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Abstract: Existing approaches addressing the few-shot open-set recognition (FSOSR) challenge in
hyperspectral images (HSIs) often encounter limitations stemming from sparse labels, restricted
category numbers, and low openness. These limitations compromise stability and adaptability. In
response, an open-set HSI classification algorithm based on data wandering (DW) is introduced in
this research. Firstly, a K-class classifier suitable for a closed set is trained, and its internal encoder is
leveraged to extract features and estimate the distribution of known categories. Subsequently, the
classifier is fine-tuned based on feature distribution. To address the scarcity of samples, a sample
density constraint based on the generative adversarial network (GAN) is employed to generate
synthetic samples near the decision boundary. Simultaneously, a mutual-point learning method
is incorporated to widen the class distance between known and unknown categories. In addition,
a dynamic threshold method based on DW is devised to enhance the open-set performance. By
categorizing drifting synthetic samples into known and unknown classes and retraining them together
with the known samples, the closed-set classifier is optimized, and a (K + 1)-class open-set classifier
is trained. The experimental results in this research demonstrate the superior FSOSR performance of
the proposed method across three benchmark HSI datasets.

Keywords: few-shot open-set recognition; generative adversarial networks; reciprocal point learning
and data wandering; hyperspectral images

1. Introduction

In recent years, the central role of hyperspectral imaging in remote sensing technology
has sparked widespread research interest [1]. The accuracy of object recognition is directly
contingent on the processing and analysis of HSI data. Within this realm, hyperspectral
image (HSI) classification, recognized as a crucial step, necessitates pixel-wise labeling
of object categories [2–7]. Due to the high-dimensional and nonlinear characteristics of
HSI data [8–11], the primary focus in HSI classification becomes feature extraction [12].
Deep learning, renowned for itss outstanding adaptive feature extraction ability, enables
data-driven HSI classification methods to extract inherent features crucial for automatic
recognition [13]. With the continuous optimization of network architectures and learning
patterns, there has been a notable enhancement in the classification accuracy of models
when applied to standard HSI datasets.

However, HSI classification requires a substantial amount of labeled data, posing
a significant challenge. To address this issue, classification methods based on few-shot
learning (FSL) have been proposed and applied to HSI classification based on machine
learning and deep learning. Yet, the closed-set training models presume that the training
data encompass all categories that may arise in the future. In reality, deep learning models
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may encounter new categories that were not encountered during training. Consequently,
to address these challenges, few-shot open-set recognition (FSOSR) [14–18] methods for
HSI classification are garnering increasing attention.

When comparing traditional hyperspectral image (HSI) open-set recognition (OSR) [19–23]
with few-shot open-set recognition (FSOSR) for HSI [24–27], a significant challenge arises
in addressing the coexistence of spectrally fine-grained known categories and anomalies.
Current FSOSR methods, which employ reconstruction-based strategies for open-set HSI
classification, exhibit limitations in practical applications. Specifically, generative models
underperform in capturing information about unknown categories and fail to effectively
utilize known category information to model the space of unknown categories, leading to
instability in addressing open-set challenges. Additionally, the process of threshold deter-
mination is complex and lacks flexibility, making it difficult to set an efficient and learnable
threshold, further limiting the adaptability of these methods. On the other hand, existing
generative adversarial networks (GANs) primarily adopt a fully supervised approach for
generating within-distribution data. However, in few-shot scenarios, estimating data den-
sity from limited samples presents significant challenges, impeding the optimal training of
these methods. More critically, these methods continue to use closed-set models, rendering
them ineffective in generating data for open spaces. These limitations undoubtedly weaken
the performance of HSI in open-set classification.

To tackle the aforementioned challenges, this research proposes an open-set HSI
classification algorithm based on reciprocal point learning (RPL) and data wandering (DW)
(RPLDW). Firstly, a K-class classifier suitable for closed-set problems is trained, with its
internal encoder used for extracting image classification features to estimate the feature
distribution of known classes. Subsequently, these feature distributions are utilized to
optimize the classifier and fine-tune its training. Next, synthetic samples near the decision
boundary are generated using a GAN with sample density constraints to solve the few-shot
problem, as illustrated in Figure 1.
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Figure 1. Generating samples near the decision boundary.

Concurrently, a framework of RPL is introduced to classify the open-set HSI. The risk
of open space is reduced by simulating the out-of-category space to increase the distance
between known and unknown categories. In addition, a dynamic threshold method based
on DW is devised to build a separate space for each category, thereby enhancing the
model’s open-set performance. Employing a DW method, the drifting synthetic samples
are categorized into known and unknown categories and inputted together with known
samples into the classifier for a new round of training. At this stage, both the closed-set
classifier and also a (K+1) class classifier suitable for open-set scenarios are trained in this
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research, sharing parameters of the early network layers. This approach enhances the data
reliability and richness by including generated synthetic samples, ultimately improving
the performance of the classification algorithm. The primary contributions of this research
can be summarized as follows:

(1) A method that generates boundaries is proposed based on sample density constraints
to calculate sample density. Leveraging information entropy, this approach confines
generated samples outside the edge regions of known classes, ensuring proximity to
the known classes. Consequently, the classifier can more accurately demarcate the
range of known classes.

(2) The RPL method is adopted to address the open-set HSI classification challenge. It
distinguishes the space of unknown categories by constructing inverse prototypes and
enlarging the distance between known and unknown categories, thereby reducing
the risk of open space. Meanwhile, it reinforces the boundaries of known categories
and utilizes dynamic thresholds to remove unknown categories, avoiding manual
determination of thresholds and enhancing the robustness of the algorithm.

(3) A novel sample distribution analysis method is built to screen out edge samples based
on DW, enhancing the sample boundaries and improving the classification accuracy.

(4) Extensive experiments on three benchmark HSIs demonstrate the outstanding per-
formance of the proposed RPLDW in FSOSR tasks, effectively fulfilling the open-set
few-shot recognition. Therefore, in the real-world scenario of open-set HSI, RPLDW
proves to be more robust and effective in minimizing open risks.

2. Related Works
2.1. Few-Shot Open-Set Recognition

The FSOSR issue is explored in [18] by creating Gaussian clusters that utilize a limited
support set. Despite effectively learning the closed-set distribution, the prototypes in
PEELER fail to remove outliers, particularly in rejecting spectrally fine-grained outliers.
Another approach [17] implements a thresholding technique that relies on the disparity
between original prototypes and queried transformed prototypes to identify outliers. Simi-
larly, current FSOSR methods applied to HSI [28,29] also depend on a comparable threshold
to exclude outliers. Nonetheless, determining an optimal threshold that can accurately
reject outliers presenting a marginal spectral difference to the known land cover samples
remains a significant challenge. Furthermore, utilizing the reciprocal points classification
loss [30] results in a less compact known class distribution in FSL, contributing to reduced
closed-set accuracy.

2.2. Generative Open-Set Recognition

A sophisticated open-set classifier should understand the nuanced closed-set distri-
bution while navigating the open space effectively. Presently, generative OSR methods
often address three aspects independently: (1) outlier rejection based on reconstruction
error [31–33], (2) pseudo-open-set generation [23,34], and (3) enrichment of the closed-set
distribution [35,36]. Predominantly, generative OSR methods employ GAN [37] or au-
toencoder [38] algorithms, leveraging large-scale training datasets. However, the class
conditional auto-encoder (C2AE) [38] is susceptible to selection bias of a known sample
from the training set, resulting in low reconstruction error on known samples. Research [37]
introduces synthetic features and penalizes the discriminator to encourage outlier rejection.
The adversarial samples are not proposed to be always considered outliers but can serve
as representatives of known classes. A critical challenge in generative FSOSR is the non-
convergence of GAN when working with limited training data [39]. The training strategy
employed by [38] appears to offer a potential solution to this challenge.

2.3. Data Generated

Research [40] exclusively generates pseudo-known samples by rapidly adapting to
a new domain using optimization-based meta-learning techniques, specifically [41] and
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Reptile [42]. However, it lacks the capability to produce out-of-distribution data. In con-
trast, [43] focuses solely on generating synthetic data for few-shot classification, while [44]
creates synthetic images by combining two noise vectors with a feature vector through un-
supervised meta-learning. Research [45] introduces an anti-collapse regularizer to maintain
discriminability and diversity in a few-shot setting. The proposed regularizer minimizes the
logarithmic similarity among generated adversarial samples and the logarithmic similarity
of unit variance Gaussian noise. Furthermore, the approach of fusing input images with
random interpolation coefficients in [46] facilitates the generation of arbitrary landcover
classes. Additionally, [47] amplifies singular values associated with age, pose, and skin
tone derived from singular value decomposition performed on [48]. Nevertheless, the
range of end members in HSI datasets is infinite, leading to intractable singular values.

3. Methodology
3.1. Subsection

Herein, a dataset Dtr =
{(

x(i), y(i)
)}K

i=1
containing K-known classes is given (where

x(i) is a set of known classes, with Ni samples in each, and y(i) refers to a set with the
same one-hot vectors, representing labels corresponding to the set x(i)). Under this given
condition, it should correctly classify the K-known classes while recognizing and classifying
new classes as the (K + 1) class.

Firstly, a K-class classifier suitable for a closed set is trained in this research, with its
encoder being employed to extract image classification features and estimate the feature
distribution of all known classes. Meanwhile, the training of the classifier is adjusted
based on it. Subsequently, a GAN constrained by sample density is employed to generate
synthetic samples near the decision boundaries. Leveraging RPL, this research models
the unknown class space to augment the feature distance between the known data after
boundary expansion and the unknown data in the open-set space. Then, employing the data
walk method, the unclassified synthetic samples are categorized into known and unknown
classes and sent to the classifier with the known samples for a new round of training. At
this stage, the closed-set classifier and, concurrently, a (K + 1) class classifier suitable for
the open set are trained. The training of these two classifiers shares the parameters of the
previous layers of the network. The overall network architecture is illustrated in Figure 2.
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The multitask network employed in this research requires an input of dimensions
9 × 9 × Channel. The first part of the network is an encoder/feature extractor equipped
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with two residual units and a global average pooling layer. After extracting latent features,
a fully connected layer with a softmax function is set, serving as a classifier to output
probabilities to the known classes. The reconstruction task of this research involves gradu-
ally increasing the spatial dimension of the latent features through a deconvolution layer.
The output of the reconstruction task is a 9 × 9 × Channel instance, w intended to closely
resemble the input data by minimizing the loss. Extreme value theory (EVT) is adopted to
model the reconstruction loss, thus separating known and unknown classes.

The overall algorithm is outlined in Algorithm 1 below. W f refers to the synthetics
generated by a GAN constrained by sample density, which is composed of W f C and
W f O based on DW: W f C is categorized as known classes as edge samples to reinforce the
sample boundaries, thus improving the performance of the closed-set classification while
W f O simulates the unknown classes and serves as the (K + 1) class to train the open-set
classifier fOS(·).

Algorithm 1 Open-set recognition algorithm for generating decision boundaries based on sample
density

Input:

Dtr =
{(

x(i), y(i)
)}K

i=1
: Dataset of known classes

θ: Partition Threshold
α: Density Representative Parameter

Output:
fOS(·): Open-Set Classifier

1: Calculate the sample distribution to establish an information entropy field

2:
GAN generates decision boundary samples based on sample information
entropy constraints.

3: translates to “Train closed set classifier fCS(·)
4: RPL
5: FOR x(i) ∈ D DO
6: Calculate the score of the newly generated fake samples.
7: Divide W f c into W f c and W f o
8: END FOR
9: On the basis of fCS(·), train the open-set classifier fOS(·) with newly generated samples.

3.2. Generation of Known Class Sample Boundaries Based on Sample Density

This first step is to train a closed-set classifier through metric learning. Subsequently,
the values in the pre-logit layer of the classifier are taken as sample points, and all sample
points are collected as the sample space to calculate the sample density at any position in
the sample feature space based on sample features. Next, the distribution of known classes
is analyzed, and the objective function of GAN is constrained to facilitate the generation
of samples within the boundary area of known classes and their periphery. In this way, it
strengthens the boundary of known samples while increasing the reality and richness of
simulated unknown class samples. This section details how to constrain GAN to generate
sample boundaries, which is realized by calculating the sample density and training the
classifier and GAN.

3.2.1. Training of the Closed-Set Classifier

In this research, a closed-set classifier is trained firstly through metric learning, with
the following loss function:

L1 = EDtr(x,y) log

∑
ym ̸=yn

exp(−
∥∥∥w(m) − w(n)

∥∥∥2

2
/T)

∑
ym=yn

exp(−
∥∥w(m) − w(n)

∥∥2
2/T)

+ Ex,y∼ptri(x,y)[log pC(y|x)] (1)
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where

T =
1

Ntotal

Ntotal

∑
m,n=1

∥∥∥w(m) − w(n)
∥∥∥2

2
(2)

This facilitates the classifier in accurate classification while gathering samples with
the same label as much as possible, resulting in distinct classes in the sample space as
separate clusters. Following this, the parameters of the feature extractor in the classifier are
frozen, the distance between each sample point and the center sample is computed, and
the classifier is trained.

L1 = EDtr(x,y) log
∑

ym ̸=yn
exp(−∥w(m)−w(n)∥2

2/Tj)

∑
ym=yn

exp(−∥w(m)−w(n)∥2
2/Tj)

+ λEx,y∼ptri(x,y)[log pC(y|x)]

+(1 − λ)Ex,y∼ptri(x,y)[r(y|x)] + βEPtri(x)[ϕ(x)]

(3)

where λ, β > 0 is a balancing parameter. Sample points that are close to the center sample
have a high-density score. The classifier’s score and the sample density score are bundled
together. When the sample is at the sample boundary or floating outside the cluster, the
sample density is low, the classifier score is low, and the corresponding predicted label
information entropy value is large, increasing the difficulty of being classified into a known
class. With such a classifier, training a GAN to generate boundary samples becomes feasible,
further refining the constraints on the classifier’s ability to recognize the boundaries of
known class samples.

3.2.2. Calculation of Sample Density

There are two challenges when calculating the sample density. Firstly, due to the
different aggregation degrees in each cluster, some clusters exhibit a relatively dense
distribution of central feature points, while others have spare edges. Consequently, the
density estimation of different regions needs to consider the relative positions of distinct
clusters. Secondly, a small cluster of sample points is found to be gathered, forming a
pseudo-sample center, as described in Figure 3.
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The density peak clustering algorithm (DPC) is employed to calculate the maximum
diameter dmax of the entire sample space. α points are selected on average contained in
each neighborhood, and dmax × α

K
∑

i=1
Ni

serves as the neighborhood radius of a sample point

xj. Meanwhile, the number of sample points neighboring the point is counted as the
local density ρj of the point. Finally, the entropy of the region is calculated using the
following equation:

Hj =

ρj

∑
l=1

hρj
llnhρj

l

ρj
(4)
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where
hρj

l =
xl

ρj

∑
j=1

xj

(5)

Each data point ρj can be sorted in ascending order, and the minimum distance δj
between this sample point and other points with higher density is calculated. The density
peak score for this point is calculated as:

γj =
ρj × δj

Hj
(6)

Afterward, the top K points with the highest scores are selected as the center samples

of the known class. The distance Rtr =
{

r(i)
}K

i=1
between each sample point and the

center sample of its class is calculated. Meanwhile, the maximum radius r(i)max in the i-th

class is selected and r(i)max×α
Ni

refers to the neighborhood radius of each sample point. After
that, the number of sample points Nj contained in the neighborhood of the j-th sample
is calculated. The aggregation score of the neighborhood where each point is located is
calculated as follows:

θj =
Nj × Ni

r(i)max × α
(7)

Subsequently, the distribution of the known class is estimated through Gaussian kernel
density. All sample points are assigned a Gaussian function φj(x) with a mean of itself and
a variance of θj. The sum of the Gaussian functions of all sample points forms the energy
field, which can be expressed as follows:

ϕ(x) =
Ntatal

∑
j=1

φj(x) (8)

In the above equation, Ntotal signifies the number of all sample points in the sample
space, based on which the density representation of each position within the sample space
can be acquired.

3.2.3. Training of GAN

GAN, typically used to generate pixel images that are as similar as possible to the orig-
inal images, primarily encompasses discriminators (D) and generators (G). The generator
maps the latent variables z to the output space through the prior distribution Ppre(z) and
outputs G(z). The discriminator D(x) → [0, 1] represents the probability that the sample
comes from the real target distribution. Through the showdown between the generator
and the discriminator, the distribution PG(x) of the samples generated by the generator
gradually approaches the target distribution Ptri(x). Its objective function is described
as follows:

min
G

max
D

EPtri(x)[log D(x)] + EPpre(z)[log(1 − D(x))] (9)

This research aims to produce samples on the periphery of the known classes for the
generator. For this purpose, the original GAN objective function is modified accordingly,
as given in Equation (10) below.

min
G

max
D

EPtri(x) log D(x) + EPG(x)[log(1 − D(x)]︸ ︷︷ ︸
(a)

+ βEPG(x)[ϕ(x)]︸ ︷︷ ︸
(b)

(10)

In the above expression, β > 0 is the balance parameter, which means that the trained
classifier becomes a class one at β = 0. This objective function can be delineated into
two components. The first term (a) corresponds to the loss of the original GAN, making
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the samples generated by the generator as similar as possible to the real samples. The
second term (b) calculates the sample density. Throughout the training, the generator
and the discriminator undergo multiple training iterations under the constraint of sample
density. This iterative process eventually guides the generator in producing samples on the
low-density boundary and discrete samples.

Equation (10) emphasizes generating authentic images to augment the closed-set
training data. To ensure that the generated and the real images are ultimately projected into
the same feature space, the conditional generative network should be trained on the basis of
the well-trained autoencoder. However, this research deviates from relying on autoencoder
training and instead opts to generate synthetic samples by referencing the latent feature
layer of the known class. The W chosen refers to the feature value corresponding to the
pre-logit layer of the closed-set classifier. The final equation is as follows:

min
G

max
D

EPtri(w) log D(w) + EPG(w)[log(1 − D(w)]︸ ︷︷ ︸
(a)

+ βEPG(w)[ϕ(w)]︸ ︷︷ ︸
(b)

(11)

This approach enables the generator to produce synthetic samples in areas with low
sample density, effectively balancing the distribution of internal samples within the known
classes and consequently enhancing the accuracy of the classifier. Additionally, generating
samples in the low-density regions outside the known classes can train the classifier to
recognize unknown class samples by categorizing them as unknown classes. This process
provides negative feedback, allowing the model to perceive the boundary area of the
known classes.

3.3. Reciprocal Point Learning

Reciprocal points [30] represent the inverse prototypes of each known category, and
their utilization enables the constraints of the space outside the category while maintaining
the accuracy of the known category. During the training, RPL [49], based on reciprocal
points, pushes all known categories towards the edge of the space. As a result, this strategy
ensures that the unknown category and reciprocal points collectively define the space
outside the category, minimizing the overlap between known and unknown distributions.
Consequently, this enhances the distinguishability of the unknown category. In this research,
RPL is adopted to model the space of unknown categories to classify the open-set HSI.

Specifically, given there are n labeled samples and N known categories in the training
dataset DS = {q1, q2, · · · , qn}, yi ∈ {1, 2, · · · , N} is the corresponding label of qi. For trail
data DT = {t1, t2, · · · , tm}, the labels of ti belong to {1, 2, · · · , N} for closed-set HSI classi-
fication and to {1, 2, · · · , N} ∪ {N + 1, N + 1, · · · , N + U} for open-set HSI classification,
where U denotes the number of unknown categories in a realistic HSI scenario. Thus, the
potential unknown data can be denoted as DU . For each known category k(1 ≤ k ≤ N),
Sk is the embedding space in the space RD, and the corresponding open space Ok can be
denoted as Ok = R − Sk.

Therefore, as an inverse prototype of the known category k, the reciprocal point
Pk can be regarded as a potential representation of the sub-dataset D ̸=k

L ∪ DU [14]. As
demonstrated in Figure 4a, the reciprocal point Pk should be closer to the empty space Ok
and far away from Sk, as follows.

max(ζ(D ̸=k
L ∪ DU), Pk) ≤ d ∀d ∈ ζ(Dk

S, Pk) (12)

where ζ denotes a set of distances such that the known category k is maximally distant
from P.
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Therefore, a pivotal objective of RPL is to expand the distance between known cate-
gories and their corresponding reciprocal points. To achieve this, the cosine distance d is
employed to compute the spatial position and angular orientation between instance qi and
the corresponding reciprocal point Pk.

d(φ(qi), Pk) = 1 − φ(qi) · Pk

∥φ(qi)∥ ·
∥∥Pk

∥∥ (13)

where φ(·) denotes a feature representation network with a learnable parameter set Θ, and
φ(qi) refers to a network feature of sample qi.

After describing the distance metric, it is noteworthy that as the distance d(φ(xi), Pk)
increases, the probability of labeling qi is calculated as the category k. The category proba-
bility can be calculated using the softmax function, considering the nature of the reciprocal
points and the instance-related weights in the expression below.

p(y = k|qi, φ, P ) =
exp(d(φ(qi), Pk)/ξi)

N
∑

j=1
exp(d(φ(qi), Pk)/ξi)

(14)

Therefore, the supervised loss function can be defined as the negative logistic loss of
the labels:

LC(q, P) = − log2(1 + exp(−qP)) (15)

The learnable parameter set of the feature representation network φ(·) is updated
by minimizing LC. Therefore, φ(·) can classify the known categories through supervised
learning with multi-class samples and their corresponding true labels. More importantly,
as illustrated in Figure 4b, all known categories are pushed to the periphery of the space by
their respective reciprocal points throughout the training. In addition, reciprocal points in
the space outside the category are also pushed into the known space.

3.4. Sample Distribution Using Data Wandering

Since the potential unknown categories are in the space outside the categories, the risk
of encountering open space persists. In response, a learnable dynamic threshold strategy
is further proposed in this research. By constructing a separation space, the open-set HSI
classification approach is optimized to lower the risk of the open space and facilitate the
recognition of unknown categories. Different from the past approaches that relied on
multi-class classifier prediction results for in-class splitting, DW is introduced for sample
distribution analysis and further constrains the open space, as explicated in Figure 5.
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Figure 5. A learnable dynamic thresholding strategy for open space, (a) schematic of RPL,
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By constructing an information energy field and setting a threshold θ, the sample space
is divided into within-class and outside-class after incorporating the synthetic samples.
The basic concept is depicted in Figure 6.
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In the figure above, the horizontal axis d represents the distance from the sample to the
relative sample center, while the vertical axis s shows the magnitude of the energy value.
The interval (0, L) refers to the central sample x(i) of the known class, the interval (L, L + M)
contains the known class edge samples and some generated samples (w(i) + w f C), and the
interval (L + M, ∞) is composed of generated samples w f O only. Existing methods can be
employed to directly classify the interval (L, ∞) as an unknown class, so samples from the
known class that are close to the edge are classified as unknown. In this research, some
generated samples from the known class are selected to enhance the accuracy of recognition.

Although RPL can classify synthetic samples in the open-set space into unknown class
W f O and known class W f C. Due to the existence of fuzzy sample boundaries, the boundary
samples are categorized as comprehensively as possible, and a data walking method is
adopted to iterate. Each sample point is moved in the direction of high energy at a specific
step length. Following this, a new data distribution is formed, and the energy field is
recalculated. These steps are iteratively repeated several times. After multiple iterations,
based on the data redistribution in the open-set space, synthetic samples within the known
range are identified as boundary samples through RPL, while the remaining samples are
considered new classes.

The data wandering algorithm, as an optimization technique based on energy fields,
demonstrates its unique value and efficiency. According to the hypothesis proposed by the
decision algorithm, clustering clusters should be centered around high-density data, with
low-density data surrounding the high-density ones. In the information energy field, a
cluster’s region should exhibit a distribution state where the central energy field strength is
high, and the edge energy field strength is low. This paper utilizes d(φ(qi), Pk) to construct
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the information energy field. After forming the sample information energy field values,
it is assumed that each sample point can move in the numerical space. By comparing the
energy field strength of the sample point with its surrounding eight neighborhoods, the
sample point is made to wander toward the direction of higher field strength. After several
wanderings, all sample points will move towards regions of higher data energy at a certain
step length, forming the final data distribution shape, and the final clustering results are
obtained by dividing the regions. Calculating the average energy of samples and setting
a threshold can be defined: if the average energy of a clustering cluster is higher than
1.5 times the total average entropy, it is defined as a high-energy cluster; otherwise, it is
a low-energy cluster. After the data wandering, due to the energy distribution deviation,
i.e., the average energy of the high-energy cluster is far higher than that of the low-energy
cluster, new samples in the process of data wandering will tend to move towards high-
energy fields. This will result in the following: (1) Data wandering can effectively solve
the clustering affiliation of discrete points, making it easier to form clustering clusters
after data wandering. (2) In the process of data wandering, high-energy clustering clusters
will influence low-energy clustering clusters, causing the clustering results of low-energy
clusters to become more dispersed.

Therefore, the RPL constraints for the separation space based on DW can be repre-
sented as follows:

max(θ(D ̸=k
L ∪ DU ∪ D ̸=k

L→U), Pk) ≤ R, ∀R ∈ θ(Dk
S, Pk)

θ =
∑ ϕ(W f O)

∑ ϕ(W f C)
• log(∑ ϕ(W f O)

∑ ϕ(W f C)
)

(16)

The process of the data walking method is illustrated in Figures 7 and 8.
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4. Experimental Results and Corresponding Analysis
4.1. Dataset

To carry out the open-set HSI multiclassification experiments proposed and to thor-
oughly validate our methodology, three HSI datasets, Pavia University (PU), Salinas (SA),
and Indian Pines (IP) are selected in this research.

The PU dataset, captured by the reflective optical system imaging spectrometer (ROSIS)
near the university, exhibits spatial dimensions of 610 × 340 with a spatial resolution of
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1.3 m. It consists of 115 channels covering a wavelength range of 0.43~0.86 µm. Before
classification experiments, 12 bands affected by noise and water absorption are eliminated
first. Buildings without previous labels are annotated as unknown due to their distinct
spectral profiles from known land cover.

The SA dataset is acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over the Salinas Valley in California, USA. The image possesses spatial dimensions of 512 ×
217 with a spatial resolution of 3.7 m, and it includes 224 bands spanning a wavelength range
of 0.4~2.5 µm. Similarly, 20 bands are removed prior to experiments due to water absorption.
Man-made materials without previous annotations are labeled as unknown samples.

The IP dataset, obtained via AVIRIS at the Indian Pines test site in Tippecanoe County,
Northwest Indiana, USA, has spatial dimensions of 145 × 145 with a spatial resolution
of 20 m. It comprises 220 bands spanning a wavelength range of 0.43~0.86 µm. Before
classification experiments, 20 bands are eliminated due to water absorption. Classes with
fewer than 10 instances were discarded as tail classes and considered unknown, resulting
in 8 known classes. Roads that are not previously labeled are identified as unknown.

Tables 1 and 2 provides the class distribution for each dataset, while
Figures 9a, 10a and 11a are their false color images. Figures 9b, 10b and 11b display
the standard true values of the closed-set constant index classification, along with the
respective class representations denoted by the true values.

Table 1. Statistics of the three HSI databases.

PU SA IP

Index Class Name Samples Index Class Name Samples Index Class Name Samples

1 Asphalt 6631 1 Brocoli-green-weeds-1 2009 1 Alfalfa 46
2 Meadows 18,649 2 Brocoli-green-weeds-2 3726 2 Corn-notill 1428
3 Gravel 2099 3 Fallow 1976 3 Corn-mintill 830
4 Trees 3064 4 Fallow-rough-plow 1394 4 Corn 237
5 Painted-metal-sheet 1325 5 Fallow-smooth 2678 5 Grass-pasture 483
6 Bare-soil 5029 6 Stubble 3959 6 Grass-trees 730
7 Bitumen 1330 7 Celery 3579 7 Grass-pasture-mowed 28
8 Self-blocking-brick 3682 8 Grapes-untrained 11,271 8 Hay-windrowed 478
9 Shadows 947 9 Soil-vineyard-develop 6203 9 Oats 20

10 Corn-senesced-green-weeds 3278 10 Soybean-notill 972
11 Lettuce-romaine-4wk 1068 11 Soybean-mintill 2455
12 Lettuce-romaine-5wk 1927 12 Soybean-clean 593
13 Lettuce-romaine-6wk 916 13 Wheat 205
14 Lettuce-romaine-7wk 1070 14 Woods 1265
15 Vineyard-untrained 7268 15 Buildings-Grass-Trees-Drives 386
16 Vineyard-vertical-trellis 1807 16 Stone-Steel-Towers 93

Table 2. Physical parameters of the three HSI databases.

PU SA IP

Number of channels 115 224 102
Spectral ranges (µm) 0.43~0.86 0.4~2.5 0.4~2.5

Spatial resolution 610 × 340 512 × 217 1096 × 1096
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4.2. Evaluation Metrics

To evaluate the performance of RPLDW, the standard OSR indicators are adopted
herein, namely closed-set overall accuracy (ClosedOA), open-set overall accuracy
(OpenOA), and Kappa. ClosedOA and OpenOA represent the percentage of known
category samples and that of open-set samples that are correctly classified, respectively.

OpenOA =

K+1
∑

k=1
TPk + TNk

K+1
∑

k=1
TPk + TNk + FPk + FNk

(17)

where TPk, TNk, FPk, and FNk signify the true positive, true negative, false positive,
and false negative of the kth known class, respectively. All the outliers are combinedly
considered as the (K + 1)th class in OpenOA.

4.3. Experiments

The ADAM (Adaptive Moment Estimation) optimizer is utilized for back-propagation,
with a maximum training round of 100 times. The learning rate is set at 0.0001 for 1-shot
and 0.003 for 5-shot. During the training, all experiments are composed in a random
manner from the training samples and repeated 10 times to reduce experimental errors.
Subsequently, the average results are calculated for analysis and comparison.
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To simulate the conditions for open-set HSI classification, the last category of features
is designated as unknown, based on generally accepted standard true values of features,
to ensure experiment fairness. In addition, setting a single unknown category aids in
maintaining the overall effectiveness of the open-set classification image and facilitates
in-depth analysis.

To fully assess the performance of our method in open-set HSI classification, several
important comparison methods are employed in this work, involving two categories:

(1) Comparison with traditional closed-set HSI classification methods: the three-dimensi-
onal octave convolutional space-spectral attention networks (3DOC-SSAN) [50] and
the spectral–spatial transformer network (SSTN) based on transformer backbone [51]
are adopted to emphasize the superiority of open-set classification methods in dealing
with unknown categories. In this research, a fully connected (FC) layer is introduced
at the end of the network for score prediction, where the maximum score serves as
the final label. According to the general solution for open-set issues [52], an extra
softmax function is added to these networks, and the maximum probability value in
the probability vector functions as the prediction label. Referring to [52], the threshold
of the softmax function is set to 0.5 to recognize outputs considered as unknown
categories (i.e., when the maximum probability is less than 0.5);

(2) Comparison with open-set HSI classification methods: OpenMax [22], SSLR, and
MDL4OW [29] are originally developed for large-scale OSR by fitting the Weibull
distribution in the prototype network, making them suitable for FSOSR. RDOSR [25]
performs OSR on HSI datasets in the latent space using a limited number of supervised
samples. PEELER [26], SnaTCHer [25], and OCN [53] are developed in the context of
FSOSR and can be easily evaluated on HSI datasets.

The above comparisons are conducted by adhering to the optimal settings outlined
in each original piece of literature. Consistency in the combinations of randomly selected
training samples for each method is maintained across 10 experiments to ensure fairness.
Notably, each method’s closed-set and open-set performance is validated by recording the
closed-set and open-set metrics, respectively. The experimental results are summarized in
Tables 3–8.

Table 3. The 1-shot accuracy (%) of different methods in IP scenarios. (The 16th category is defined
as unknown).

Category 3DOC-SSAN SSTN OCN SnaTCHer PEELER RDOSR OpenMax MDL4OW SSLR RPLDW

1 65.70 90. 21 89.24 81.31 80.69 90.23 75.99 75.15 75.83 89.10
2 60.80 58.08 72.60 78.52 78.06 61.71 66.74 66.35 66.35 78.57
3 68.85 61.08 76.35 79.46 81.75 64.89 67.54 69.48 69.48 78.18
4 54.42 70.05 87.56 84.47 81.58 74.43 71.80 69.34 69.34 85.22
5 58.17 64.24 80.30 79.45 78.59 68.25 67.53 66.80 66.80 82.50
6 59.02 69.47 86.83 87.03 88.73 73.81 73.98 75.42 75.42 85.10
7 61.37 71.28 89.10 79.87 79.56 75.74 67.89 67.63 67.63 86.98
8 63.35 71.20 89.00 88.98 87.43 75.65 75.64 74.31 74.31 87.79
9 68.88 70.21 87.77 89.10 86.88 74.60 75.74 73.85 73.85 84.92
10 52.14 62.96 78.71 72.14 63.15 66.90 61.32 53.68 53.68 77.56
11 45.32 52.91 66.13 61.60 54.63 56.21 52.36 59.49 59.49 74.52
12 45.78 68.01 85.01 79.01 62.20 72.26 67.16 52.87 52.87 83.07
13 70.10 71.03 88.79 88.88 88.88 75.47 75.55 75.55 75.55 86.55
14 54.78 68.59 85.74 85.09 81.35 72.88 72.32 69.15 69.15 83.12
15 67.90 69.25 86.56 81.35 78.94 73.58 69.15 67.10 67.10 84.14

Unknown 66.29 69.81 83.21 86.32 85.48 80.14 73.37 72.66 72.66 88.62
Closed OA 64.47 65.29 81.61 80.82 76.34 69.37 68.70 64.89 64.89 82.30
Closed AA 71.59 66.90 83.62 83.10 77.81 71.08 70.63 66.13 66.13 84.09

Closed Kappa 61.39 63.66 79.57 78.89 74.21 67.63 67.05 63.08 63.08 79.82
Open OA 53.13 59.60 74.50 75.95 74.98 63.33 64.56 63.73 63.73 77.03
Open AA 46.68 60.75 75.93 80.00 75.87 64.54 68.00 64.49 64.49 80.57

Open Kappa 50.44 59.18 73.97 75.60 72.44 62.88 64.26 61.57 61.57 76.36
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Table 4. The 1-shot accuracy (%) of different methods in SA scenarios. (The 16th category is defined
as unknown).

Category 3DOC-SSAN SSTN OCN SnaTCHer PEELER RDOSR OpenMax MDL4OW SSLR RPLDW

1 75.82 78.25 91.82 89.12 89.12 90. 86 76.01 79.32 82.61 89.60
2 65.54 78.37 72.62 78.53 78.08 61.73 66.75 82.33 84.37 88.44
3 61.36 78.37 76.37 79.48 81.77 64.91 67.56 85.27 84.76 89.73
4 61.97 77.57 87.58 84.49 81.60 74.44 71.82 84.53 84.10 88.78
5 62.11 75.84 80.32 79.47 78.61 68.27 67.55 82.56 84.29 88.92
6 78.04 78.11 86.85 87.05 88.75 73.82 73.99 83.36 83.11 85.25
7 77.09 78.14 89.12 79.89 79.58 75.75 77.00 82.39 81.67 86.79
8 57.18 63.57 89.02 89.00 87.45 75.67 75.65 67.27 65.68 78.92
9 69.80 78.29 87.79 89.12 86.90 74.62 75.75 85.21 84.70 88.60
10 66.73 74.83 78.72 72.16 63.17 66.92 61.34 82.54 82.02 85.56
11 58.81 77.66 66.15 61.61 67.64 56.23 52.37 84.05 80.51 88.73
12 56.11 77.94 85.03 79.03 62.21 72.28 67.18 85.45 85.52 89.32
13 74.22 78.18 88.81 88.91 88.91 75.49 75.57 85.12 85.18 88.10
14 57.33 77.59 85.76 85.11 81.37 72.90 72.34 84.89 84.84 86.60
15 41.75 68.73 86.58 81.37 78.96 73.60 69.16 72.06 71.25 80.43

Unknown 41.37 43.81 53.03 62.60 53.43 49.63 55.23 54.09 49.40 56.21
Closed OA 59.85 74.02 81.63 80.84 76.36 69.39 68.71 79.37 83.12 86. 94
Closed AA 63.48 75.69 83.64 83.12 77.82 71.09 70.65 82.94 82.46 88.22

Closed Kappa 57.75 73.49 79.59 78.90 74.23 67.65 75.07 77.55 76.35 85.49
Open OA 53.23 69.91 81.00 82.58 81.52 68.85 70.19 75.60 76.05 82.96
Open AA 53.72 70.81 82.56 86.98 82.49 70.17 73.93 77.26 77.66 83.18

Open Kappa 50.77 69.14 80.42 82.02 78.76 68.36 69.86 74.49 74.98 82.14

Table 5. The 1-shot accuracy (%) of different methods in PU scenarios. (The 9th category is defined
as unknown).

Category 3DOC-SSAN SSTN OCN SnaTCHer PEELER RDOSR OpenMax MDL4OW SSLR RPLDW

1 47.20 78.69 72.81 56.93 74.76 78.12 74.20 82.23 78.11 77.17
2 58.66 80.05 74.08 59.89 76.04 80.85 78.35 85.10 82.48 82.44
3 48.17 80.09 72.94 50.14 76.09 75.71 75.99 79.70 79.98 79.65
4 77.18 81.82 79.82 76.76 77.73 80.35 79.94 84.58 84.15 78.18
5 81.03 88.10 83.68 82.00 83.70 67.80 79.24 71.37 83.41 87.41
6 65.67 84.46 78.48 52.39 80.24 79.73 78.21 83.93 82.33 84.06
7 73.06 87.34 81.55 61.36 82.97 80.55 79.30 84.79 83.47 84.69
8 49.11 77.55 70.22 50.65 73.68 74.30 67.64 78.21 71.20 72.09

Unknown 45.03 49.28 59.78 53.18 29.91 35.98 43.60 37.88 45.90 62.30
Closed OA 57.75 83.13 83. 17 65. 69 78.98 77.48 78.42 81.56 82.55 85.35
Closed AA 60.23 84.46 80.04 61.93 80.24 78.27 78.92 82.39 83.07 84.79

Closed Kappa 48.81 81.52 77.02 53.38 77.45 77.02 77.24 81.07 81.31 83.63
Open OA 48.93 59.87 73.46 57.93 75.88 73.67 74.67 77.55 78.60 80.28
Open AA 49.68 57.60 68.88 54.63 73.72 73.34 73.50 77.20 77.37 78.67

Open Kappa 50.64 57.43 70.50 51.34 73.56 72.63 72.96 76.45 76.80 77.93

Table 6. The 5-shot accuracy (%) of different methods in IP scenarios. (The 16th category is defined
as unknown).

Category 3DOC-SSAN SSTN OCN SnaTCHer PEELER RDOSR OpenMax MDL4OW SSLR RPLDW

1 73.00 99. 56 99. 01 99.00 99.00 99.32 84.43 83.50 84.26 99.00
2 67.56 64.54 80.67 87.24 86.73 68.57 74.15 73.72 73.72 87.30
3 76.50 67.86 84.83 88.29 90.83 72.11 75.05 77.21 77.21 86.87
4 60.46 77.83 97.29 93.86 90.64 82.70 79.78 77.04 77.04 94.69
5 64.63 71.38 89.22 88.28 87.32 75.84 75.04 74.22 74.22 91.67
6 65.58 77.18 96.48 96.70 98.59 82.01 82.20 83.80 83.80 94.55
7 68.18 79.20 99.00 88.74 88.40 84.15 75.43 75.14 75.14 96.64
8 70.38 79.11 98.89 98.87 97.14 84.06 84.04 82.57 82.57 97.54
9 76.54 78.02 97.52 99.00 96.53 82.89 84.15 82.05 82.05 94.36
10 57.94 69.96 87.45 80.16 70.17 74.33 68.14 59.64 59.64 86.18
11 50.35 58.78 73.48 68.44 60.70 62.46 58.17 66.10 66.10 82.80
12 50.87 75.57 94.46 87.79 69.11 80.29 74.62 58.74 58.74 92.30
13 77.89 78.92 98.65 98.76 98.76 83.85 83.95 83.95 83.95 96.17
14 60.87 76.22 95.27 94.54 90.39 80.98 80.36 76.83 76.83 92.36
15 75.45 76.94 96.18 90.39 87.71 81.75 76.83 74.55 74.55 93.49
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Table 6. Cont.

Category 3DOC-SSAN SSTN OCN SnaTCHer PEELER RDOSR OpenMax MDL4OW SSLR RPLDW

Unknown 73.66 77.57 92.46 95.91 94.98 89.04 81.52 80.73 80.73 98.47
Closed OA 71.63 72.54 90.68 89.80 84.82 77.08 76.33 72.10 72.10 91.44
Closed AA 71.59 74.33 92.91 92.33 86.45 78.97 78.48 73.48 73.48 93.43

Closed Kappa 68.22 70.73 88.41 87.65 82.46 75.15 74.50 70.09 70.09 88.69
Open OA 59.03 66.22 82.78 84.39 83.31 70.36 71.73 70.81 70.81 85.59
Open AA 51.86 67.50 84.37 88.89 84.30 71.71 75.56 71.66 71.66 89.52

Open Kappa 56.04 65.75 82.19 84.00 80.49 69.86 71.40 68.42 68.42 84.84

Table 7. The 5-shot accuracy (%) of different methods in SA scenarios. (The 16th category is defined
as unknown).

Category 3DOC-SSAN SSTN OCN SnaTCHer PEELER RDOSR OpenMax MDL4OW SSLR RPLDW

1 83.32 85.99 99.01 97.94 97.94 99. 32 83.52 87.16 90.78 98.46
2 72.02 86.12 79.80 86.30 85.80 67.83 73.36 90.48 92.71 97.19
3 67.42 86.12 83.92 87.34 89.85 71.33 74.24 93.71 93.15 98.6
4 68.10 85.24 96.24 92.85 89.67 81.81 78.92 92.89 92.42 97.56
5 68.25 83.35 88.26 87.33 86.38 75.02 74.23 91.66 92.63 97.71
6 85.76 85.83 95.44 95.66 97.53 81.13 81.31 91.60 91.33 93.68
7 84.71 85.87 97.94 87.79 87.45 83.25 84.62 90.54 89.75 95.37
8 62.83 69.86 97.83 97.81 96.10 83.15 83.14 73.92 72.18 86.72
9 76.70 86.03 96.47 97.94 95.49 82.00 83.25 93.64 93.07 97.36
10 73.33 82.23 86.51 79.30 69.42 73.53 67.40 90.71 90.13 94.02
11 64.62 85.34 72.69 67.70 30.37 61.79 57.55 92.36 88.47 97.5
12 61.66 85.65 93.44 86.85 68.37 79.43 73.82 93.90 93.98 98.15
13 81.56 85.91 97.59 97.70 97.70 82.95 83.04 93.54 93.60 96.81
14 63.00 85.26 94.25 93.52 89.42 80.11 79.49 93.29 93.23 95.17
15 45.88 75.52 95.15 89.42 86.77 80.87 76.01 79.19 78.30 88.39

Unknown 45.46 48.14 58.28 68.79 58.71 54.54 60.69 59.44 54.29 61.77
Closed OA 65.77 81.34 89.70 88.83 83.91 76.25 75.51 87.22 91. 91 96. 39
Closed AA 69.76 83.18 91.91 91.34 85.52 78.12 77.64 91.14 90.61 96.94

Closed Kappa 63.47 80.76 87.46 86.71 81.57 74.34 73.70 85.22 83.90 93.94
Open OA 58.50 76.82 89.01 90.74 89.58 75.66 77.13 83.08 83.57 91.16
Open AA 59.04 77.81 90.72 95.58 90.65 77.11 81.24 84.90 85.34 91.41

Open Kappa 55.79 75.98 88.38 90.13 86.55 75.12 76.77 81.85 82.39 90.26

Table 8. The 5-shot accuracy (%) of different methods in PU scenarios. (The 9th category is defined
as unknown).

Category 3DOC-SSAN SSTN OCN SnaTCHer PEELER RDOSR OpenMax MDL4OW SSLR RPLDW

1 53.03 88.42 81.80 63.96 84.00 87.77 83.37 92.39 87.76 86.71
2 65.91 89.94 83.24 67.29 85.44 90.84 88.04 95.62 92.67 92.63
3 54.12 89.99 81.96 56.34 85.49 85.07 85.38 89.55 89.87 89.49
4 86.72 91.93 89.69 86.25 87.33 90.28 89.82 95.03 94.55 87.84
5 91.05 98.99 94.02 92.13 94.04 76.18 89.03 80.19 93.72 98.21
6 73.79 94.90 88.18 58.86 90.16 89.59 87.88 94.30 92.50 94.45
7 82.09 98.13 91.63 68.94 93.22 90.51 89.10 95.27 93.79 95.16
8 55.18 87.14 78.90 56.91 82.78 83.49 76.00 87.88 80.00 81.00

Unknown 50.59 55.37 67.16 59.75 33.60 40.43 48.99 42.56 51.57 70.00
Closed OA 64.89 93.41 93.94 71. 51 88.74 87.06 88.11 91.64 92.75 95.90
Closed AA 67.67 94.90 89.94 69.59 90.16 87.94 88.67 92.57 93.34 95.27

Closed Kappa 54.84 91.60 86.54 59.97 87.02 86.54 86.79 91.09 91.36 93.97
Open OA 54.98 69.74 82.54 65.09 85.25 82.77 83.89 87.13 88.31 90.20
Open AA 55.82 67.19 77.40 61.38 82.83 82.40 82.58 86.74 86.93 88.39

Open Kappa 56.90 67.00 79.21 57.68 82.65 81.61 81.98 85.90 86.29 87.56

4.4. Experimental Results

The RPLDW is compared with the most advanced 1-shot and 5-shot FSOSR methods
in Tables 2–7, respectively. The HSI datasets demonstrate superior performance com-
pared to other OSR methods. The following valuable conclusions can be drawn from the
observed results.
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(1) Limitations of Closed-Set Methods and the Impact of Sample Size on Accuracy:
While the use of the softmax function at the end of networks enhances the ability of
other closed-set methods to recognize unknown categories, these methods exhibit
significant fluctuations when confronted with potential unknown categories. This
is especially pronounced in the FSOSR context with limited samples. Methods like
3DOC-SSAN and SSTN perform well with ample samples but become unstable with
fewer samples, leading to decreased performance in open-set environments. This
highlights the inherent limitations of closed-set classifiers in FSOSR contexts.

(2) Performance Comparison of Open-Set Methods and Traditional Classification Meth-
ods: Both traditional classification methods and those designed for open sets generally
do not perform as well in open-set environments as they do in closed-set ones. This
phenomenon is more evident in the context of FSOSR. Dedicated open-set methods,
such as RPLDW, demonstrate greater resilience and stability, especially under lim-
ited sample conditions, by considering the capability to process unknown categories
during the design phase.

(3) Correlation Between Open-Set and Closed-Set Performance: Both conventional clas-
sification methods and specialized open-set classification methods reveal a close
relationship between open-set and closed-set performance. In FSOSR contexts, if
a method excels in open-set performance, it often also performs well in closed-set
scenarios, but the reverse is not necessarily true.

(4) Superiority of Open-Set Methods: Open-set methods exhibit stable accuracy in han-
dling both open and closed-set classifications, which is particularly crucial in FSOSR
environments. Compared to closed-set methods, specialized open-set methods effec-
tively exclude unknown categories while maintaining high accuracy in recognizing
known categories.

(5) Advantages of the RPLDW Method: In the FSOSR environment, the RPLDW method
outperforms all other studied methods. It scores highest in closed and open-set metrics
and achieves the highest accuracy in identifying unknown categories. RPLDW enhances
the boundaries of known categories, eliminating the need to manually set specific
thresholds. It constructs an independent space in limited sample situations and employs
RPL to calculate reciprocal point distances. This approach significantly improves
accuracy by determining labels within the known range in open-set scenarios.

Therefore, it can be concluded that RPLDW performs more robustly and effectively
when dealing with open risks in the real open world.

To compare the effects of different methods more intuitively, the classification maps
depicting the performance of the better-performing open-set classification methods in the
experiment are generated, as explicated in Figure 12. This visual approach provides a better
comprehension and comparison of the performance differences among various methods.

Figure 12 reveals that high closure metrics usually align with high-quality closed-set
classification maps, whereas low closure metrics may result in subpar outcomes. Despite
SSTN demonstrating superior open performance compared to other closed-set methods, it
still struggles to effectively exclude unknown categories.

Improved closed-set methods can identify potential unknown categories, as evidenced
by the black areas in the open-set classification maps. However, the overall open-set perfor-
mance of closed-set methods falls short of ideal. The primary issue lies in misclassifying a
considerable number of known categories as unknown, causing inconsistencies between
the black areas of the open-set classification maps and the actual situation.

The negative impact of the OSE slightly influences the performance of the open-set
methods. The classification maps of open-set methods achieve superior visual effects
in both the ideal closed-set assumption and the realistic open HSI world. They usually
correspond with the actual distribution of ground objects and exhibit less noise.

RPLDW demonstrates excellent visual effects on both closed-set and open-set classi-
fication maps, providing further evidence of its robustness and superior performance in
the realistic open HSI world. Notably, MDL4OW and SSLR, with fixed thresholds, tend to
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overlook certain potential areas of unknown categories. In contrast, our proposed RPLDW
incorporates a dynamic, learnable threshold, enabling it to discover more potential areas of
unknown categories. This adaptive approach proves effective in navigating the complex
open world with new ground object categories.
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4.5. Open-Set Multiclassification and Visualization Analysis

Herein, categories 11, 12, 13, and 14 of the SA datasets are identified as unknown
for open-set multiclassification experimental analysis. The experiments are compared
with the latest open-set recognition algorithms, including FCPN [15], DLRSPs-DAEs [54],
POSM [15], and SSMLP-RPL [14]. The other detailed settings are consistent with the
above-mentioned experiments, and the results are outlined in Table 9.

Table 9. Multiclassification accuracy of different methods in SA scenarios (%).

Category FCPN DLRSPs-DAEs POSM SSMLP-RPL RPLDW

1.00 99.00 99.00 98.46 97.01 98.45
2.00 87.30 87.02 97.19 97.39 98.19
3.00 86.87 88.85 98.60 98.33 98.11
4.00 94.69 92.67 97.56 97.42 97.51
5.00 91.67 89.50 97.71 97.61 97.43
6.00 94.55 96.57 93.68 94.91 95.94
7.00 96.64 92.52 95.37 94.92 97.86
8.00 97.54 97.34 86.72 81.35 89.74
9.00 94.36 95.45 97.36 97.67 98.52

10.00 86.18 78.18 94.02 94.45 96.39
15.00 82.80 86.75 97.50 95.32 91.89
16.00 92.30 80.71 98.15 98.54 98.00

Unknown 78.47 76.73 61.77 74.20 79.32
Closed OA 91.44 88.13 91. 39 92. 63 92.9
Closed AA 93.43 89.94 96.94 96.16 95.98

Closed Kappa 88.69 85.58 93.94 91.13 92.14
Open OA 85.59 84.45 91.16 89.57 93.65
Open AA 89.52 86.91 91.41 90.62 91.57

Open Kappa 84.84 82.67 90.26 88.50 90.34
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To further intuitively demonstrate the discriminative feature space constructed by
RPLDW, the t-SNE dimensionality reduction visualization method is utilized to further
highlight its advantages in identifying known and unknown categories. This is imple-
mented by taking SA data as an example, and the results are visualized in Figure 13.
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(b) Feature space constructed by RPLDW (the 16th category is unknown). (c) Feature space con-
structed by RPLDW (the 11th, 12th, 13th, and 14th categories are defined as the unknown ones).

Examining the original SA data reveals suboptimal discriminability in its feature
space, primarily presenting as overlap and too much closeness among different categories.
However, using the RPL training and DW strategy, the data samples are successfully
projected into a more distinctive high-dimensional feature space, enabling the open-set
HSI classification. More specifically, the distance between known categories and their
corresponding antipodes is broadened, pushing known categories towards the fringe of
the space. In addition, the distance between unknown categories and antipodes is confined
within a limited boundary. Therefore, the feature space created by RPLDW enhances the
distance between known categories and unknown categories, facilitating the identification
of unknown categories.

This optimized feature space ensures the correct classification of known categories
while effectively excluding unknown categories. More importantly, the label assignment
for the instance to be classified is determined by its distance to the antipode. Setting a
reasonable threshold can effectively reject unknown categories, thereby mitigating the risk
of open space. However, a single and fixed threshold could potentially lead to overlooking
potential unknown categories due to variations in the distance between known categories
and their antipodes. A learnable dynamic threshold strategy is proposed in this research
to address this issue. It can reject unknown categories to the maximum extent without
affecting the recognition of known categories.

4.6. Small Sample Analysis

For experiments on HSI data, the samples in each category are randomly disrupted,
and the number of samples from each category is set as 20, 50, 150, and 200 labeled with
the real class label, forming the training dataset. Importantly, the training dataset does not
include samples labeled as “Unknown”. To create the test dataset, the remaining labeled
data are combined with the samples labeled as “Unknown”. Furthermore, five repeated
tests are conducted following the aforementioned steps to mitigate the potential impact of
random factors and ensure the robustness of the experimental outcomes. The algorithm’s
performance is assessed using the average classification results. To assess the efficacy of
the algorithm proposed in this research, its experimental results are compared with those
of several algorithms mentioned in the previous section, employing three experimental
datasets. The specific comparisons are detailed in Tables 10–12.
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Table 10. Overall classification accuracy on IP dataset (%).

Sample Size MDL4OW SSLR FCPN DLRSPs-DAEs POSM SSMLP-RPL RPLDW

20

Unknown 93.05 92.15 96.51 93.70 94.95 94.03 97.48
Open OA 81.87 80.83 84.41 81.96 83.54 82.48 84.73
Open AA 86.24 81.79 86.03 83.52 88.00 83.46 88.62

Open Kappa 81.50 78.09 83.81 81.37 83.16 79.68 83.99

50

Unknown 95.40 94.48 98.95 96.06 97.35 96.41 99.21
Open OA 83.94 82.87 86.55 84.03 85.65 84.56 88.15
Open AA 88.42 83.85 88.20 85.63 90.23 85.56 92.20

Open Kappa 83.56 80.06 85.93 83.42 85.26 81.69 87.39

100

Unknown 97.49 96.81 91.38 98.43 99.48 98.78 99.52
Open OA 86.01 84.91 88.68 86.10 87.76 86.64 90.72
Open AA 90.60 85.92 90.37 87.74 92.45 87.67 94.89

Open Kappa 85.61 82.03 88.04 85.48 87.36 83.71 89.93

150

Unknown 97.55 97.17 93.82 90.80 99.54 99.16 99.82
Open OA 88.08 86.95 90.81 88.16 89.87 88.72 93.72
Open AA 92.78 87.98 92.55 89.85 94.67 89.78 98.02

Open Kappa 87.67 84.00 90.16 87.53 89.46 85.72 92.90

200

Unknown 97.59 97.54 96.26 93.16 99.58 99.53 99.94
Open OA 90.14 88.99 92.94 90.23 91.98 90.81 94.14
Open AA 94.95 90.05 94.72 91.96 96.89 91.89 98.47

Open Kappa 89.73 85.98 92.27 89.59 91.56 87.73 93.33

Table 11. Overall classification accuracy on SA dataset (%).

Sample Size MDL4OW SSLR FCPN DLRSPs-DAEs POSM SSMLP-RPL RPLDW

20

Unknown 60.06 55.23 61.26 60.64 60.68 56.15 61.15
Open OA 84.84 85.35 90.04 87.42 86.57 87.09 90.25
Open AA 86.70 87.16 91.20 88.54 88.47 88.93 90.49

Open Kappa 83.59 84.15 89.05 86.45 85.30 85.87 89.36

50

Unknown 60.97 56.60 61.90 61.27 61.61 57.55 63.62
Open OA 87.41 87.94 92.77 90.06 89.20 89.73 93.89
Open AA 89.33 89.80 93.96 91.23 91.15 91.63 94.15

Open Kappa 86.13 86.70 91.75 89.07 87.88 88.47 92.97

100

Unknown 61.58 57.51 62.33 61.68 62.23 58.48 65.47
Open OA 89.13 89.66 94.58 91.83 90.94 91.49 96.63
Open AA 91.08 91.56 95.80 93.01 92.94 93.43 96.89

Open Kappa 87.81 88.40 93.55 90.82 89.61 90.20 95.67

150

Unknown 62.19 58.43 62.76 62.10 62.85 59.42 67.02
Open OA 90.84 91.38 96.40 93.60 92.69 93.25 98.91
Open AA 92.83 93.32 97.65 94.80 94.73 95.22 99.18

Open Kappa 89.50 90.10 95.34 92.57 91.33 91.94 97.93

200

Unknown 62.95 59.57 63.30 62.62 63.62 60.58 67.33
Open OA 92.98 93.54 98.68 95.80 94.88 95.45 99.36
Open AA 95.02 95.52 99.95 97.04 96.96 97.47 99.63

Open Kappa 91.61 92.22 97.59 94.75 93.48 94.11 98.38

Table 12. Overall classification accuracy on PU dataset (%).

Sample Size MDL4OW SSLR FCPN DLRSPs-DAEs POSM SSMLP-RPL RPLDW

20

Unknown 61.29 60.03 66.07 65.02 62.13 61.05 69.30
Open OA 84.53 85.68 91.51 88.85 86.26 87.42 89.30
Open AA 84.16 84.34 88.91 86.32 85.88 86.06 87.50

Open Kappa 83.34 83.72 88.72 86.13 85.04 85.43 86.68
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Table 12. Cont.

Sample Size MDL4OW SSLR FCPN DLRSPs-DAEs POSM SSMLP-RPL RPLDW

50

Unknown 72.54 71.55 67.16 66.08 73.41 72.60 72.10
Open OA 87.10 88.27 94.28 91.54 88.87 90.07 92.90
Open AA 86.71 86.90 91.60 88.93 88.48 88.67 91.04

Open Kappa 85.87 86.25 91.40 88.74 87.62 88.01 90.18

100

Unknown 73.38 72.56 67.89 66.79 74.26 73.63 74.20
Open OA 88.80 90.00 96.13 93.33 90.62 91.84 95.61
Open AA 88.41 88.60 93.40 90.68 90.21 90.41 93.69

Open Kappa 87.55 87.95 93.20 90.48 89.34 89.74 92.81

150

Unknown 74.21 73.57 68.62 67.50 75.11 74.66 75.95
Open OA 90.51 91.73 97.98 95.13 92.36 93.61 97.87
Open AA 90.11 90.30 95.19 92.42 91.95 92.15 95.90

Open Kappa 89.24 89.64 94.99 92.22 91.06 91.47 95.00

200

Unknown 75.25 74.83 69.53 68.38 76.18 75.95 76.30
Open OA 92.65 93.90 100.29 97.37 94.54 95.81 98.32
Open AA 92.23 92.43 97.44 94.60 94.12 94.32 96.34

Open Kappa 91.34 91.75 97.23 94.40 93.20 93.62 95.44

The experimental results further reinforce the efficacy of the proposed RPLDW al-
gorithm, showing its pronounced advantage over other methods at a consistent training
rate. Notably, as the training dataset increases from 150 to 200, the RPLDW algorithm
maintains stable classification results, underscoring its robust performance even with rel-
atively small training datasets. This stability is a significant strength of our algorithm,
opening up possibilities for practical applications in scenarios with limited data and quick
decision-making requirements or situations characterized by continuous data growth and
continuous learning needs.

The success of the proposed method in achieving high accuracy can be attributed to
the effectiveness of the reciprocal points and reinforced boundary algorithms proposed.
The reciprocal point algorithm can effectively project data instances into a high-dimensional
feature space, enlarging the separation between known and unknown categories. This
clear distance difference provides a clearer foundation for classification decisions, thereby
enhancing overall accuracy. Simultaneously, the reinforced boundary algorithm contributes
to the stability of classification by optimizing decision boundaries and maintaining high
classification accuracy even with limited training samples. This approach fortifies more
robust classification decisions in environments with scarce data, solidifying the strong
performance of our method under these circumstances.

In summary, the harmonious integration of reciprocal points and reinforced boundary
algorithms empowers the proposed method to demonstrate exceptional performance,
particularly in scenarios with limited data. This success is a testament to algorithmic design
and our ability to deeply understand the dynamics of data and the needs of classification.

4.7. RPLDW Model Ablation Analysis

The RPLDW method introduced herein incorporates GAN and RPL, which signifi-
cantly enhances its performance in HSI data classification in the OSE. Ablation experiments
were conducted on these two modules by systematically excluding them from the RPLDW
framework. Subsequently, open-set classification on the “Unknown” labeled data across
three datasets was conducted, using the accuracy of open-set classification as the evaluation
metric. The experimental results are summarized in Table 13, revealing the substantial
contributions of both GAN and RPL to the classification capability of RPLDW in the OSE.
The removal of either the GAN or the RPL module from RPLDW leads to a marked decrease
in the model’s accuracy for classification in the OSE.
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Table 13. RPLDW ablation results (%).

Sample
Size

DATASET RPLDW

RPLDW without RPL RPLDW without GAN

Accuracy
Rate

Accuracy
Variation

Mean
Variation

Accuracy
Rate

Accuracy
Variation

Mean
Variation

20
Pavia University 83.04 60.72 −22.32

−23.86
57.46 −25.58

−27.11Salinas 86.33 61.44 −24.89 58.54 −27.79
Indian Pines 75.27 50.89 −24.38 47.32 −27.95

50
Pavia University 82.40 60.95 −21.45

−23.78
57.48 −24.92

−26.89Salinas 85.97 61.73 −24.24 58.73 −27.24
Indian Pines 75.55 49.91 −25.64 47.05 −28.5

100
Pavia University 81.34 57.85 −23.49

−22.97
55.39 −25.95

−25.62Salinas 85.37 62.75 −22.62 59.43 −25.94
Indian Pines 76.00 53.19 −22.81 51.03 −24.97

150
Pavia University 80.27 57.39 −22.88

−22.57
55.60 −24.67

−24.23Salinas 84.77 63.43 −21.34 61.65 −23.12
Indian Pines 76.46 53.04 −23.42 51.57 −24.89

200
Pavia University 79.21 58.94 −20.27

−20.70
55.99 −23.22

−22.95Salinas 84.17 63.42 −20.75 62.01 −22.16
Indian Pines 76.92 55.79 −21.13 53.44 −23.48

After the removal of the GAN module, the model exhibited a notable decrease in the
average accuracy for classification in the OSE across various training data sizes. Specifically,
for training data sizes of 20, 50, 100, 150, and 200, the declines in accuracy were 22.32%,
23.78%, 22.97%, 22.57%, and 20.7%, respectively. Similarly, excluding the RPL module
resulted in accuracy reductions of 27.11%, 26.89%, 25.62%, 24.23%, and 22.95% for the
same training data sizes, respectively. RPL differentiates the unknown category space by
constructing inverse prototypes and widening the distance between known and unknown
categories, thereby mitigating risks in open spaces. Conversely, GAN assesses the similarity
of test data from a metric domain perspective, facilitating the detection and classification of
unknown label data.

In summary, the RPLDW model proposed herein leveraged RPL to construct a sep-
aration space and incorporated GAN for outstanding performance in HSI open-set clas-
sification. RPLDW demonstrates superior performance in unknown class identification,
model stability, classification efficacy, and convergence speed compared to other algorithms.
Despite its effectiveness in identifying known and unknown categories in HSI data with
enhanced boundaries, some stray data points in the sample space remain inadequately
classified. Additionally, applying a threshold method for open-set recognition in RPLDW
can impact the accuracy. These limitations provide opportunities for future enhancement
and refinement.

5. Conclusions

In the field of HSI classification, despite the significant strides made by deep learning
methods, they still heavily rely on the ideal CSE and demand a substantial volume of
labeled data. In response to these challenges, this research proposes the RPLDW method.
Firstly, a K-class classifier tailored for the closed set is trained, leveraging its internal
encoder to extract features. These features, indicative of known class distributions, are
then employed to fine-tune the training of the classifier. Secondly, synthetic samples
close to the decision boundary are generated using the GAN based on sample density
constraints. These synthetic samples are processed to augment the training data. This
addresses the scarcity of samples and enhances the training data. Concurrently, an RPL
framework is introduced to lower the risk of open space by simulating category external
space, thereby enlarging the distance between known and unknown categories. Finally, a
dynamic threshold method is designed based on data roaming by dividing the synthetic
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samples into known and unknown categories and inputting them together with known
samples into the classifier for a new round of training.

The experimental results reveal the strong competitiveness of RPLDW in both the
CSE and OSE, even surpassing the current state-of-the-art HSI classification methods.
This proves the effectiveness and robustness of the proposed RPLDW in lowering risks in
the real open world and improving classification accuracy. However, it should be noted
that RPLDW may erroneously label distinct land objects as unknown categories at their
boundaries, highlighting an area that warrants further research and improvement.
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