i ∈ 1, 2, 3, . . . , k − 1
f (wi, gshortcut), i = k

wi = wi − lr × ẇi

(13)

gshort represents the gradient information returned directly from concatenated feature
maps through shortcut connection, and gi+1 represents the ones of previous layer’s con-
nection. It is evident that the Elan block possesses a wealth of Gradient Source during
network training.
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Figure 5. Gradient Source of main branch in Elan block.

Gradient flows through the block layer by layer in a breadth-first manner and reaches
each layer at different time points. The Gradient Timestamp records the specific moment
when it traverses across the entire network. The following Table 1, based on the arrival
Gradient Timestamp, can be generated.

When passing through the block in Figure 5, gradient will first arrive at ConvModule’s
shortcut layer at the same time due to the shortcut connection. Subsequently, these shortcut
layers act as successor nodes, and the gradient sequentially moves forward in a breadth-first
propagation manner, enabling it to simultaneously access successor layers that shortcut
connections have reached in the previous moment, only until they have completed flowing
through the entire Elan block. Each column in the table represents one gradient combination,
resulting in 10 different gradient combinations in total. This strategy enables the network to
efficiently acquire and update gradient information, thereby enhancing its learning ability
and training efficiency.

Table 1. Gradient Timestamp of main branch in Elan block.

Module ConvMain ConvModuleI ConvModuleII ConvModuleIII

ConvLayer Layer1 Layer2 Layer3 Layer4 Layer5 Layer6 Layer7

Shortcut ✓ / / ✓ / / ✓ / / /

moment·1 G1 / / G1 / / G1 / / G1
moment·2 / / G2 / / G2 / / G2 /
moment·3 / G3 / / G3 / / G3 / /
moment·4 / / G4 / / G4 / / / /
moment·5 / G5 / / G5 / / / / /
moment·6 / G6 / / / / / / /
moment·7 / G7 / / / / / / / /

3.2.2. Structure

MgpNet is composed of four stages as shown in Figure 6a. Each stage consists of
a downsampling module and an Elan block. The downsampling module combines max
pooling with convolutional layers in a parallel pattern as shwon in Figure 6b. The Elan
block incorporates only two sizes of convolution kernels, silu activation function and batch
normalization layer, without complex designs such as automatic search [51] and complex
scaling [52]. In each Elan block, there are k cascading convolutional modules, and each
module consists of m 3 × 3 convolutional layers. We set k and m to 3 and 2, respectively.
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Figure 6. (a) The structure of the MgpNet; (b) downsampling module.

3.3. Channel-Attention-Based Feature Fusion Module

We propose a feature fusion strategy for fusing features extracted from two branches.
The feature map downsampling ratios of two branches in four stages are both 4, 8, 16, and
32, corresponding to 64, 128, 256, and 512 channels. Feature fusion comprises three steps
in turn: Cross-Concatenation Interaction, Global Context Embedding, and Cross-Channel
Interaction, as shown in Figure 7.

Figure 7. An overview structure of proposed feature fusion strategy.

3.3.1. Cross-Concatenation Interaction

The abstract information of each pixel in the feature map is embedded in the channel
dimension. As a result, deeper layers with high-level semantic information typically have
a smaller scale and a larger number of channels. To effectively combine the channel infor-
mation of feature maps XC and XT generated by C-branch and T-branch, respectively, we
employ Cross-Concatenation Interaction operation to alternately stack XC and XT together:

XH [0 :: 2, :, :] = XC

XH [0 :: 1, :, :] = XT
(14)
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Here, XC,XT ∈ RC×H×W , XH ∈ R2C×H×W .

3.3.2. Global Context Embedding

To extract global contextual information from each channel, we utilize l1 norm average
pooling as the channel information embedding module. The pooling operation aggregates
each channel of the feature map to generate a fixed-size global feature vector e ∈ R2C×H×W .
The element of e is calculated by formula as follows:

ec =
1

H × W

H

∑
i=1

W

∑
j=1

XH [c, :, :](i, j) (15)

Following work [53], we also apply channel normalization operation. e = [e1, e2, . . . , e2C],
which is defined by the following formula:

ê =
√

2Cec

∥e∥2
=

√
2Cec[

∑2c
c=1 e2

c + ε
] 1

2
(16)

where ε is a small constant to avoid calculation error leading by zero value, ê ∈ R2c×1×1.

3.3.3. Cross-Channel Interaction

We utilize 1D convolution to efficiently implement local Cross-Channel Interaction
to the vector generated from Global Context Embedding operation. Specifically, we hope
every element in the vector pays attention to itself and its K neighbors as the formula:

u = Conv1d(ê) (17)

Here, u ∈ RC×1×1 and K is a hyperparameter. For instance, when K = 5, the 3rd
channel calculates the interaction attention with the 1st, 2nd, 4th, and 5th channels, as well
as itself. We derive channel weights and compute the dot product with the original feature
map in the specified order:

y = XHu (18)

where y ∈ R2C×H×W . Proposed fusion module has the advantage of being plug-and-play,
and we take the output of the last three stages of the branches as the input to the fusion
module for feature fusion.

4. Datasets

Aerial remote sensing images are commonly captured from a top-down perspective at
high altitudes [54–56]. However, for UAV reconnaissance patrol missions, collecting a num-
ber of images from such a viewpoint proves impractical. The top-down perspective makes
it easier for the UAV to expose its position and be attacked. In contrast, a large oblique
perspective allows for better concealment and reduces the risk of being detected. Addi-
tionally, the top-down perspective provides flattened planar information, while oblique
perspectives offer more details, rendering targets more visibly distinct and facilitating
localization and identification of potential threats.

Based on the above background, the existing datasets cannot meet our demands. We
created a military targets dataset for air-to-ground and air-to-sea scenarios to simulate more
realistic environments. The dataset includes common units on ground and at sea. Partial
images in the dataset are shown in Figure 8.
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Figure 8. Examples of created dataset images. (a) Air-to-ground scenario; (b) air-to-sea scenario.

4.1. Simulation Environments

Digital Combat Simulator (DCS) World is a sandbox game in which maps and combat
units are designed to be very realistic and to accurately reproduce real-world situations.
The proposed military dataset is based on the game and includes air-to-ground and air-
to-sea scenarios. In the air-to-sea scenario, we collected combat units of six categories,
namely aircraft carriers, cruisers, destroyers, patrol ships, speedboats, and landing ships.
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We classified the ships into three categories: large warships, medium warships, and small
warships. Large warships, typically referring to aircraft carriers, have a displacement of
over 20,000 tons; medium warships, including cruisers and destroyers, have a displacement
between 2000 and 20,000 tons; and small warships, including patrol ships, speedboats,
and landing ships, have a displacement below 2000 tons. In the air-to-ground scenario, we
collected combat units in five categories: tanks, radar vehicles, transport vehicles, rocket
launchers, and armored vehicles.

4.2. Details of Dataset

We set an oblique perspective from 10 to 45 degrees to capture images. In the air-to-
ground scenario, the UAVs’ flight altitude ranges from 25 to 200 m, while, in the air-to-sea
scenario, the flight altitude ranges between 200 and 1000 m. To make the data more reliable
and generalized, there are four weather conditions: sunny, cloudy, overcast, and cloudy
with rain. We carefully filtered and cleaned the data and removed any irrelevant or redun-
dant information. We also classified and labeled each image with bounding boxes using
both manual and semi-automatic methods. In the air-to-ground scenario, there are 5238 im-
ages, including 31,606 boxes. In the air-to-sea scenario, there are 4878 images, including
38,702 boxes. The image resolution is 1080 × 1920. The detailed contents of the dataset
are available in Table 2. Considering the constraints of an actual reconnaissance mission,
the UAV flies at an almost fixed altitude for 15 rounds in each scenario. The distribution
details of the dataset are visualized in Figure 9.

Figure 9. Distribution details of the dataset. (a) Air-to-ground scenario; (b) air-to-sea scenario.

Table 2. Details of created military dataset.

Scenario Target Category Box Number Height Range Image Size Angle Range

Air-to-ground

tank 6598

25–200 m

1080 × 1920 pixels 10–45 degrees

radar vehicle 4186
transport vehicle 6850
rocket launcher 7216
armored vehicle 6756

Air-to-sea
large warship 11,128

200–2000 mmedium warship 8440
small warship 19,134
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5. Experiments and Discussion
5.1. Experimental Setup

We carried out all the experiments on a personal computer equipped with an Intel
CPU E5-2678 and NVIDIA GeForce RTX 3090 (24 G). The operating system was Ubuntu
20.04 LTS. Python was 3.8. We completed codes in PyTorch framework 1.13.1 with the
help of toolbox MMdetection. In the optimization step, we used the SGD optimizer with
Nesterov momentum. The momentum was 0.937, the initial learning rate was 0.01, and the
weight decay was 0.0005. We did not use pretrained weights to initialize the network
since there is a significant difference in data distribution between generic datasets like
ImageNet and the specific UAVs scenario mentioned above. We applied the Kaiming
initialization [57] method to initialize the weights. The number of iterations was set to
100 epochs and batchsize was set to 16. We employed mean Average Precision (mAP),
Average Precision (AP) at 0.5 and 0.75 IoU thresholds, APs for small object sizes (less than
32 × 32 pixels), APm for medium object sizes (between 32 × 32 pixels and 96 × 96 pixels),
and APl for large object sizes (larger than 96 × 96 pixels) as our evaluation metrics.

We divided the collected data into two subdatasets according to the air-to-ground and
air-to-sea scenarios. For each dataset, we split it into a training set and testing set, with a
ratio of 80 percent and 20 percent, respectively. We resized the input data to 640 × 640.

5.2. Comparison with State of the Art

To provide a comprehensive comparison of the proposed model, we conducted
comparative experiments. We employed RetinaNet [32] as a baseline and replaced sev-
eral advanced backbone networks, including CNN structures such as EfficientNet [52],
ResNest [58], CSPDarkNet [18], and ResNet [30] , as well as Transformer structures such
as Swin Transformer [26], Pyramid Vision Transformer [28], and CSWin Transformer [27].
The results are presented in Table 3.

Table 3. Comparative experiments of different methods in air-to-sea and air-to-ground scenarios.

Scenario Method Flops (G) Params (M) AP AP50 AP75 APs APm APl

Air-to-sea

EfficientNet-b0 29.8 5.3 50.0 87.3 49.5 6.6 41.5 66.1
ResNet-50 47.6 25.6 52.0 89.0 51.0 7.6 43.1 66.6
ResNest-50 50.9 27.5 53.6 91.1 55.0 11.0 46.1 68.2

CSPDarkNet-53 66.9 43.2 54.5 91.5 56.1 13.7 47.2 69.2
PVT-s 51.3 24.5 54.8 92.1 55.0 13.8 47.1 69.0
Swin-s 49.4 49.6 55.7 92.8 57.8 14.2 48.6 69.4

CSWin-s 42.7 35.3 56.0 93.1 58.4 14.6 49.1 69.6
Ours 61.7 37.5 57.9 95.1 60.2 17.1 50.3 70.6

Air-to-ground

EfficientNet-b0 29.8 5.3 58.7 83.1 65.9 6.8 57.2 83.9
ResNet-50 47.6 25.6 61.1 85.4 68.3 8.4 60.1 84.6
ResNest-50 50.9 27.5 62.9 87.3 70.2 9.9 61.2 84.9

CSPDarkNet-53 66.9 43.2 63.7 88.2 71.1 10.7 61.9 85.7
PVT-s 51.3 24.5 64.6 89.1 72.7 12.2 63.4 85.8
Swin-s 49.4 49.6 65.2 89.6 73.3 14.4 64.7 86.1

CSWin-s 42.7 35.3 66.5 90.4 74.5 14.9 65.2 86.4
Ours 61.7 37.5 68.9 92.5 76.9 18.1 67.6 87.4

In air-to-sea and air-to-ground scenarios, the proposed hybrid method achieved mAP
values of 57.9 and 68.9, demonstrating better performance compared to the single-branch
network in various metrics, particularly in APs, where it improved by 2.5 and 3.2 over
CSWin-s. This proved the effectiveness of the hybrid network. The inference results in two
scenarios are shown in Figures 10 and 11. It can be seen that the proposed method achieved
better results when targeting certain distant targets.
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Figure 10. The comparative inference results of different methods in the air-to-ground scenario.
(a) Ground truth; (b) proposed hybrid method; (c) CSWin Transformer-small; (d) Swin Transformer-
small; (e) PVT-small; (f) RestNest-50; (g) CspDarkNet-53; (h) ResNet-50; (i) EfficientNet-b0.

Figure 11. The comparative inference results of different methods in the air-to-sea scenario.
(a) Ground truth; (b) proposed hybrid method; (c) CSWin Transformer-small; (d) Swin Transformer-
small; (e) PVT-small; (f) RestNest-50; (g) CspDarkNet-53; (h) ResNet-50; (i) EfficientNet-b0.
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To further analyze the feature extraction process of these models, we used the Grad-
CAM [59] method to visualize the feature maps at different depths. We representatively
selected the feature maps of CSWin-s, CSPDarkNet-53, and our method in three stages,
and the heatmaps are shown in Figures 12 and 13. It can be seen that the shallow layers
emphasized local texture, and, as the network deepened, it was adept at capturing abstract
semantic information. The proposed method exhibited larger coverage in the target scope
compared to the other models at the same depth, which could obtain more comprehensive
features. At the same location, the pixels around the military targets in our method were
darker, indicating a higher level of response.

Figure 12. The comparative feature extraction results of different methods in the air-to-ground
scenario. (a) CspDarkNet-53 stage1; (b) CSWin Transformer-small stage1; (c) proposed hybrid
method stage1; (d) CspDarkNet-53 stage2; (e) CSWin Transformer-small; (f) proposed hybrid method
stage1; (g) CspDarkNet-53 stage3; (h) CSWin Transformer-small; (i) proposed hybrid method stage1.

Moreover, in order to test the difficulty of recognizing different military targets, we
conducted comparative experiments across eight target categories in air-to-ground and
air-to-sea scenarios. The corresponding experimental results are presented in Table 4. In the
air-to-ground scenario, the detectors consistently exhibited superior performance for Radar
Vehicle and Rocket Launcher targets, with the proposed method proving to be the most
effective, achieving accuracy of 73.7 and 73.3, respectively. We hypothesized that both
target types were more distinctive, where the Radar Vehicle featured a radar unit at the rear,
while the Rocket Launcher presented a tubular launcher at the top. This distinctiveness
likely contributed to the enhanced recognition performance. The detectors exhibited a
notable challenge in recognizing Armored Vehicles, particularly evident in the case of
EfficientNet-b0, which achieves 50.4 AP. We thought this difficulty resulted from the rela-
tively fewer external contour features, contributing to stealthiness. In the air-to-sea scenario,
the detectors excelled in recognizing large warships, and we achieved optimal performance
with mAP 74.6. This was attributed to the aircraft landing decks and bridges on aircraft
carriers. However, the model demonstrated relatively lower effectiveness in recognizing
small warships, which occupied a limited pixel area and exhibited fewer features.



Remote Sens. 2024, 16, 1288 20 of 24

Figure 13. The comparative feature extraction results of different methods in the air-to-sea sce-
nario. (a) CspDarkNet-53 stage1; (b) CSWin Transformer-small stage1; (c) proposed hybrid method
stage1; (d) CspDarkNet-53 stage2; (e) CSWin Transformer-small; (f) proposed hybrid method stage1;
(g) CspDarkNet-53 stage3; (h) CSWin Transformer-small; (i) proposed hybrid method stage1.

Table 4. Comparative experiments for different targets in air-to-sea and air-to-ground scenarios.

Method

Scenario

Air-to-Sea Air-to-Ground

Large
Warship

Medium
Warship

Small
Warship

Transport
Vehicle Tank Rocket

Launcher
Armored
Vehicle

Radar
Vehicle

EfficientNet-b0 69.0 50.9 31.1 55.3 59.8 62.6 50.4 65.4
ResNest-50 69.3 53.9 32.9 58.3 61.5 64.4 53.5 67.7

CSPDarkNet-53 71.1 55.8 33.8 61.9 62.1 66.8 55.6 68.1
ResNet-50 71.7 57.5 34.2 62.8 63.2 67.9 55.9 68.7

PVT-s 72.2 57.9 34.2 64.8 62.6 68.2 57.0 70.4
Swin-s 73.4 59.3 34.5 66.1 63.0 68.8 57.7 70.6

CSWin-s 73.3 60.1 34.6 67.2 65.8 69.3 58.6 71.5
Ours 74.6 62.9 36.1 68.7 67.8 73.7 60.8 73.3

5.3. Ablation Experiments

We conducted ablation experiments to better identify the key components of the
proposed detector. We first conducted branches ablation experiments to evaluate the
contributions of the C-branch and T-branch in the model based on a RetinaNet baseline.
Region–Pixel two-stage Transformer and MgpNet were employed as the backbone. The re-
sults are shown in Table 5.

We separately evaluated the model performance of the two branches. In the air-to-
sea scenario, the AP of the C-branch and T-branch reached 55.4 and 56.5, respectively,
while, in the air-to-ground scenario, the AP of the C-branch and T-branch reached 64.3
and 67.4, respectively. The results of the T-branch in both scenarios are superior to those
of the C-branch, indicating that the Transformer architecture has an advantage in such
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military target detection tasks. The proposed method achieved AP scores of 57.9 and 68.9,
respectively, which were higher than single-branch ones. It proved the effectiveness and
necessity of the proposed fusion method, especially for detecting small objects.

Table 5. Branches ablation experiments in air-to-sea and air-to-ground scenarios.

Scenario Branch AP AP50 AP75 APs APm APl

Air-to-sea
C 55.4 92.2 56.5 14.1 47.9 69.5
T 56.5 93.6 58.6 15.1 49.2 69.9

ours 57.9 95.1 60.2 17.1 50.3 70.6

Air-to-ground
C 64.3 88.7 72.2 11.4 62.7 85.8
T 67.4 90.8 75.3 15.8 65.9 86.3

ours 68.9 92.5 76.9 18.1 67.6 87.4

Furthermore, we conducted feature fusion methods’ ablation experiments. We evalu-
ated strategies for feature map fusion, including add, concatenation, and cross-concatenation
fusing operation. The experimental results are detailed in Table 6. It revealed that fu-
sion methods such as addition and concatenation yielded improvements compared to a
single-branch network. The proposed fusion method demonstrated notable performance
with mAP 57.9 and 68.9 in air-to-sea and air-to-ground scenarios, respectively. Notably,
for small-object detection, our method exhibited improvements of 1.5 and 1.1 in the air-to-
sea scenario compared to the addition and concatenation methods. In the air-to-ground
scenario, enhancements of 1.4 and 1.1 were observed.

Additionally, the single Cross-Concatenation Interaction method performed poorly
on most metrics because the cross operation, without further feature fusion, disrupted the
channel-wise connectivity of adjacent feature maps. To verify this hypothesis, we added an
extra convolutional layer to the proposed fusion strategy, reducing the doubled channel
count by half. As a result, the detection performance noticeably declined. This validated
the viewpoint [60] of avoiding dimensionality reduction and ensuring appropriate Cross-
Channel Interaction to learn effective channel attention.

Table 6. Feature fusion methods’ ablation experiments in air-to-sea and air-to-ground scenarios.

Scenario
Method

AP AP50 AP75 APs APm APl
Add Concat CCI 1 GCE 1 CCHI 1 Conv2d

Air-to-sea

✓ / / / / / 56.8 94.0 58.9 15.6 49.8 70.6
/ ✓ / / / / 57.0 94.3 59.3 16.0 49.4 70.7
/ / ✓ / / / 55.5 92.7 57.3 14.3 48.3 69.3
/ / ✓ ✓ / / 58.9 96.1 60.6 17.9 49.9 71.2
/ / ✓ ✓ ✓ ✓ 57.2 94.5 59.5 16.4 49.9 70.5
/ / ✓ ✓ ✓ / 57.9 95.1 60.2 17.1 50.3 70.6

Air-to-ground

✓ / / / / / 67.8 91.1 75.6 16.7 66.5 87.7
/ ✓ / / / / 68.1 91.5 76.0 17.0 66.8 87.7
/ / ✓ / / / 67.1 89.9 75.2 14.4 67.1 87.4
/ / ✓ ✓ / / 68.3 91.9 76.3 17.7 67.0 87.2
/ / ✓ ✓ ✓ ✓ 51.3 79.6 57.7 10.6 43.1 75.2
/ / ✓ ✓ ✓ / 68.9 92.5 76.9 18.1 67.6 87.4

1 CCI, GCE, and CCHI mean Cross-Concatenation Interaction, Global Context Embedding, and Cross-Channel
Interaction, respectively.

6. Conclusions

This paper presented a hybrid detection model that combined CNN and Transformer
architecture to detect military targets from UAVs’ oblique perspective. The proposed
detector combined the C-branch Multi-gradient Path Network and the T-branch RPFormer
in a parallel decoupled manner. A feature fusion strategy was proposed to integrate



Remote Sens. 2024, 16, 1288 22 of 24

the feature maps of the two branches in three steps: Cross-Concatenation Interaction,
Global Context Embedding, and Cross-Channel Interaction. Because the existing remote
sensing datasets were mostly collected in a top-down view, which did not correspond
to the actual UAV reconnaissance mission scenes, we constructed a dataset consisting of
air-to-ground and air-to-sea scenarios from a large oblique perspective to evaluate the
effectiveness of the proposed approaches. We validated different fusion methods, including
add and concatenation operations, and demonstrated the effectiveness of the proposed
fusion strategy in ablation experiments. In comparison experiments, the proposed method
achieved mAP values of 57.9 and 68.9, improvements of 1.9 and 2.4 in air-to-ground and
air-to-sea scenarios, respectively, which surpassed most current detection methods.

This research contributes to UAV detection for military targets in challenging scenarios.
However, our research still has shortcomings. Although we have carefully designed the
dataset for military targets, there is still a gap regarding actual perception reconnaissance
scenarios, such as low light, smoke, and flame environments. The detection for small
targets has achieved improvements, but it is still easy to miss and wrongly detect the
targets compared with medium and large targets. In future work, we will continue to focus
on these problems.
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