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Abstract: Thermal infrared remotely sensed data, by capturing the thermal radiation characteristics
emitted by the Earth’s surface, plays a pivotal role in various domains, such as environmental
monitoring, resource exploration, agricultural assessment, and disaster early warning. However, the
acquisition of thermal infrared hyperspectral remotely sensed imagery necessitates more complex
and higher-precision sensors, which in turn leads to higher research and operational costs. In this
study, a novel Convolutional Neural Network (CNN)–Transformer combined block, termed CTBNet,
is proposed to address the challenge of thermal infrared multispectral image spectral reconstruction.
Specifically, the CTBNet comprises blocks that integrate CNN and Transformer technologies (CTB).
Within these CTBs, an improved self-attention mechanism is introduced, which not only considers
features across spatial and spectral dimensions concurrently, but also explicitly extracts incremental
features from each channel. Compared to other algorithms, the proposed method more closely
aligns with the true spectral curves in the reconstruction of hyperspectral images across the spectral
dimension. Through a series of experiments, this approach has been proven to ensure robustness and
generalizability, outperforming some state-of-the-art algorithms across various metrics.

Keywords: spectral reconstruction; thermal infrared; hyperspectral; Transformer

1. Introduction

Thermal infrared remotely sensed technology is a method that utilizes spectral infor-
mation from the thermal infrared band to observe the Earth’s surface [1,2]. By capturing
the thermal infrared radiation emitted from the Earth’s surface, it gathers information
about the composition and state of surface materials, having advantages, such as night-
time observation and rich spectral information, thus contributing to the development of
Earth sciences [3]. Over the past few decades, hyperspectral remote sensing has made
significant progress and has played a crucial role in various fields, such as environmental
monitoring [4–6], agriculture [7–9], geological surveys [10–12], and target detection [13–15].
However, it also faces limitations, such as lower spatial resolution [16] and higher develop-
ment and maintenance costs [17], which restrict its application in detailed or small-scale
feature analysis for land classification and target recognition. Therefore, expanding the
acquisition methods for thermal infrared hyperspectral imagery is necessary.

Recently, a category of algorithms, commonly referred to as “spectral reconstruction”
or “spectral super-resolution” has been capable of deriving the corresponding hyperspectral
images from multispectral images through a series of computations. Specifically, the
multispectral image contains the features of the entire spectrum, although there is only
one radiance value in a certain spectral range, while a hyperspectral image can acquire the
radiance values of many narrow bands in the same spectral range. From an information
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point of view, both represent the features of the same spectrum, which provides theoretical
support for realizing spectral reconstruction.

In the past decade, due to the rapid development and application of machine learning
in the field of imagery and remote sensing [18], many algorithms have been proposed to re-
construct visible hyperspectral images from RGB images [19]. While spectral reconstruction
methods for visible light images have been proven feasible and achieved significant success,
these methods cannot be directly applied to the thermal infrared domain. Firstly, visible
light and thermal infrared spectra occupy different regions of the electromagnetic spectrum,
covering wavelength ranges of approximately 400–700 nm and 3–14 µm, respectively. This
wavelength difference results in significant variations in their absorption and scattering
properties of materials. In the thermal infrared region, the radiation received by the sensor
is mainly thermal radiation emitted by the substance, and its magnitude is related to the
emissivity and temperature [20], while in the visible region, the radiation received by the
sensor originates more from the reflection of the substance, and its magnitude is related
to the observation geometry and reflectivity [21]. Secondly, the types of sensors used for
visible light and thermal infrared imaging differ, leading to variations in their response
characteristics and noise levels. This means that algorithms designed for visible light may
not effectively handle specific noise or signal features in thermal infrared images.

To address the aforementioned challenges, this study introduces a supervised ther-
mal infrared spectral reconstruction method, a Convolutional Neural Network (CNN)–
Transformer combined block, named CTBNet, to compute the features in both spectral and
spatial dimensions. This algorithm can reconstruct thermal infrared hyperspectral images
in the range of 8.061 µm to 11.217 µm from multispectral thermal infrared images spanning
8.0 µm to 11.4 µm. Specifically, the novel block is designed to incorporate an improved
self-attention mechanism utilizing multiscale convolutional operations in spectral and
spatial dimensions, and this block is named CTB. The input data are first subjected to
linear mapping to expand the spectral dimensions, followed by processing through several
CTBs, with each block computing features in both the spatial and spectral dimensions.
Experimentally, this model achieved commendable results. The main contributions of this
paper are as follows:

1. In this study, a supervised deep learning algorithm is proposed to fill the gap in
the spectral reconstruction of thermal infrared images. It overcomes the challenges
associated with the acquisition of thermal infrared hyperspectral images and their
low spatial resolution, and it can provide data support for other related studies in
thermal infrared hyperspectral remote sensing.

2. This study introduces a CTB module, which incorporates an enhanced self-attention
mechanism focusing on the spatial local features and the variation trends of spec-
tral curves. This improvement significantly enhances the performance of thermal
infrared spectral reconstruction. Experiments demonstrate that CTBNet possesses
good robustness and stability for dealing with data noise and applications involving
different sensors.

The structure of the article is as follows: Section 1 covers thermal infrared hyperspectral
technology and spectral reconstruction algorithms; Section 2 introduces the related works;
a spectral reconstruction algorithm for thermal infrared multispectral images is detailed
in Section 3; the construction of the dataset is shown in Section 4; results are presented
in Section 5; Section 6 discusses the details on model improvements and robustness; the
conclusions are displayed in the final section.

2. Related Work
2.1. HSI Reconstruction

In past studies, spectral reconstruction algorithms can generally be divided into two
categories: traditional algorithms that utilize prior knowledge, and data-driven deep learn-
ing algorithms [22–24]. Traditional methods rely on prior knowledge, including spectral
correlation, sparsity, and spatial similarity. Fu et al. [25] introduced a method based on
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non-negative sparse representation, constructing a sparse coding dictionary to reconstruct
HSI from RGB images, and subsequently proposed several improved algorithms. Foti-
adou et al. [26] proposed a coupled dictionary learning model considering spatial features,
achieving commendable results. Recently, data-driven deep learning methods have seen ex-
ponential development in the field of image processing, with many deep learning-based HSI
reconstruction algorithms being proposed. Zhao et al. [27] combined the HSCNN-R model
to reconstruct hyperspectral images from a single RGB image, applying it to assess the
quality parameters of tomatoes. Miao et al. [28] designed a two-stage generative network
by integrating U-net into a self-attention GAN framework to achieve HSI reconstruction.
In addition, in the spectral reconstruction of satellite images, Zhu et al. [29] proposed a
self-supervised algorithm that employs a spectral dimension masking autoencoder architec-
ture combined with random masking pretraining and fixed masking fine-tuning strategies,
achieving spectral reconstruction of satellite images. Furthermore, Han et al. [30] proposed
a spectral reconstruction method using the cluster-based multibranch backpropagation
neural network and applied this to the HJ-1A satellite. Overall, data-driven deep learning
algorithms have gradually begun to play a role in the HSI reconstruction field and hold
great potential.

2.2. Transformer

The Transformer model is a widely utilized deep learning architecture in the domain of
Natural Language Processing (NLP), introduced by Vaswani et al. [31,32]. The heart of the
Transformer is the self-attention mechanism, which allows the model to consider all other
words in the sequence while processing each individual word, significantly enhancing the
model’s ability to handle long-range dependencies. Subsequent research has demonstrated
the Transformer’s exceptional performance not only within the realm of NLP but also in
image processing. Liu et al. [33] proposed the Swin Transformer algorithm and extensively
applied it to the field of computer vision. Furthermore, Du et al. [34] designed a Transformer
model integrated with convolutional operations, achieving the reconstruction of remote
sensing images. However, these methods have been primarily applied to images within
the visible light spectrum. Due to factors, such as imaging mechanisms, their performance
degrades when tasked with the reconstruction of thermal infrared remote sensing images.

2.3. CNN–Transformer

The CNN–Transformer model, as a novel hybrid paradigm in recent years, has demon-
strated excellent performance in the domain of computer vision. It melds the local per-
ception prowess of CNN with the global associative processing strength of Transformers,
endowing CNN–Transformer models with potent capabilities and versatility. DETR [35],
epitomizing the CNN–Transformer models, utilizes CNN for feature extraction and lever-
ages the encoder–decoder mechanism of Transformers to directly predict the category and
bounding box of each object in images in an end-to-end manner. This synergy not only
boosts the efficiency of object detection but also enhances the performance of the algorithm.
With the advancement of CNN–Transformer technology, an increasing number of refined al-
gorithms have emerged. Chen et al. [36] introduced an efficient dual-pathway Transformer
structure for building extraction, which reduces time costs while maintaining performance.

3. Methodology
3.1. Problem Formulation

The precondition for reconstructing multispectral thermal infrared images into thermal
infrared hyperspectral images is that they inherently contain spectral information within
that wavelength range. Specifically, for a given multispectral remote sensing band, its
radiance can be represented as follows:

R(bandi) =

∫ λ2
λ1

R(λ)SRF(λ)d(λ)∫ λ2
λ1

SRF(λ)d(λ)
(1)
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where R(bandi) denotes the radiance of band i, R(λ) represents the radiance at wavelength λ,
SRF(λ) signifies the response value of band i at wavelength λ, λ1 is the starting wavelength
of band i, and λ2 is the ending wavelength of band i. As illustrated in Equation (1), the
radiance of a specific band in a multispectral remote sensing image is derived from the
integration of spectral radiance within a specific range, encompassing all the information
within that spectral range. This facilitates the possibility of band reconstruction for thermal
infrared hyperspectral remotely sensed images. Since thermal infrared remotely sensed
images primarily reflect the thermal radiation of the Earth’s surface and atmosphere, their
radiances are coupled with the information of the land surface and atmosphere, as the
following formula indicates:

B(T) = εB(Ts)τ + Ratm
↑ + (1 − ε)Ratm

↓τ (2)

where B(T) denotes the radiance received by the sensor, B represents the Planck function,
ε is the surface emissivity, τ stands for the atmospheric transmittance, and Ts signifies
the land surface temperature, while Ratm

↑ and Ratm
↓ correspond to the upwelling and

downwelling atmospheric radiation, respectively.

3.2. Network Architecture

The overall architecture of the network, as depicted in Figure 1, is primarily composed
of five CTBs. Specifically, the input of the network is a multispectral image with dimensions
of 100 pixels in width and height and a channel count of 4. It is worth noting that this
study only uses 4-channel input data as an example, and the algorithm does not limit the
number of channels of input data. Initially, this input undergoes a linear mapping process
to expand its channel count to 110. The expanded data are sequentially input into a type
of CTB which has been specifically designed for the spectral reconstruction. The output
generated by the final CTB is a hyperspectral cube with dimensions of 100 pixels in both
width and height, and it comprises 110 spectral channels.
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3.3. CTB Structure

An enhanced self-attention mechanism has been proposed and applied within the
CTB, differing from the traditional approach of employing linear mappings to obtain Q, K,
and V. CTB utilizes two-dimensional and one-dimensional convolutions to derive K and V,
respectively, and employs convolutions to construct a Feedforward Neural Network (FNN),
as shown in Figure 2. The CTB is an essential module in CTBNet, comprising an enhanced
self-attention mechanism, an FNN, and a spectral forget unit. In brief, in Figure 2, FNN
serves to enhance the model’s fitting ability; K Map indicates the key mapping method
within the improved self-attention mechanism, employing two-dimensional multiscale
convolution to extract features in the spatial dimension; V Map denotes the value mapping
in the improved self-attention mechanism, which involves the computation of spectral
increments and one-dimensional multiscale convolution in the spectral dimension.
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Specifically, in the original self-attention mechanism, Q, K, and V are obtained through
linear mappings of the input features, as shown in the following equation:

Q = XWQ; K = XWK; V = XWV (3)

where X denotes the input features, while WQ, WK, and WV represent the learnable
parameter matrices. The method of self-attention based on linear mappings exhibits
superior performance in extracting global features. However, this approach may overlook
local characteristics within an image, such as textural details. To thoroughly extract both
global and local information from thermal infrared hyperspectral images, a multi-scale
convolution-based K mapping has been proposed, which is formulated as follows:

K = tanh(Conv2d1×1(X) + Conv2d3×3(X) + Conv2d5×5(X)) (4)

where, tanh(·) represents the activation function, which is a hyperbolic tangent function
with a mean of zero. Its advantage is that it can accelerate model convergence and introduce
nonlinear relationships. Conv2d1×1(·), Conv2d3×3(·), and Conv2d5×5(·) represent two-
dimensional convolutions with kernel sizes of 1 × 1, 3 × 3 and 5 × 5, respectively, as
depicted in the K Map section of Figure 2. The yellow portions in the figure illustrate
the multi-scale convolution operations. During this process, the three different sizes of
convolution operations individually compute local feature information of varying receptive
field sizes and then aggregate these features, thereby enhancing the model’s capacity to
represent spatial information. Furthermore, replacing linear mappings with multi-scale



Remote Sens. 2024, 16, 1284 6 of 17

convolutions to generate K can reduce the number of parameters in the model. This
reduction aids in model convergence and can decrease computational overhead.

In the CTB algorithm, improvements have been made not only to the method of
extracting spatial features from thermal infrared hyperspectral images but also to the
strategy for extracting spectral features. Specifically, a thermal infrared hyperspectral curve
possesses two critical attributes: the radiance value of each channel in the spectrum and
the overall trend of the spectral curve. The former reflects the energy emitted or reflected
by an object at specific wavelengths, while the latter illustrates how radiance values change
with wavelength, encapsulating the substance and state information of the target pixel.
Consequently, a V mapping, focused on the spectral trend, is employed within the self-
attention mechanism. In essence, the spectral variation trend is initially represented by
calculating the spectral increment between adjacent channels in the hyperspectral data,
followed by the extraction of features using multi-scale spectral-dimension convolutions.
The computation of spectral increment is as follows:

∆xi = xi − xi+1, xi ∈ X, ∆xi ∈ ∆X (5)

where xi represents the feature value of band i for the input data, ∆xi is the difference
between the band i and band i + 1, and ∆X represents the trend of channel changes across
the entire spectral dimension. Based on this, V can be represented as follows:

V = tanh(Conv1d1(X) + Conv1d3(X) + Conv1d3(X)) (6)

where Conv1d1(·), Conv1d3(·), and Conv1d5(·) represent one-dimensional convolutions
with kernel sizes of 1, 3, and 5, respectively, as shown in the orange section of the V Map in
Figure 2. These convolutions are performed only along the spectral dimension. Combined
with spectral increment information that encapsulates spectral trends, this method can
more accurately fit the spectral curve features, effectively avoiding the spectral smoothing
issue in reconstructed images.

In the previous discussion, it was explained how multi-scale 2D convolutions are
utilized to obtain K, which focuses on local spatial features, and how spectral increments
are used to derive V, which focuses on spectral trends. Regarding the acquisition of Q, a
linear mapping incorporating global features is used, as indicated in Equation (3). After
obtaining Q, K, and V, the attention score matrix can be represented as follows:

AttentionScoreh =
Qh(Kh)

T

√
dK

(7)

where Qh, Kh, and Vh are the query, key, and value for head h, respectively, and dK

represents the dimensionality of the key. The transposition of Kh is denoted as (Kh)
T

. After
the attention scores are computed, the output can be represented as follows:

HeadOutputh = softmax(AttentionScoreh)Vh (8)

where softmax(·) refers to an activation function, which serves to normalize the attention
score matrix. Finally, the outputs of all attention heads are concatenated, and the formula
for this operation is as follows:

MultiHeadOutput = Concat(HeadOutput1, HeadOutput2, ..., HeadOutputH)WO (9)

where H is the total number of heads, Concat(·) denotes splicing the output of all heads in
some dimension, and WO denotes a linear mapping of the results of multi-head attention.

Overall, the data input to the CTB, denoted as X ∈ RH×W×C, is transformed into
Q, K, V ∈ RHW×C after undergoing various mappings. Subsequently, the output of the
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multi-head attention is computed and fed into the FNN. This output is then connected to
the input of the CTB via a residual link.

In the residual connections, a spectral forget unit is included, which determines what
information should be forgotten or discarded from the input of the CTB. This mechanism
helps prevent unnecessary accumulation of information, thus avoiding the indefinite
influence of past information on future states. The formula for the spectral forget unit is
as follows:

Xforget = Concat(X1 · W, X2 · W, . . . , XH×W · W) (10)

where W is a learnable weight matrix of size (1, 110). which, during computation, engages
in an inner product with the spectral dimension of the data to yield weighted spectral data.

In essence, the CTB features two network branches. The first employs an enhanced
self-attention mechanism to extract features from global, local spatial, and spectral trend
perspectives, subsequently applying an FNN for further non-linear enhancement of the
data. In the second network branch, the spectral forget unit processes the CTB input data
to facilitate forgetting and discarding of information, which is then merged with the output
from the attention branch through residual connections. The initial thermal infrared hyper-
spectral images undergo linear mapping to produce relatively coarse hyperspectral images,
which are then sequentially refined and reconstructed using multiple CTBs, culminating in
the acquisition of accurate thermal infrared hyperspectral images.

4. Dataset

Hyperspectral imagery obtained through in situ measurements was utilized in this
study. This imagery was captured in January 2021, located at a longitude of 120.28 degrees
East and a latitude of 29.16 degrees North, within Zhejiang Province, China. The spatial
resolution of the hyperspectral image is 1 m, with a spectral range spanning from 8.061 to
11.217 µm. The image dimensions comprise 8000 pixels in length and 300 pixels in width,
encompassing a total of 110 spectral channels. Included within the image are various
surface features, such as lakes, man-made structures, and vegetation, as illustrated in
Figure 3.
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Due to the absence of concurrently measured thermal infrared multispectral and
hyperspectral remotely sensed data, in this part, simulated multispectral spectral response
functions and multispectral data are produced based on the Zhejiang thermal infrared
hyperspectral image. The spectral response functions partition the wavelength range of
the hyperspectral data into four equal intervals, representing four channels. The central
wavelengths for these channels are, respectively, 8.5 µm, 9.3 µm, 10.1 µm, and 10.9 µm,
with each channel having a bandwidth of 1 micrometer, as illustrated in Figure 4.
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After the simulation, the original image with dimensions of 300 by 8000 pixels was
cropped with overlap to produce a total of 4356 images, each with dimensions of 100 by
100 pixels. Ninety percent of these images were utilized to compile the training dataset,
while the remaining ten percent of images were allocated for the creation of the test-
ing dataset.

5. Results

In all experiments, CTBNet was configured with the following settings: the network
comprises five blocks, and each one employs an improved attention mechanism with four
attention heads. During the training phase, the batch size is set to 2, and the learning rate
is initialized at 0.0001, with a cosine annealing scheme for decay. The Adam optimizer
is used for the optimization, with the number of training epochs set to be 100, and the
mean relative absolute error (MRAE) is used as the loss function of the network. Based on
these settings, the equipment used consists of a computer with an Intel Xeon(R) Platinum
8352V CPU and an NVIDIA RTX 4090 GPU, running on a Linux operating system and
programmed in Python. The total runtime for the training process is approximately 10 h.
To evaluate the effectiveness of the algorithm, five performance metrics are selected: peak
signal-to-noise ratio (PSNR) in decibels (dB), structural similarity index (SSIM), spectral
angle mapper (SAM) in radians, root mean square error (RMSE) in Kelvin (K), and MRAE.

To illustrate the thermodynamic characteristics of the reconstructed hyperspectral
images, radiances are converted to brightness temperature, as shown in the following
Equation (11):

Mλ(T) =
2πhc

λ5
1

e
hc

λkT − 1
(11)

where h represents the Planck constant and has a value of 6.626 × 10−34 J·s; k represents the
Boltzmann’s constant and has a value of 1.3806 × 10−23 J/K; c represents the speed of light
and has a value of 2.998 × 108 m/s; λ represents the wavelength in meters; T represents the
thermodynamic temperature in Kelvin.
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To demonstrate the efficacy of CTBNet, it was quantitatively compared with several
state-of-the-art (SOTA) methods, namely MST++ [37], HRNet [38], HSCNN+ [39], HD-
Net [40], HINet [41], and Restormer [42], as shown in Table 1. Notably, MST++ was the
winning algorithm at NTIRE2022.

Table 1. Comparison of CTBNet with other methods.

PSNR (dB) SSIM SAM (rad) RMSE (K) MRAE

MST++ 60.93172 0.98797 0.00091 0.31442 0.00068
HRNet 61.37429 0.98842 0.00085 0.29734 0.00063

HSCNN+ 59.1247 0.98611 0.00109 0.4063 0.00083
Restormer 60.14287 0.98824 0.00095 0.35053 0.00071

HDNet 61.058 0.98855 0.00088 0.30924 0.00065
HINet 60.97999 0.9879 0.00089 0.30969 0.00066

CTBNet 61.48676 0.98864 0.00084 0.29338 0.00062

In Table 1, through the detailed comparative experiments, the performance of CTBNet
and other SOTA methods on image quality assessment metrics is meticulously compared.
From these metrics, a comprehensive understanding of the overall performance of each
method is obtained. Firstly, in terms of the PSNR metric, CTBNet leads to a result of
61.48676 dB, indicating its superiority in reducing noise in the image reconstruction pro-
cess. Secondly, the SSIM index, which measures the structural similarity between two
images, also highlights CTBNet’s advantage with a result of 0.98864. This indicates that
CTBNet effectively preserves the structural features and details of images. On the SAM
metric, CTBNet achieved a result of 0.00084 rad, reflecting the spectral similarity of the
reconstructed image. A lower SAM value indicates that the spectral characteristics of the
reconstructed image are closer to the original, thus proving CTBNet’s excellent performance
in spectral fidelity. For RMSE and MRAE, which directly measure the error in pixel values,
CTBNet leads with results of 0.29338 K and 0.00062, respectively, further demonstrating its
capability in error control.

Overall, the CTBNet method achieved the best results across all evaluation metrics,
especially notable in the PSNR metric for image signal-to-noise ratio, where its advantage
is most significant. Its performance in the RMSE and SSIM metrics also demonstrates
outstanding capabilities, collectively indicating CTBNet’s comprehensive superiority in
image reconstruction quality, particularly in aspects, such as noise suppression, structural
preservation, and error control.

It is well known in the field of thermal infrared remote sensing that the type of
land cover significantly affects the thermal infrared radiance observations of pixels. This
phenomenon is particularly evident between different types of land surfaces, such as land
and water, due to significant differences in emissivity and temperature. Land surfaces,
depending on their vegetation cover, soil moisture, and other surface characteristics, exhibit
varied thermal infrared radiation properties. In contrast, water bodies, due to their inherent
physical properties, typically show higher emissivity and more uniform temperature
distribution. These differences not only manifest in the spectral dimension but also have a
significant impact on the spatial dimension, thereby posing a higher challenge for spectral
reconstruction algorithms due to the complexity of surface types. To further showcase the
advantages of the algorithm, radiance error maps for two images of different land surface
types, namely land and water, were selected for presentation, with the land area shown in
Figure 5 and the water area in Figure 6.
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From Figures 5 and 6, it is evident that the reconstruction errors of the thermal infrared
hyperspectral images are more concentrated in areas with man-made structures, such as
the buildings on the right side of Figure 5 and the bridge in Figure 6. Moreover, compared
to water bodies, the errors in the land areas are more pronounced across various spectral
reconstruction algorithms. This phenomenon is likely due to the greater diversity and com-
plexity of land cover types relative to water bodies. The diversity of land surfaces includes
different vegetation types, soil moisture levels, topographical features, and man-made
structures, introducing a high degree of variability into the spectral data and consequently
increasing the difficulty of spectral reconstruction. In this context, the CTBNet algorithm
exhibits relatively smaller errors in both land and water areas, demonstrating its efficiency
and applicability in spectral reconstruction tasks. This architecture is capable of better
learning and simulating the complexity of land cover types and their impact on spectral
data, thereby preserving more details and features in the reconstruction process.

To more intuitively assess the performance of the CTBNet algorithm in the spectral
dimension, radiance spectral curve comparisons for two specific examples are presented,
as shown in Figure 7.
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From the comparison in Figure 7, the performance advantage demonstrated by the
CTBNet algorithm can be clearly seen. Specifically, CTBNet achieves a higher R2 value, a
statistical metric that directly reflects the congruence between the algorithm’s reconstructed
spectral curve and the true data (Ground Truth). A higher R2 indicates that CTBNet can
more accurately simulate the real spectral characteristics, thereby providing more reliable
reconstruction results across various test scenarios. Further observation of the spectral
detail comparison reveals that the CTBNet-reconstructed spectral curve closely follows the
trend of the real data across the entire wavelength range, including those spectral feature
bands that are particularly critical for the identification of surface materials. This close
match is evident not only in the major absorption and reflection peaks but also in the
minor fluctuations of the spectral curve, which are crucial for precise material identification
and classification.

Overall, CTBNet exhibits excellent performance in the task of thermal infrared spectral
reconstruction. It not only precisely reconstructs spatial and spectral details but also effec-
tively captures the trends of spectral variation, avoiding such issues as spectral smoothing.
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6. Discussion
6.1. Ablation Study

To investigate the effectiveness of the improved self-attention mechanism within
CTBNet, ablation experiments were designed in this part. Specifically, three variations
were tested: a Transformer model using the original self-attention mechanism, named
Nom-Transformer, a model employing the improved self-attention mechanism but without
the spectral forget unit, named New-Attention, and a model incorporating the spectral
forget unit but not the improved self-attention mechanism, named Nom-Attention. The
results of the ablation experiments are shown in Table 2.

Table 2. Comparison of ablation experiments.

PSNR (dB) SSIM SAM (rad) RMSE (K) MRAE

CTBNet 61.48676 0.98864 0.00084 0.29338 0.00062
New-Attention 59.93308 0.98728 0.00093 0.36361 0.00074
Nom-Attention 61.42158 0.98854 0.00085 0.29546 0.00063

Nom-Transformer 57.79278 0.98686 0.00098 0.46456 0.00109

From Table 2, it is evident that the CTBNet demonstrates the best performance across
all evaluation metrics, with a PSNR value of 61.48676 dB and an SSIM value of 0.98864,
indicating superior image reconstruction quality. The New-Attention model performs better
than the Nom-Transformer on most metrics, suggesting that the improved self-attention
mechanism positively impacts performance. The performance of the Nom-Attention
model in terms of PSNR and SSIM is close to that of CTBNet but slightly inferior in
SAM, RMSE, and MRAE metrics. This might indicate that while the spectral forget unit
helps performance, its combination with the improved self-attention mechanism yields the
best results. Overall, employing the improved self-attention mechanism and the spectral
forget unit both resulted in better outcomes than the original Transformer model, with the
combination of the two enhancements achieving superior image reconstruction results.

6.2. Sensitivity Analysis
6.2.1. Influence of Instrument Noise

To more closely align with real-world application scenarios, Gaussian noise was in-
tentionally added to the dataset. The primary purpose of this modification is to simulate
the impact of instrument noise on thermal infrared multispectral data. Instrument noise,
an inevitable part of the actual measurement process, primarily arises from the electronic
systems of instruments, instability in detector performance, and environmental factors,
manifesting as random fluctuations within the data [43–45]. By introducing noise in the
form of a Gaussian distribution to the simulated data, the aim is to assess and enhance
the adaptability and accuracy of the reconstruction algorithm when faced with real mea-
surement errors, thereby ensuring the reliability and robustness of the algorithm when
processing real-world data. Gaussian noise at a level of 0.1% was added to the data, and
the reconstruction results after incorporating this noise are shown in Table 3.

Table 3. Influence of instrument noise on results.

PSNR (dB) SSIM SAM (rad) RMSE (K) MRAE

Without_noise 61.48676 0.98864 0.00084 0.29338 0.00062
With_noise 61.11164 0.98793 0.00088 0.30397 0.00066

The results presented in Table 3 reveal that the incorporation of Gaussian noise leads
to a marginal reduction in various performance metrics, though the extent of this reduction
remains limited. These outcomes affirm that, despite the challenging conditions introduced
by instrument noise, the deep learning methodology proposed in this study is capable of
conducting effective spectral reconstruction. It demonstrates commendable adaptability
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and high precision, providing reliable technical support for the analysis and processing of
spectral data in real-world application contexts.

6.2.2. Influence of Spectral Response Function

Given the differences in spectral response functions among various sensors, these
discrepancies could significantly impact the quality of multispectral data reconstruction.
To assess our algorithm’s capability to adapt to different multispectral sensors and thereby
verify its robustness, a sensitivity analysis experiment was specifically designed. This
experiment aimed to simulate the spectral response functions of the thermal infrared
bands of the MODIS sensor to explore how such differences affect the performance of the
algorithm in reconstructing hyperspectral images. The simulated spectral response range
is shown in Figure 8. Subsequently, multispectral data generated based on the simulated
MODIS response functions were used as input for the algorithm, to test its adaptability and
flexibility to differences in sensor spectral characteristics, with the results shown in Table 4.
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Table 4. Influence of simulated MODIS spectral response function on results.

PSNR (dB) SSIM SAM (rad) RMSE (K) MRAE

Ideal data 61.48676 0.98864 0.00084 0.29338 0.00062
MODIS data 61.24813 0.98838 0.00089 0.31294 0.00065

The results in Table 4 indicate that multispectral data generated using the MODIS
spectral response functions have a minor impact on the outcomes of spectral reconstruction,
yet the performance remains commendable. This phenomenon may be attributed to
the simulated MODIS spectral response functions being more complex and less smooth
compared to the spectral response functions used in Section 4, which could affect the
model’s training and convergence. At the same time, since this impact is relatively minor,
it also suggests that the algorithm possesses strong robustness in real-world applications
with different types of multispectral sensors.

In this section, the various components of the CTBNet algorithm were explored, exam-
ining their roles in enhancing the reconstruction of thermal infrared multispectral images.
Ablation studies confirmed the efficacy of the improved self-attention mechanism and spec-
tral forget unit, providing valuable insights for subsequent thermal infrared hyperspectral
image reconstruction efforts. Furthermore, two sensitivity analysis experiments demon-
strated the robustness of the CTBNet algorithm against data noise and its adaptability to
different sensor characteristics, thereby broadening the applicability of the algorithm and
offering alternative solutions for the acquisition of thermal infrared hyperspectral data. For
example, in current thermal infrared hyperspectral research, many algorithms are based
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on the European Space Agency’s IASI sensor [46–48], which has a relatively low spatial
resolution and cannot meet the needs of small-scale studies. In future research, given
adequate data support, this algorithm could be employed to reconstruct multispectral
data with higher temporal and spatial resolution into hyperspectral data, thereby fulfilling
research requirements.

7. Conclusions

This paper presents an improved spectral reconstruction algorithm, CTBNet, which
combines CNNs and Transformers, aimed at addressing the challenges of thermal infrared
multispectral image reconstruction. By incorporating an improved self-attention mech-
anism and spectral forget unit into the algorithm, it successfully enhances the accuracy
of multispectral to hyperspectral image reconstruction while maintaining efficient com-
putational performance. Experimental results demonstrate that CTBNet surpasses some
SOTA methods across multiple performance evaluation metrics, particularly excelling in
key indicators, such as PSNR, SSIM, SAM, RMSE, and MRAE. These achievements not only
prove the immense potential of deep learning in the field of spectral reconstruction but
also highlight the advantages of combining CNNs and Transformers in processing thermal
infrared images. Furthermore, through ablation experiments and sensitivity analysis, the
crucial roles of the improved self-attention mechanism and spectral forget unit in enhancing
algorithm performance, as well as the algorithm’s robustness to different noise conditions
and spectral response function variances, were further verified.

Thermal infrared hyperspectral remote sensing technology is a crucial tool in the
field of Earth sciences, and the success of CTBNet signifies that more thermal infrared
hyperspectral data may be available for future scientific researches, thus contributing to
the advancement of Earth sciences. For example, in environmental monitoring, the spectral
reconstruction technique of CTBNet may be used for high temporal resolution monitoring
of climate change, pollutant dispersion, and changes in wildlife habitats. In the agricultural
sector, this technology may generate high spatial resolution thermal infrared hyperspectral
images, which can then assist in monitoring crop health, assessing the impact of drought,
and guiding irrigation management.

Despite the significant accomplishments of CTBNet in various aspects, we recognize
that there is still some room for further optimization and application expansion of the
algorithm. Future research could explore the integration of more advanced deep learning
technologies, such as Graph Geural Getworks (GNNs), and more complex Transformer
variants, to further improve reconstruction quality and the algorithm’s generalization
capability. Optimizing the algorithm’s real-time performance and application on larger-
scale datasets will be key to achieving broader applications.
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